Design and In-Flight Performance of the Power Converter Module and the Pressurised Enclosure for a Scientific Payload Onboard a Stratospheric Balloon
Abstract
1. Introduction
2. SUNRISE III Mission
2.1. Background and Launch Site
2.2. SUNRISE III Payload
- SUSI is an ultraviolet, slit spectropolarimeter covering the near-ultraviolet range between 300 nm and 410 nm, which is to a large extent poorly accessible from the ground. It studied the coupling between the various layers of the solar atmosphere. MPS developed this instrument with contributions from NAOJ [28].
- SCIP is an infrared slit spectropolarimeter able to observe in two spectral regions around 768.5 nm and 851.5 nm. It measured the chromosphere, and combines the information with lines formed in the deep to upper photosphere. The instrument was under NAOJ and S3PC responsibility [29].
- TuMag is a new magnetograph and tachograph, able to image the polarisation properties of three spectral lines in the visible: Fe I @ 525.02 and 525.06 nm; and Mg Ib2 @ 517.3 nm. It delivered 2D maps of two different layers in the solar atmosphere, the deep photosphere and the chromosphere, at high temporal cadence. The instrument was developed by S3PC [15].
3. Requirements Review
3.1. Mission Requirements
3.2. E-Unit Power Electronics Requirements
3.3. E-Unit Mechanical and Structural Requirements
- The O-rings had to be compressed at least 10% (i.e., 0.5 mm for the main flange).
4. TuMag PCM
4.1. Design Overview
- DC/DC A is a custom converter, powering the DPU, AMHD, and HVPS.
- DC/DC B supplies an isolated +24 V line to the cameras using a COTS switching converter.
- DC/DC C powers heaters and provides +24 V output for HVPS and Mechanisms via a COTS switching converter.
- The −12 V line uses a Low-Dropout (LDO) regulator (LM2991S, Texas Instruments), selected for its low dropout voltage and stable performance across varying conditions.
- For both the +3.3 V and +5 V outputs, Point-of-Load (POL) converters are employed for improved efficiency compared to LDOs. These are powered from the +12 V rail and use the OKX-T/5-D12 module by Murata, configured according to the manufacturer’s guidelines.
4.1.1. Overcurrent Protection, Shut-Down Events, and Auto-Reset
- Detection of an OC condition on the primary side.
- UVLO/OVLO events on the input bus.
- A trigger on the OCa.
4.1.2. Input Section and EMI Filters
4.1.3. Telemetry
- OCb status: Indicates activation of the OC protection on the DC/DC B line, corresponding to the +24 V camera power exceeding its threshold.
- OCc status: Represents the OC status for DC/DC C outputs, covering heaters, HVPS, and mechanisms. This signal results from an OR function combining all relevant OC detections and includes conditioning circuitry.
4.1.4. Magnetic Components
4.2. Manufacturing and Test
5. E-Unit Housing
5.1. Design
5.2. Manufacturing and Test
5.2.1. Material Selection
- Main O-ring: dimensions 538 × 5 mm (Reference 70VMQS7063R-LT).
- High-voltage connector O-ring: dimensions 42 × 3 mm (Reference 70FVMQ).
- Feedthrough O-rings: manufactured from the same VMQ compound as the main O-ring.
- Lubricant: Apiezon N grease, characterised by low TML (<1%) and low CVCM (<0.1%), optimised for low-temperature and vacuum applications [46].
5.2.2. Coating and Painting
6. E-Unit Structural Analysis
6.1. Finite Elements Model
6.2. Structural Analyses
- Less than 0.1 mm of displacement over all the main flange.
- A displacement of 0.3 mm at the HVPS board.
