Transition Flight Trajectory Optimization for a Flapping-Wing Micro Air Vehicle with Unsteady Vortex-Lattice Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. FWMAV Model and Kinematics
2.2. Simulation Environment
2.2.1. Aerodynamic Model
2.2.2. Multibody Dynamics Solver
2.3. Trim Search
2.4. Optimal Control Problem Formulation
2.4.1. Control Variables
2.4.2. Cost Function
2.4.3. Constraints
2.5. Transcription and Parameter Optimization Problem
3. Results and Discussions
3.1. Initial Guess for SQP
3.2. Optimization Results
3.3. Wind Effect
4. Conclusions
- (1)
- When the target velocity is low (2 and 3 m/s), the FWMAV performs additional acceleration over the target velocity. After that, the FWMAV sacrifice the forward energy to gain the potential energy via pitch-up maneuver.
- (2)
- The pitch-up maneuver is performed more actively when the condition is favorable to acceleration: the target velocity is low, or the wind direction is tailwind.
- (3)
- When the wind direction is up and downward, the flapping frequency and energy consumption are distinctively different from the other wind conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Fourier coefficients for the wing kinematics, | |
mean chord length of the wing, | |
applied force vector, | |
flapping frequency, | |
distance from the center of mass of the body to the tip of the head, | |
distance from the center of mass to the wing-base pivot, | |
length of the body, | |
applied moment vector, | |
mass of the body, | |
mass of the wing, | |
normal vector of the body surface, | |
mechanical power consumption, | |
angular velocity components in ground-fixed frame, | |
radius of the wing, | |
stroke plane angle with respect to the ground-fixed frame, | |
stroke plane angle with respect to the body-fixed frame, | |
flapping period during hovering flight, | |
final transition time, | |
given forward flight velocity for the trim search, | |
, | velocity components in ground-fixed frame, |
velocity vector of the body, | |
longitudinal state vector, | |
6-degree of freedom state vector, | |
axes for the body-fixed frame, | |
axes for the ground-fixed frame, | |
axes for the wing-fixed frame, | |
rotation angle, | |
tolerance for the velocity constraints, | |
pitch command, | |
elevation angle, | |
required torque for the given wing kinematics, | |
velocity potential, | |
velocity potential of the inside of body, | |
sweeping bias, | |
sweep angle. |
Appendix A
References
- Nguyen, A.T.; Tran, N.D.; Vu, T.T.; Pham, T.D.; Vu, Q.T.; Han, J.-H. A neural-network-based approach to study the energy-optimal hovering wing kinematics of a bionic hawkmoth model. J. Bionic Eng. 2019, 16, 904–915. [Google Scholar] [CrossRef]
- Berman, G.J.; Wang, Z.J. Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 2007, 582, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Kurdi, M.; Stanford, B.; Beran, P. Kinematic optimization of insect flight for minimum mechanical power. AIAA Pap. 2010, 1420, 2010. [Google Scholar]
- Taha, H.E.; Hajj, M.R.; Nayfeh, A.H. Wing kinematics optimization for hovering micro air vehicles using calculus of variation. J. Aircr. 2013, 50, 610–614. [Google Scholar] [CrossRef]
- Ghommem, M.; Hajj, M.R.; Mook, D.T.; Stanford, B.K.; Beran, P.S.; Snyder, R.D.; Watson, L.T. Global optimization of actively morphing flapping wings. J. Fluids Struct. 2012, 33, 210–228. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Le, V.D.T.; Duc, V.; Phung, V.B. Study of vertically ascending flight of a hawkmoth model. Acta Mech. Sin. 2020, 36, 1031–1045. [Google Scholar] [CrossRef]
- Kelly, M. An introduction to trajectory optimization: How to do your own direct collocation. SIAM Rev. 2017, 59, 849–904. [Google Scholar] [CrossRef]
- Addo-Akoto, R.; Han, J.-S.; Han, J.-H. Influence of aspect ratio on wing–wake interaction for flapping wing in hover. Exp. Fluids 2019, 60, 1–18. [Google Scholar] [CrossRef]
