Model-Based Dynamic Performance Simulation of a Microturbine Using Flight Test Data †
Abstract
:1. Introduction
- Use of test-rig data from two micro-turbines with the same thrust and size to define their operating points and create compressor and turbine maps. A least-squares scaling method was employed to transform the maps using parameters from four different engine operating points;
- Validation of the model with the experimental data: The results of the steady-states simulation were compared with the test rig data of the reference microturbines. The comparison was made for different operating points referring to the in-flight engine operating range, even far from the design point, and with respect to various performance parameters (thrust, fuel flow, EGT, inlet air flow). The transient model was validated using data recorded by flight telemetry for four different missions, by comparing the EGT and fuel flow parameters.
2. Materials and Methods
2.1. Engine Specification
- Maximum shaft speed (at Design Point) was set to 125,000 rpm, like for the JetCat P140 Rxi-B;
- Bench test measurements and the map scaling factor was derived from the JETPOL GTM 140;
- Transient performance was equal to those of JetCat, measured during flight missions.
2.2. Test Rig Data
2.3. Flight Data
- Air speed
- Ambient temperature
- Altitude
- Shaft speed
- EGT
- Fuel flow
- before take-off, when the engine idled but the aircraft had not been launched yet;
- after the end of the mission, when the parachute opened, the engine idled and was shut down after a while. The recording ended either when the telemetry was turned off or when the target drone was recovered.
2.4. Compressor and Turbine Maps
2.5. GSP Model
3. Results
3.1. Design Point Simulation
3.2. Steady-State Simulations
3.3. Flight Mission Simulation
- Exhaust Gas Temperature (EGT)
- Fuel flow
4. Discussion
- Measurement uncertainty at a microturbine is not as low as the uncertainty at a full-scale engine due to the small size of sensors and lack of space for them;
- Performance can vary significantly from one engine to another due to its low cost that implies higher manufacturing tolerances of components;
- Model is zero-dimensional (0D) and does not take into account the geometry of engine components;
- Component maps were produced by CFD analysis for another micro turbojet because the actual geometry or experimental compressor and turbine maps were not available for both analysed engines;
5. Conclusions
- Generation of suitable compressor and turbine maps, which match the engine performance values from experimental testing;
- Implementation and fine tuning of the model in GSP software, for the Design Point and Off-Design Steady State simulations, and the reproduction of a real flight mission which involved transient engine operation;
- Validation of the model with rig and flight test data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | artificial neural network |
APU | Auxiliary power unit |
CFD | Computational fluid dynamics |
CMF | Constant Mass Flow |
dTs | temperature correction factor |
EASN | European Aeronautics Science Network |
ECU | Electronic Control Unit |
EHM | engine health management |
FN | Net Thrust |
EGT | exhaust gas temperature |
efficiency | |
GPA | gas path analysis |
GPS | Global Positioning System |
GSP | Gas turbine Simulation Program |
I | moment of inertia |
ITWL | The Air Force Institute of Technology in Warsaw |
