Molecular Dynamics Electrospray Simulations of Coarse-Grained Ethylammonium Nitrate (EAN) and 1-Ethyl-3-Methylimidazolium Tetrafluoroborate (EMIM-BF4)
Abstract
:1. Introduction
2. Coarse-Graining of EAN Using EFCG
2.1. Determination of CG Bonded Interaction Parameters
2.2. Determination of CG Non-Bonded Interaction Parameters
3. Numerical Parameters and Boundary Conditions Used for the MD Electrospray Simulations
3.1. Boundary Conditions Used to Obtain External Electric Field
3.2. Details of the MD Simulation Domain
4. Comparison of the Cation-Anion Separation Energy of EAN vs. EMIM-BF
5. Comparison of the Emission Species and Currents
5.1. Evolution of Taylor Cone Structure of EAN vs. EMIM-BF
5.2. Comparison of Species-Specific Electrospray Emission Currents
6. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Jahn, R.G.; Choueiri, E.Y. Encyclopedia of Physical Science and Technology, Electric Propulsion, 3rd ed.; Academic Press: Cambridge, MA, USA, 2002; Volume 5. [Google Scholar]
- Taylor, G.I. Disintegration of Water Droplets in an Electric Field. Proc. R. Soc. A 1964, 280, 383–397. [Google Scholar] [CrossRef]
- Deng, W.; Waits, C.M.; Gomez, A. Digital electrospray for controlled deposition. Rev. Sci. Instrum. 2010, 81, 035114. [Google Scholar] [CrossRef] [PubMed]
- Jaworek, A. Electrospray droplet sources for thin film deposition. J. Mater. Sci. 2007, 42, 266–297. [Google Scholar] [CrossRef]
- Swanson, L. Liquid metal ion sources: Mechanism and applications. Nucl. Instrum. Methods Phys. Res. 1983, 218, 347–353. [Google Scholar] [CrossRef]
- Clampitt, R. Advances in molten metal field ion sources. Nucl. Instrum. Methods Phys. Res. 1981, 189, 111–116. [Google Scholar] [CrossRef]
- Gamero-Castano, M.; Hruby, V. Electrospray as a source of Nanoparticles for Efficient Colloid Thrusters. J. Propuls. Power 2001, 17, 977–987. [Google Scholar]
- Hruby, V.; Gamero-Castano, M.; Spence, D.; Gasdaska, C.; Demmons, N.; McCormick, R.; Falkos, P.; Young, J.; Connolly, W. Colloid thrusters for the new millennium, ST7 DRS mission. In Proceedings of the 2004 IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2004; Volume 1, p. 213. [Google Scholar]
- Borner, A.; Li, Z.; Levin, D. Prediction of Fundamental Properties of Ionic Liquid Electrospray Thrusters using Molecular Dynamics. J. Phys. Chem. B 2013, 117, 6768–6781. [Google Scholar] [CrossRef] [PubMed]
- Legge, R.S., Jr.; Lozano, P.C. Electrospray Propulsion Based on Emitters Microfabricated in Porous Metals. J. Propuls. Power 2011, 27, 485–495. [Google Scholar] [CrossRef]
- Greaves, T.L.; Drummond, C.J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.; Menne, S.; Kuhnel, R.; Balducci, A. The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications. J. Mater. Chem. A 2014, 2, 8258–8265. [Google Scholar]
- Alonso-Matilla, R.; Fernandez-Garcia, H.; Congdon, H.; de la Mora, J.F. Search for liquids electrospraying the smallest possible nanodrops in vacuo. J. Appl. Phys. 2014, 116. [Google Scholar] [CrossRef]
- Donius, B.; Rovey, J.L. Ionic Liquid Dual-Mode Spacecraft Propulsion Assessment. J. Spacecr. Rocket. 2011, 48, 110–123. [Google Scholar] [CrossRef]
- Prince, B.D.; Tiruppathi, P.; Bemish, R.J.; Chiu, Y.H.; Maginn, E.J. Molecular Dynamics Simulations of 1-Ethyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide Clusters and Nanodrops. J. Phys. Chem. A 2015, 119, 352–368. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Izvekov, S.; Yan, T.; Voth, G. Multiscale coarse-graining of Ionic Liquids. J. Phys. Chem. B 2005, 110, 3564–3575. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Noid, W.; Voth, G. Effective Field Coarse Graining. Phys. Chem. Chem. Phys. 2009, 11, 2002–2015. [Google Scholar] [CrossRef] [PubMed]
- Noid, W.; Chu, J.W.; Ayton, G.; Krishna, V.; Izvekov, S.; Voth, G.; Das, A.; Andersen, H.C. The multiscale coarse-graining method I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 2008, 128, 244114. [Google Scholar] [CrossRef] [PubMed]
- Borner, A.; Wang, P.; Levin, D.A. Influence of electrical boundary conditions on molecular dynamics simulations of ionic liquid electrosprays. Phys. Rev. E 2014, 90, 063303. [Google Scholar] [CrossRef] [PubMed]