7. In-Flight Telemetry
7.1. E-Unit Pressure Level
7.2. PCM Voltage, Current and Temperature Profiles
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMHD | Analog, Mechanisms & Heaters Drivers |
APL | Johns Hopkins University Applied Physics Laboratory (USA) |
BB | Breadboard |
CM | Common Mode |
CMAG | Coronal Magnetograph mission |
COTS | Commercial-Off-The-Shelf |
CSBF | Columbia Scientific Balloon Facility (USA) |
CSIC | Consejo Superior de Investigaciones Científicas (Spain) |
CTE | Coefficient of Thermal Expansion |
CVCM | Collected Volatile Condensable Material |
CWS | Correlating Wavefront Sensor |
DM | Differential Mode |
DPU | Data Processing Unit |
E-Unit | Electronic Unit |
ECSS | European Cooperation for Space Standardization |
EGSE | Electrical Ground Support Equipment |
EMC | Electromagnetic Compatibility |
EMI | Electromagnetic Interference |
ESA | European Space Agency |
ESRANGE | ESRO Sounding Rocket Launching Range |
ESRO | European Space Research Organisation |
FEA | Finite Element Analysis |
FEM | Finite Element Model |
FM | Flight Model |
FoS | Factor of Safety |
FPGA | Field-Programmable Gate Array |
FVMQ | Fluoro Vinyl Methyl siloxane (Fluorosilicone rubber) |
GPIB | General Purpose Interface Bus |
HV | High Voltage |
HVPS | High Voltage Power Supply |
IAA | Instituto de Astrofísica de Andalucía, CSIC (Spain) |
IAC | Instituto de Astrofísica de Canarias (Spain) |
IMaX | Imaging Magnetograph eXperiment |
INTA | Instituto Nacional de Técnica Aeroespacial (Spain) |
ISLiD | Image Stabilization and Light Distribution System |
KIS | Leibniz-Institut für Sonnenphysik (Germany) |
JAXA | Japan Aerospace Exploration Agency (Japan) |
LCL | Latching Current Limiter |
LDB | Long Duration Balloon |
LDO | Low-Dropout |
MoS | Margin of Safety |
MPS | Max-Planck-Institut für Sonnensystemforschung (Germany) |
NAOJ | National Astronomical Observatory of Japan (Japan) |
NASA | National Aeronautics and Space Administration (USA) |
OC | Overcurrent |
O-Unit | Optical Unit |
OVLO | Over-Voltage Lock-Out |
PCB | Printed Circuit Board |
PCM | Power Converter Module |
PHI | Polarimetric and Helioseismic Imager |
PMU | Polarization Modulation Unit |
POL | Point-Of-Load |
PTFE | Polytetrafluoroethylene |
PWM | Pulse Width Modulator |
RML | Recovered Mass Loss |
S3PC | Spanish Space Solar Physics Consortium |
SCIP | SUNRISE Chromospheric Infrared spectro-Polarimeter |
SMM | Scan Mirror Mechanism |
SSC | Swedish Space Corporation (Sweden) |
SUSI | SUNRISE Ultraviolet Spectropolarimeter and Imager |
TML | Total Mass Loss |
TuMag | Tunable Magnetograph |
UPM | Universidad Politécnica de Madrid (Spain) |
UV | University of Valencia (Spain) |
UVLO | Under-Voltage Lock-Out |
VMQ | Vinyl Methyl Silicone |
References
- Pang, C.; He, Z.; Song, K.; Cao, S. Analysis of Wind Field Response Characteristics of Tethered Balloon Systems. Aerospace 2024, 11, 360. [Google Scholar] [CrossRef]
- Witte, L.; Arnold, G.; Bertram, J.; Grott, M.; Krämer, C.; Lorek, A.; Wippermann, T. A Concept for a Mars Boundary Layer Sounding Balloon: Science Case, Technical Concept and Deployment Risk Analysis. Aerospace 2022, 9, 136. [Google Scholar] [CrossRef]
- Ligterink, N.F.W.; Kipfer, K.A.; Gruchola, S.; Boeren, N.J.; Keresztes Schmidt, P.; de Koning, C.P.; Tulej, M.; Wurz, P.; Riedo, A. The ORIGIN Space Instrument for Detecting Biosignatures and Habitability Indicators on a Venus Life Finder Mission. Aerospace 2022, 9, 312. [Google Scholar] [CrossRef]
- Agrawal, R.; Buchanan, W.P.; Arora, A.; Girija, A.P.; De Jong, M.; Seager, S.; Petkowski, J.J.; Saikia, S.J.; Carr, C.E.; Grinspoon, D.H.; et al. Mission Architecture to Characterize Habitability of Venus Cloud Layers via an Aerial Platform. Aerospace 2022, 9, 359. [Google Scholar] [CrossRef]
- Buchanan, W.P.; de Jong, M.; Agrawal, R.; Petkowski, J.J.; Arora, A.; Saikia, S.J.; Seager, S.; Longuski, J.; on behalf of the Venus Life Finder Mission Team. Aerial Platform Design Options for a Life-Finding Mission at Venus. Aerospace 2022, 9, 363. [Google Scholar] [CrossRef]
- Hubert, G.; Bezerra, F.; Nicot, J.M.; Artola, L.; Cheminet, A.; Valdivia, J.N.; Mouret, J.M.; Meyer, J.R.; Cocquerez, P. Atmospheric Radiation Environment Effects on Electronic Balloon Board Observed During Polar Vortex and Equatorial Operational Campaigns. IEEE Trans. Nucl. Sci. 2014, 61, 1703–1709. [Google Scholar] [CrossRef]
- Wrobel, F.; Vaille, J.R.; Pantel, D.; Dilillo, L.; Rech, P.; Galliere, J.M.; Touboul, A.; Chadoutaud, P.; Cocquerez, P.; Lacourty, M.; et al. Experimental Characterization of an Atmospheric Environment With a Stratospheric Balloon. IEEE Trans. Nucl. Sci. 2011, 58, 945–951. [Google Scholar] [CrossRef]
- Sirks, E.L.; Massey, R.; Gill, A.S.; Anderson, J.; Benton, S.J.; Brown, A.M.; Clark, P.; English, J.; Everett, S.W.; Fraisse, A.A.; et al. Data Downloaded via Parachute from a NASA Super-Pressure Balloon. Aerospace 2023, 10, 960. [Google Scholar] [CrossRef]
- CNES. CNES Balloon Programme. 2005. Available online: https://cnes.fr/en/projects/ballons (accessed on 27 July 2025).