LS | Least Squares |
N | corrected rotational speed |
rpm | revolutions per minute |
angular speed | |
OP | operating point |
P | power |
PT | total pressure |
PR | Pressure ratio |
TT | total temperature |
UAV | Unmanned Aerial Vehicle |
W | mass flow rate |
W | corrected mass flow rate |
W | fuel flow |
References
- Schreckling, K. Gas Turbine Engines for Model Aircraft; Traplet: Upton upon Severn, UK, 1994. [Google Scholar]
- Kamps, B.Y.T. Model Jet Engines; Traplet: Malvern, UK, 2005. [Google Scholar]
- Gaonkar, D.N.; Patel, R.N. Modeling and simulation of microturbine based distributed generation system. In Proceedings of the 2006 IEEE Power India Conference, New Delhi, India, 10–12 April 2005; Volume 2005, pp. 256–260. [Google Scholar]
- Badami, M.; Giovanni Ferrero, M.; Portoraro, A. Dynamic parsimonious model and experimental validation of a gas microturbine at part-load conditions. Appl. Therm. Eng. 2015, 75, 14–23. [Google Scholar] [CrossRef]
- Przysowa, R.; Gawron, B.; Białecki, T.; Łȩgowik, A.; Merkisz, J.; Jasiński, R. Performance and emissions of a microturbine and turbofan powered by alternative fuels. Aerospace 2021, 8, 25. [Google Scholar] [CrossRef]
- Gawron, B.; Białecki, T.; Janicka, A.; Suchocki, T. Combustion and Emissions Characteristics of the Turbine Engine Fueled with HEFA Blends from Different Feedstocks. Energies 2020, 13, 1277. [Google Scholar] [CrossRef] [Green Version]
- Alulema, V.; Valencia, E.; Cando, E.; Hidalgo, V.; Rodriguez, D. Propulsion sizing correlations for electrical and fuel powered unmanned aerial vehicles. Aerospace 2021, 8, 171. [Google Scholar] [CrossRef]
- Adamski, M. Analysis of propulsion systems of unmanned aerial vehicles. J. Mar. Eng. Technol. 2018, 16, 291–297. [Google Scholar] [CrossRef]
- Tang, W.; Wang, L.; Gu, J.; Gu, Y. Single neural adaptive PID control for small UAV micro-turbojet engine. Sensors 2020, 20, 345. [Google Scholar] [CrossRef] [Green Version]
- Minijets. The Website for Fans of Light Jet Aircraft. Available online: https://minijets.org (accessed on 25 November 2021).
- Pavlenko, D.; Dvirnyk, Y.; Przysowa, R. Advanced materials and technologies for compressor blades of small turbofan engines. Aerospace 2021, 8, 1. [Google Scholar] [CrossRef]
- Rodgers, C. Some Effects of Size on the Performances of Small Gas Turbines; Volume 3: Turbo Expo 2003; ASMEDC: New York, NY, USA, 2003; Volume 3, pp. 17–26. [Google Scholar] [CrossRef]
- Oppong, F.; Spuy, S.J.V.D.; Diaby, A.L. An overview on the performance investigation and improvement of micro gas turbine engine. R&D J. S. Afr. Inst. Mech. Eng. 2015, 31, 35–41. [Google Scholar] [CrossRef]
- Capata, R.; Saracchini, M. Experimental campaign tests on ultra micro gas turbines, fuel supply comparison and optimization. Energies 2018, 11, 799. [Google Scholar] [CrossRef] [Green Version]
- Large, J.; Pesyridis, A. Investigation of micro gas turbine systems for high speed long loiter tactical unmanned air systems. Aerospace 2019, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Kadosh, K.; Cukurel, B. Micro-Turbojet to Turbofan Conversion Via Continuously Variable Transmission: Thermodynamic Performance Study. J. Eng. Gas Turbines Power 2017, 139, 022603. [Google Scholar] [CrossRef]
- Fulara, S.; Chmielewski, M.; Gieras, M. Variable geometry in miniature gas turbine for improved performance and reduced environmental impact. Energies 2020, 13, 5230. [Google Scholar] [CrossRef]