- Del Estal Herrero, A.; Percin, M.; Karasek, M.; Van Oudheusden, B. Flow visualization around a flapping-wing micro air vehicle in free flight using large-scale PIV. Aerospace 2018, 5, 99. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.; Chang, J.W.; Chung, J. Aerodynamic Characteristics and Flow Structure of Hawkmoth-Like Wing with LE Vein. Int. J. Aeronaut. Space Sci. 2022, 23, 42–51. [Google Scholar] [CrossRef]
- Li, H.; Li, D.; Shen, T.; Bie, D.; Kan, Z. Numerical Analysis on the Aerodynamic Characteristics of an X-wing Flapping Vehicle with Various Tails. Aerospace 2022, 9, 440. [Google Scholar] [CrossRef]
- Zhu, M.; Zhu, J.; Zhang, T. Aerodynamic Performance of the Three-Dimensional Lumped Flexibility Wing Under Wind Fluctuating Condition. Int. J. Aeronaut. Space Sci. 2021, 22, 765–778. [Google Scholar] [CrossRef]
- Au, L.T.K.; Park, H.C.; Lee, S.T.; Hong, S.K. Clap-and-Fling Mechanism in Non-Zero Inflow of a Tailless Two-Winged Flapping-Wing Micro Air Vehicle. Aerospace 2022, 9, 108. [Google Scholar] [CrossRef]
- Han, J.-S.; Chang, J.W.; Han, J.-H. An aerodynamic model for insect flapping wings in forward flight. Bioinspiration Biomim. 2017, 12, 036004. [Google Scholar] [CrossRef]
- Dickinson, M.H.; Lehmann, F.-O.; Sane, S.P. Wing rotation and the aerodynamic basis of insect flight. Science 1999, 284, 1954–1960. [Google Scholar] [CrossRef]
- Hussein, A.A.; Seleit, A.E.; Taha, H.E.; Hajj, M.R. Optimal transition of flapping wing micro-air vehicles from hovering to forward flight. Aerosp. Sci. Technol. 2019, 90, 246–263. [Google Scholar] [CrossRef]
- Dietl, J.M.; Garcia, E. Ornithopter optimal trajectory control. Aerosp. Sci. Technol. 2013, 26, 192–199. [Google Scholar] [CrossRef]
- Banazadeh, A.; Taymourtash, N. Adaptive attitude and position control of an insect-like flapping wing air vehicle. Nonlinear Dyn. 2016, 85, 47–66. [Google Scholar] [CrossRef]
- Serrani, A.; Keller, B.; Bolender, M.; Doman, D. Robust Control of a 3-DOF Flapping Wing Micro Air Vehicle. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, ON, Canada, 2–5 August 2010. [Google Scholar]
- Sigthorsson, D.; Oppenheimer, M.; Doman, D. Flapping Wing Micro-Air-Vehicle 4-DOF Controller Applied to a 6-DOF Model. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, ON, Canada, 2–5 August 2010. [Google Scholar]
- Orlowski, C.T.; Girard, A.R. Modeling and Simulation of Nonlinear Dynamics of Flapping Wing Micro Air Vehicles. AIAA J. 2011, 49, 969–981. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-K.; Han, J.-H. Control effectiveness analysis of the hawkmoth Manduca sexta: A multibody dynamics approach. Int. J. Aeronaut. Space Sci. 2013, 14, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Norris, A.G.; Palazotto, A.N.; Cobb, R.G. Experimental Structural Dynamic Characterization of the Hawkmoth (Manduca Sexta) Forewing. Int. J. Micro Air Veh. 2013, 5, 39–54. [Google Scholar] [CrossRef]
- Hollenbeck, A.C.; Palazotto, A.N. Methods Used to Evaluate the Hawkmoth (Manduca Sexta) as a Flapping-Wing Micro Air Vehicle. Int. J. Micro Air Veh. 2012, 4, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Ellington, C.P. The aerodynamics of hovering insect flight. II. Morphological parameters. Philos. Trans. R. Soc. London. B Biol. Sci. 1984, 305, 17–40. [Google Scholar]
- O’hara, R.; Palazotto, A. The morphological characterization of the forewing of the Manduca sexta species for the application of biomimetic flapping wing micro air vehicles. Bioinspiration Biomim. 2012, 7, 046011. [Google Scholar] [CrossRef]
- Willmott, A.P.; Ellington, C.P. The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. J. Exp. Biol. 1997, 200, 2705–2722. [Google Scholar] [CrossRef]