- ESA. BEXUS Programme. 2005. Available online: https://rexusbexus.net (accessed on 27 July 2025).
- CSBF. NASA Columbia Scientific Balloon Facility. 2024. Available online: https://www.csbf.nasa.gov (accessed on 27 July 2025).
- Yajima, N.; Izutsu, N.; Imamura, T.; Abe, T. Scientific Ballooning. Technology and Applications of Exploration Balloons Floating in the Stratosphere and the Atmospheres of Other Planets, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Gemignani, M.; Marcuccio, S. Dynamic Characterization of a High-Altitude Balloon during a Flight Campaign for the Detection of ISM Radio Background in the Stratosphere. Aerospace 2021, 8, 21. [Google Scholar] [CrossRef]
- Naumann, P.; Sands, T. Micro-Satellite Systems Design, Integration, and Flight. Micromachines 2024, 15, 455. [Google Scholar] [CrossRef]
- del Toro Iniesta, J.C.; Orozco Suárez, D.; Álvarez-Herrero, A.; Sanchis Kilders, E.; Pérez-Grande, I.; Ruiz Cobo, B.; Bellot Rubio, L.R.; Balaguer Jiménez, M.; López Jiménez, A.C.; Álvarez García, D.; et al. TuMag: The tunable magnetograph for the SUNRISE III mission. Sol. Phys. 2025. [Google Scholar] [CrossRef]
- Staliulionis, Z.; Mohanty, S.; Hattel, J.H.; Miliauskas, G. Numerical Modelling of Humidity Behaviour in the Electronics Housing. In Proceedings of the 2022 26th International Conference Electronics, Palanga, Lithuania, 13–15 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Deaconescu, A.; Deaconescu, T. Behavioral Study of Elastomeric O-Rings Built into Coaxial Sealing Systems. Polymers 2025, 17, 1275. [Google Scholar] [CrossRef] [PubMed]
- Barthol, P.; Gandorfer, A.; Solanki, S.K.; Schüssler, M.; Chares, B.; Curdt, W.; Deutsch, W.; Feller, A.; Germerott, D.; Grauf, B.; et al. The Sunrise Mission. Sol. Phys. 2011, 268, 1–34. [Google Scholar] [CrossRef]
- Solanki, S.K.; Riethmüller, T.L.; Barthol, P.; Danilovic, S.; Deutsch, W.; Doerr, H.-P.; Feller, A.; Gandorfer, A.; Germerott, D.; Gizon, L.; et al. The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results. Astrophys. J. Suppl. Ser. 2017, 229, 2. [Google Scholar] [CrossRef]
- Korpi-Lagg, A.; Gandorfer, A.; Solanki, S.K.; del Toro Iniesta, J.C.; Katsukawa, Y.; Bernasconi, P.; Berkefeld, T.; Feller, A.; Riethmüller, T.L.; Álvarez-Herrero, A.; et al. SUNRISE III: Overview of Observatory and Instruments. Sol. Phys. 2025, 300, 75. [Google Scholar] [CrossRef]
- Bernasconi, P.; Carpenter, M.; Eaton, H.; Schulze, E.; Carkhuff, B.; Palo, G.; Young, D.; Raouafi, N.; Vourlidas, A.; Coker, R.; et al. The Gondola for the SUNRISE III Balloon-Borne Solar Observatory. Sol. Phys. 2025, 300, 112. [Google Scholar] [CrossRef]
- Solanki, S.K.; del Toro Iniesta, J.C.; Woch, J.; Gandorfer, A.; Hirzberger, J.; Alvarez-Herrero, A.; Appourchaux, T.; Martínez Pillet, V.; Pérez-Grande, I.; Sanchis Kilders, E.; et al. The Polarimetric and Helioseismic Imager on Solar Orbiter. Astron. Astrophys. 2020, 642, A11. [Google Scholar] [CrossRef]
- García Marirrodriga, C.; Pacros, A.; Strandmoe, S.; Arcioni, M.; Arts, A.; Ashcroft, C.; Ayache, L.; Bonnefous, Y.; Brahimi, N.; Cipriani, F.; et al. Solar Orbiter: Mission and Spacecraft Design. Astron. Astrophys. 2021, 646, A121. [Google Scholar] [CrossRef]
- Jones, W.V. The US Long Duration Balloon Facility at McMurdo Station. In Proceedings of the International Astronomical Union 2012, Beijing, China, 20–31 August 2013; International Astronomical Union: Paris, France, 2013; Volume 8, pp. S288, 169–177. [Google Scholar] [CrossRef]
- Pacheco, L.E. Stratospheric Catalogue. 2022. Available online: https://stratocat.com.ar (accessed on 27 July 2025).