- Villarreal-Valderrama, F.; Zambrano-Robledo, P.; Hernandez-Alcantara, D.; Amezquita-Brooks, L. Turbojet thrust augmentation through a variable exhaust nozzle with active disturbance rejection control. Aerospace 2021, 8, 293. [Google Scholar] [CrossRef]
- Walsh, P.P.; Fletcher, P. Gas Turbine Performance, 2nd ed.; Blackwell Science Ltd.: Oxford, UK, 2004. [Google Scholar]
- Davison, C.R.; Birk, A.M. Comparison of Transient Modeling Techniques for a Micro Turbine Engine; Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B; ASMEDC: New York, NY, USA, 2006; pp. 449–458. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Yang, B. Transient performance simulation of aircraft engine integrated with fuel and control systems. Appl. Therm. Eng. 2017, 114, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Yepifanov, S.; Zelenskyi, R.; Sirenko, F.; Loboda, I. Simulation of Pneumatic Volumes for a Gas Turbine Transient State Analysis; Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy; American Society of Mechanical Engineers: Charlotte, NC, USA, 2017. [Google Scholar] [CrossRef]
- Kong, C.; Ki, J.; Chung, S. Performance simulation of a turboprop engine for basic trainer. KSME Int. J. 2002, 16, 839–850. [Google Scholar] [CrossRef]
- Tsoutsanis, E.; Meskin, N.; Benammar, M.; Khorasani, K. Dynamic performance simulation of an aeroderivative gas turbine using the matlab simulink environment. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); ASME: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Liu, Y. A high by-pass ratio turbofan model based on CMF method. Appl. Mech. Mater. 2013, 302, 578–582. [Google Scholar] [CrossRef]
- Chachurski, R.; Trzeciak, A.; Jedrowiak, B. Comparison of the results of mathematical modeling of a GTM 120 miniature turbine jet engine with the research results. Combust. Engines 2018, 173, 30–33. [Google Scholar] [CrossRef]
- Ahmadian, N.; Khosravi, A.; Sarhadi, P. Adaptive control of a jet turboshaft engine driving a variable pitch propeller using multiple models. Mech. Syst. Signal Process. 2017, 92, 1–12. [Google Scholar] [CrossRef]
- Fathy, T.; Elzahaby, A.; Khalil, M. Micro TJE centrifugal compressor performance prediction Tamer S. J. Eng. Sci. Mil. Technol. 2018, 2, 185–203. [Google Scholar] [CrossRef]
- Grannan, N.D.; Hoke, J.; McClearn, M.J.; Litke, P.; Schauer, F. Trends in jetCAT microturbojet-compressor efficiency. In Proceedings of the AIAA SciTech Forum—55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Jensen, C.U.; Lebreton, H.; Nielsen, S.S.; Rasmussen, K.M. Modeling and Validation of the SR-30 Turbojet Engine; Aalborg University: Aalborg, Denmark, 2012; p. 107. [Google Scholar]
- Villarreal-Valderrama, F. Analysis and Modeling of Micro Turbojets a Comprehensive Model Based on Multiphysics Principles; Autonomous University of Nuevo León: San Nicolás de los Garza, Mexico, 2019. [Google Scholar]
- Kho, S.; Park, H. Design of the Electronic Engine Control Unit Performance Test System of Aircraft. Aerospace 2021, 8, 158. [Google Scholar] [CrossRef]
- Polat, C. An Electronic Control Unit Design for a Miniature Jet Engine. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 2009. [Google Scholar]
- Pakmehr, M.; Fitzgerald, N.; Feron, E.; Paduano, J.; Behbahani, A. Physics-based dynamic modeling of a turboshaft engine driving a variable pitch propeller. J. Propuls. Power 2016, 32, 646–658. [Google Scholar] [CrossRef]