- Katz, J.; Plotkin, A. Low-Speed Aerodynamics; Cambridge University Press: Cambridge, UK, 2001; Volume 13. [Google Scholar]
- Ansari, S.A.; Żbikowski, R.; Knowles, K. Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 2: Implementation and validation. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 2006, 220, 169–186. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.T.; Han, J.-S.; Han, J.-H. Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta. Bioinspiration Biomim. 2016, 12, 016007. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Kim, J.-K.; Han, J.-S.; Han, J.-H. Extended unsteady vortex-lattice method for insect flapping wings. J. Aircr. 2016, 53, 1709–1718. [Google Scholar] [CrossRef]
- Kim, J.-K.; Han, J.-H. A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta. Bioinspiration Biomim. 2014, 9, 016011. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-S.; Kim, J.-K.; Kim, D.-K.; Han, J.-H. Longitudinal flight dynamics of bioinspired ornithopter considering fluid-structure interaction. J. Guid. Control Dyn. 2011, 34, 667–677. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Han, J.-H. Wing flexibility effects on the flight performance of an insect-like flapping-wing micro-air vehicle. Aerosp. Sci. Technol. 2018, 79, 468–481. [Google Scholar] [CrossRef]
- Kim, J.-K.; Han, J.-S.; Lee, J.-S.; Han, J.-H. Hovering and forward flight of the hawkmoth Manduca sexta: Trim search and 6-DOF dynamic stability characterization. Bioinspiration Biomim. 2015, 10, 056012. [Google Scholar] [CrossRef]
- Willmott, A.P.; Ellington, C.P. The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation. J. Exp. Biol. 1997, 200, 2723–2745. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, C.; Yang, A. Optimization of lift force for a bio-inspired flapping wing model in hovering flight. Int. J. Micro Air Veh. 2016, 8, 92–108. [Google Scholar] [CrossRef] [Green Version]
- Kalliny, A.N.; El-Badawy, A.A.; Elkhamisy, S.M. Command-filtered integral backstepping control of longitudinal flapping-wing flight. J. Guid. Control Dyn. 2018, 41, 1556–1568. [Google Scholar] [CrossRef]
- Wissa, B.E.; Elshafei, K.O.; El-Badawy, A.A. Lyapunov-based control and trajectory tracking of a 6-DOF flapping wing micro aerial vehicle. Nonlinear Dyn. 2020, 99, 2919–2938. [Google Scholar] [CrossRef]
- Bhatti, M.Y.; Lee, S.-G.; Han, J.-H. Dynamic Stability and Flight Control of Biomimetic Flapping-Wing Micro Air Vehicle. Aerospace 2021, 8, 362. [Google Scholar] [CrossRef]
- Casey, T.M. A Comparison of Mechanical and Energetic Estimates of Flight Cost for Hovering Sphinx Moths. J. Exp. Biol. 1981, 91, 117–129. [Google Scholar] [CrossRef]
Parameter of the Wing | Value | Parameter of the Body | Value |
---|---|---|---|
(mg) | 46.87 | (mg) | 1485 |
(mm) | 48.50 | (mm) | 44.80 |
(mm) | 16.81 | 0.45 | |
0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-G.; Yang, H.-H.; Addo-Akoto, R.; Han, J.-H. Transition Flight Trajectory Optimization for a Flapping-Wing Micro Air Vehicle with Unsteady Vortex-Lattice Method. Aerospace 2022, 9, 660. https://doi.org/10.3390/aerospace9110660
Lee S-G, Yang H-H, Addo-Akoto R, Han J-H. Transition Flight Trajectory Optimization for a Flapping-Wing Micro Air Vehicle with Unsteady Vortex-Lattice Method. Aerospace. 2022; 9(11):660. https://doi.org/10.3390/aerospace9110660
Chicago/Turabian StyleLee, Sang-Gil, Hyeon-Ho Yang, Reynolds Addo-Akoto, and Jae-Hung Han. 2022. "Transition Flight Trajectory Optimization for a Flapping-Wing Micro Air Vehicle with Unsteady Vortex-Lattice Method" Aerospace 9, no. 11: 660. https://doi.org/10.3390/aerospace9110660
APA StyleLee, S. -G., Yang, H. -H., Addo-Akoto, R., & Han, J. -H. (2022). Transition Flight Trajectory Optimization for a Flapping-Wing Micro Air Vehicle with Unsteady Vortex-Lattice Method. Aerospace, 9(11), 660. https://doi.org/10.3390/aerospace9110660