- Borner, A.; Levin, D. Coupled Molecular Dynamics—Three-Dimensional Poisson Simulations of Ionic Liquid Electrospray Thrusters. IEEE Trans. Plasma Sci. 2015, 43, 1–17. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. Computer Simulations of Liquids; Oxford Science Publications: Oxford, UK, 2009. [Google Scholar]
- Lozano, P.C. Studies on the Ion-Droplet Mixed Regime in Colloid Thrusters. Ph.D. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA, 2003. [Google Scholar]
- Romero-Sanz, I.; Bocanegra, R.; Fernandez de la Mora, J.F.; Gamero-Castano, M. Source of heavy molecular ions based on Taylor cones of ionic liquids operating in the pure ion evaporation regime. J. Appl. Phys. 2003, 94, 3599–3605. [Google Scholar] [CrossRef]
- Borner, A.; Levin, D.A. Use of Advanced Particle Methods in Modeling Space Propulsion and Its Supersonic Expansions. Ph.D. Thesis, Pennsylvania State University, State College, PA, USA, 2014. [Google Scholar]
- Mehta, N.; Levin, D. Coarse graining of Ethylammonium Nitrate Using Effective Field Coarse Graining Method. In Proceedings of the 54th AIAA Aerospace Science Meeting, San Diego, CA, USA, 4–8 January 2016; pp. 1–28. [Google Scholar]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 45, 11225–11236. [Google Scholar] [CrossRef]
- Saad, Y.; Schultz, M.H. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]
- Mehta, N.A.; Levin, D.A. Effects of Long-range Coulomb interaction models on the Electrospray Molecular Dynamics Simulations. Phys. Rev. E 2017. under review. [Google Scholar]
- Weingartner, H. Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angew. Chem. Int. Ed. 2008, 47, 654–670. [Google Scholar] [CrossRef] [PubMed]
- Fennell, C.J.; Gezelter, J.D. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 2006, 124, 234104. [Google Scholar] [CrossRef] [PubMed]
- Hockney, R.W.; Eastwood, J.W. Computer Simulations Using Particles; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 1988. [Google Scholar]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Greaves, T.L.; Kennedy, D.F.; Kirby, N.; Drummond, C.J. Nanostructure changes in protic ionic liquids (PILs) through adding solutes and mixing PILs. Phys. Chem. Chem. Phys. 2011, 13, 13501–13509. [Google Scholar] [CrossRef] [PubMed]
- Hjalmarsson, N.; Atkin, R.; Rutland, M.W. Effect of Lithium Ions on Rheology and Interfacial Forces in Ethylammonium Nitrate and Ethanolammonium Nitrate. J. Phys. Chem. C 2016, 120, 26960–26967. [Google Scholar] [CrossRef]
- Mehta, N.A.; Levin, D.A. Comparison of two protic ionic liquid behaviors in the presence of an electric field using molecular dynamics. J. Chem. Phys. 2017, 147, 234505. [Google Scholar] [CrossRef] [PubMed]
- Borrajo-Pelaez, R.; Gamero-Castano, M. The effect of molecular mass on the sputtering by electrosprayed nanodroplets. Appl. Surf. Sci. 2015, 344, 163–170. [Google Scholar] [CrossRef]
- Gamero-Castano, M.; Hruby, V. Electric measurements of charged sprays emitted by cone-jets. J. Fluid Mech. 2002, 459, 245–276. [Google Scholar] [CrossRef]
CG Parameter | (eV) | Equilibrium Values () |
---|---|---|
Bond N1-E1 | 14.2621 (1/Å) | 1.58345 (Å) |
Bond E1-E2 | 794.8861 (1/Å) | 1.6697 (Å) |
Angle N1-E1-E2 | 4.1618 () | 107.6589 (deg) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, N.A.; Levin, D.A. Molecular Dynamics Electrospray Simulations of Coarse-Grained Ethylammonium Nitrate (EAN) and 1-Ethyl-3-Methylimidazolium Tetrafluoroborate (EMIM-BF4). Aerospace 2018, 5, 1. https://doi.org/10.3390/aerospace5010001
Mehta NA, Levin DA. Molecular Dynamics Electrospray Simulations of Coarse-Grained Ethylammonium Nitrate (EAN) and 1-Ethyl-3-Methylimidazolium Tetrafluoroborate (EMIM-BF4). Aerospace. 2018; 5(1):1. https://doi.org/10.3390/aerospace5010001
Chicago/Turabian StyleMehta, Neil A., and Deborah A. Levin. 2018. "Molecular Dynamics Electrospray Simulations of Coarse-Grained Ethylammonium Nitrate (EAN) and 1-Ethyl-3-Methylimidazolium Tetrafluoroborate (EMIM-BF4)" Aerospace 5, no. 1: 1. https://doi.org/10.3390/aerospace5010001
APA StyleMehta, N. A., & Levin, D. A. (2018). Molecular Dynamics Electrospray Simulations of Coarse-Grained Ethylammonium Nitrate (EAN) and 1-Ethyl-3-Methylimidazolium Tetrafluoroborate (EMIM-BF4). Aerospace, 5(1), 1. https://doi.org/10.3390/aerospace5010001