- Andoga, R.; Fozo, L.; Kovács, R.; Beneda, K.; Moravec, T.; Schreiner, M. Robust control of small turbojet engines. Machines 2019, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Kurzke, J.; Halliwell, I. Component Performance. In Propulsion and Power: An Exploration of Gas Turbine Performance Modeling; Springer International Publishing: Cham, Switzerland, 2018; pp. 439–575. [Google Scholar] [CrossRef]
- Czarnecki, M.; Olsen, J. Combined methods in preliminary micro scale gas turbine diffuser design—A practical approach. J. Appl. Fluid Mech. 2018, 11, 567–575. [Google Scholar] [CrossRef]
- Sebelev, A.A.; Tikhonov, A.S.; Aleksenskiy, V.A.; Shengals, A.A.; Klyavin, O.I. Aerodynamic analysis of the small-scaled centrifugal compressor for micro-turbojet engine applications. J. Phys. Conf. Ser. 2021, 1891, 012017. [Google Scholar] [CrossRef]
- Bar, W.; Czarnecki, M. Design-point, off-design meanline performance analysis and cfd computations of the axial turbine to micro gas-turbine engine. J. KONES Powertrain Transp. 2009, 16, 9–16. [Google Scholar]
- Suchocki, T.; Lampart, P.; Klonowicz, P. Numerical investigation of a GTM-140 turbojet engine. Open Eng. 2015, 5, 115–116. [Google Scholar] [CrossRef]
- Briones, A.M.; Sykes, J.P.; Rankin, B.A.; Caswell, A.W. Steady-state cfd simulations of a small-scale turbojet engine from idle to cruise conditions. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Briones, A.M.; Caswell, A.W.; Rankin, B.A. Fully Coupled Turbojet Engine Computational Fluid Dynamics Simulations and Cycle Analyses Along the Equilibrium Running Line. J. Eng. Gas Turbines Power 2021, 143, 061019. [Google Scholar] [CrossRef]
- Kong, C.; Ki, J.; Kang, M. A New Scaling Method for Component Maps of Gas Turbine Using System Identification. J. Eng. Gas Turbines Power 2003, 125, 979–985. [Google Scholar] [CrossRef]
- Rademaker, E.R. Scaling of Compressor and Turbine Maps on Basis of Equal Flow Mach Numbers and Static Flow Parameters; Technical Report; National Aerospace Laboratory NLR: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Tsoutsanis, E.; Meskin, N.; Benammar, M.; Khorasani, K. An Efficient Component Map Generation Method for Prediction of Gas Turbine Performance; Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy; American Society of Mechanical Engineers: New York, NY, USA, 2014; p. V006T06A006. [Google Scholar] [CrossRef]
- Coban, K.; Ekici, S.; Colpan, C.O.; Karakoç, T.H. Performance of a microjet using component map scaling. Aircr. Eng. Aerosp. Technol. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- De Giorgi, M.G.; Campilongo, S.; Ficarella, A. A diagnostics tool for aero-engines health monitoring using machine learning technique. Energy Procedia 2018, 148, 860–867. [Google Scholar] [CrossRef]
- Fentaye, A.D.; Baheta, A.T.; Gilani, S.I.; Kyprianidis, K.G. A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities. Aerospace 2019, 6, 83. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Zaccaria, V.; Zhao, X.; Kyprianidis, K. Diagnostics-Oriented Modelling of Micro Gas Turbines for Fleet Monitoring and Maintenance Optimization. Processes 2018, 6, 216. [Google Scholar] [CrossRef] [Green Version]
- Kumarin, A.; Kuznetsov, A.; Makaryants, G. Hardware-in-the-loop neuro-based simulation for testing gas turbine engine control system. In Proceedings of the 2018 Global Fluid Power Society PhD Symposium, GFPS 2018, Samara, Russia, 18–20 July 2018. [Google Scholar] [CrossRef]
- L’Erario, G.; Fiorio, L.; Nava, G.; Bergonti, F.; Mohamed, H.A.O.; Benenati, E.; Traversaro, S.; Pucci, D.; L’Erario, G.; Fiorio, L.; et al. Modeling, Identification and Control of Model Jet Engines for Jet Powered Robotics. IEEE Robot. Autom. Lett. 2020, 5, 2070–2077. [Google Scholar] [CrossRef] [Green Version]
- De Giorgi, M.G.; Quarta, M. Hybrid MultiGene Genetic Programming—Artificial neural networks approach for dynamic performance prediction of an aeroengine. Aerosp. Sci. Technol. 2020, 103, 105902. [Google Scholar] [CrossRef]
- De Giorgi, M.G.; Campilongo, S.; Ficarella, A. Development of a real time intelligent health monitoring platform for aero-engine. MATEC Web Conf. 2018, 233, 00007. [Google Scholar] [CrossRef]
- Derbel, K.; Beneda, K. Development of Airborne Test Environment for Micro Turbojet Engine—Part II: Remote Measurement System. In Proceedings of the NTinAD 2020—New Trends in Aviation Development 2020—15th International Scientific Conference, Proceedings, The High Tatras, Slovakia, 17–18 September 2020; pp. 43–48. [Google Scholar] [CrossRef]
- Kong, C.; Park, J.; Kang, M. A Study on Transient Performance Characteristics of the CRW Type UAV Propulsion System during Flight Mode Transition; Volume 5: Turbo Expo 2005; ASMEDC: New York, NY, USA, 2005; Volume 5, pp. 163–170. [Google Scholar] [CrossRef]
- Henke, M.; Monz, T.; Aigner, M. Introduction of a New Numerical Micro Gas Turbine Cycle Dynamics. J. Eng. Gas Turbines Power 2017, 139, 042601. [Google Scholar] [CrossRef]
- Visser, W.P.J.; Broomhead, M.J. GSP, A Generic Object-Oriented Gas Turbine Simulation Environment; Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery; American Society of Mechanical Engineers: New York, NY, USA, 2000. [Google Scholar] [CrossRef] [Green Version]
- GSP 11 User Manual; NLR—Royal Netherlands Aerospace Centre: Amsterdam, The Netherlands, 2021.
- Gawron, B.; Białecki, T. Measurement of exhaust gas emissions from miniature turbojet engine. Combust. Engines 2016, 167, 58–63. [Google Scholar] [CrossRef]
- Hajduk, J.; Rykaczewski, D. Possibilities of Developing aerial target system JET-2 (Możliwości rozwoju zestawu odrzutowych celów powietrznych Zocp-Jet2). In Mechanika w Lotnictwie ML-XVIII tom 2 (Mechanics in Aviation ML-XVIII Volume 2); Krzysztof, S., Ed.; PTMTS: Warszawa, Poland, 2018; pp. 139–154. [Google Scholar]
- Rykaczewski, D. Implementation of national tests on the example of the aerial JET-2 target system (Realizacja badań państwowych na przykładzie zestawu odrzutowych celów powietrznych Zocp-Jet2). In Mechanika w Lotnictwie ML-XVIII tom 2 (Mechanics in Aviation ML-XVIII Volume 2); Krzysztof, S., Ed.; PTMTS: Warszawa, Poland, 2018; pp. 221–230. [Google Scholar]
- Buczkowska-Murawska, T.; Zokowski, M. Using the telemetry system as an element of the engine operation monitoring system of UAS. J. KONBiN 2021, 52, 25–33. [Google Scholar] [CrossRef]
- Erario, M.L. Model-Based Dynamic Simulation of a Microturbine and Performance Prognostics Using Artificial Neural Networks; University of Salento: Lecce, Italy, 2021. [Google Scholar]
- Sankar, B.; Shah, B.; Thennavarajan, S.; Vanam, V. On Gas Turbine Simulation Model Development. In Proceedings of the National Conference on Condition Monitoring (NCCM), Bangalore, India, 4–5 October 2013; pp. 1–17. [Google Scholar]
- Visser, W.P.J.; Broomhead, M.J.; Kogenhop, O.; Rademaker, E.R. Technical Manual of Gas Turbine Simulation Program; Technical Report NLR-TR-2010-343-Issue-2; National Aerospace Laboratory NLR: Amsterdam, The Nederlands, 2010. [Google Scholar]
- Kurzke, J. Turbine Map Extension—Theoretical Considerations and Practical Advice. J. Glob. Power Propuls. Soc. 2020, 4, 176–189. [Google Scholar] [CrossRef]
- Ferrer-Vidal, L.E.; Pachidis, V.; Tunstall, R.J. Generating axial compressor maps to zero speed. Proc. Inst. Mech. Eng. Part A J. Power Energy 2021, 235, 956–973. [Google Scholar] [CrossRef]
- Misté, G.A.; Benini, E. Turbojet Engine Performance Tuning with a New Map Adaptation Concept. In Proceedings of the ASME 2013 Gas Turbine India Conference, Bangalore, India, 5–6 December 2013; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Khustochka, O.; Chernysh, S.; Yepifanov, S.; Ugryumov, M.; Przysowa, R. Estimation of performance parameters of turbine engine components using experimental data in parametric uncertainty conditions. Aerospace 2020, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Visser, W.P.J.; Kogenhop, O.; Oostveen, M. A Generic Approach for Gas Turbine Adaptive Modeling. In Turbo Expo: Power for Land, Sea, and Air; Volume 2: Turbo Expo 2004; AMSE: New York, NY, USA, 2004; pp. 201–208. [Google Scholar] [CrossRef] [Green Version]
- Bauwens, P. Gas Path Analysis for the MTT Micro Turbine. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 2015. [Google Scholar]
- Yan, B.; Hu, M.; Feng, K.; Jiang, Z. Enhanced component analytical solution for performance adaptation and diagnostics of gas turbines. Energies 2021, 14, 4356. [Google Scholar] [CrossRef]
Parameter | Unit | JETPOL GTM 140 | Jetcat P140 Rxi-B |
---|---|---|---|
Overall Pressure Ratio | 2.8 | 3.4 | |
Air flow rate | kg/s | 0.35 | 0.34 |
Maximum EGT | °C | 700 | 720 |
Mass Flow | kg/s | 0.35 | 0.34 |
Maximum Thrust | N | 140 | 142 |
Design Speed | kRPM | 120 | 125 |
Fuel consumption | g/s | 7.0 | 7.33 |
Parameter | |
---|---|
Max take-off weight | 85 kg |
Wing span | 2.85 m |
Lenght | 3.55 m |
Operating speed | 65–150 m/s |
Climb speed | 6 m/s |
Altitude | 1000–5000 m |
Operating range | 35 km |
Endurance | 60 min |
Flight No | Original Data (Rows) | Reduced Data (Rows) |
---|---|---|
1 | 100,742 | 1325 |
2 | 221,372 | 3827 |
3 | 121,958 | 1811 |
4 | 135,389 | 2215 |
Map Element | Compressor Map | Turbine Map |
---|---|---|
Operating points | 99 | 54 |
-lines | 11 | 9 |
Corrected speed lines | 9 | 6 |
Rotor Speed | TT | PT | PT | EGT | Thrust | W | W |
---|---|---|---|---|---|---|---|
rpm | °C | bar | bar | °C | N | kg/s | kg/s |
125,000 | 15 | 1.0133 | 2.8371 | 628 | 142 | 0.0087 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erario, M.L.; De Giorgi, M.G.; Przysowa, R. Model-Based Dynamic Performance Simulation of a Microturbine Using Flight Test Data. Aerospace 2022, 9, 60. https://doi.org/10.3390/aerospace9020060
Erario ML, De Giorgi MG, Przysowa R. Model-Based Dynamic Performance Simulation of a Microturbine Using Flight Test Data. Aerospace. 2022; 9(2):60. https://doi.org/10.3390/aerospace9020060
Chicago/Turabian StyleErario, Mario Leonardo, Maria Grazia De Giorgi, and Radoslaw Przysowa. 2022. "Model-Based Dynamic Performance Simulation of a Microturbine Using Flight Test Data" Aerospace 9, no. 2: 60. https://doi.org/10.3390/aerospace9020060
APA StyleErario, M. L., De Giorgi, M. G., & Przysowa, R. (2022). Model-Based Dynamic Performance Simulation of a Microturbine Using Flight Test Data. Aerospace, 9(2), 60. https://doi.org/10.3390/aerospace9020060