- Corporation, S.S. ESRANGE Space Center. 2021. Available online: https://sscspace.com/esrange/ (accessed on 27 July 2025).
- S3PC. Spanish Space Solar Physics Consortium. 2022. Available online: https://s3pc.es (accessed on 27 July 2025).
- Feller, A.; Gandorfer, A.; Grauf, B.; Hölken, J.; Iglesias, F.A.; Korpi-Lagg, A.; Riethmüller, T.L.; Staub, J.; Fernandez-Rico, G.; Castellanos Durán, J.S.; et al. The Sunrise Ultraviolet Spectropolarimeter and Imager: Instrument Description. Sol. Phys. 2025, 300, 65. [Google Scholar] [CrossRef]
- Katsukawa, Y.; del Toro Iniesta, J.C.; Solanki, S.K.; Kubo, M.; Hara, H.; Shimizu, T.; Oba, T.; Kawabata, Y.; Tsuzuki, T.; Uraguchi, F.; et al. The Sunrise Chromospheric Infrared Spectro-Polarimeter SCIP: An Instrument for SUNRISE III. Sol. Phys. 2025; submitted. [Google Scholar]
- Orozco Suárez, D.; del Toro Iniesta, J.C.; Bailén Martínez, F.J.; Balaguer Jiménez, M.; Álvarez García, D.; Serrano, D.; Peñin, L.F.; Vázquez-Ramos, A.; Bellot Rubio, L.R.; Atienzar, J.; et al. CMAG: A Mission to Study and Monitor the Inner Corona Magnetic Field. Aerospace 2023, 10, 987. [Google Scholar] [CrossRef]
- Cao, S.; Yang, Y.; Zhang, H.; Zhao, R.; Zhu, R.; Zhang, D.; Song, L. Ascending Performance of Scientific Balloons with Buoyant Gas–Air Mixture Inflation for Designated Ceiling Height. Aerospace 2024, 11, 340. [Google Scholar] [CrossRef]
- Pérez-Grande, I.; Sanz-Andrés, A.; Bezdenejnykh, N.; Barthol, P. Transient Thermal Analysis during the Ascent Phase of a Balloon-borne Payload. Comparison with SUNRISE Test Flight Measurements. Appl. Therm. Eng. 2009, 29, 1507–1513. [Google Scholar] [CrossRef]
- Tang, J.; Pu, S.; Yu, P.; Xie, W.; Li, Y.; Hu, B. Research on Trajectory Prediction of a High-Altitude Zero-Pressure Balloon System to Assist Rapid Recovery. Aerospace 2022, 9, 622. [Google Scholar] [CrossRef]
- Fernández-Soler, A.; González-Bárcena, D.; Grande, I.; Sanz-Andres, A. Thermal Analysis of SUNRISE III Ascent Phase. In Proceedings of the 50th Conference on Environmental Systems. International Conference on Environmental Systems, Lisbon, Portugal, 12 –14 July 2021; Available online: https://hdl.handle.net/2346/87142 (accessed on 27 July 2025).
- Liu, Q.; He, L.; Yang, Y.; Zhao, K.; Li, T.; Zhu, R.; Wang, Y. The Influence of Ice Accretion on the Thermodynamic Performance of a Scientific Balloon: A Simulation Study. Aerospace 2024, 11, 899. [Google Scholar] [CrossRef]
- MeteoSwiss. Federal Office of Meteorology and Climatology MeteoSwiss. 2025. Available online: https://www.meteoswiss.admin.ch/climate/the-climate-of-switzerland/annual-cycle-of-temperature-precipitation-and-sunshine/annual-cycle-of-the-tropopause-height.html (accessed on 27 July 2025).
- Gilabert-Palmer, D.; Sanchis-Kilders, E.; Esteve, V.; Ferreres, A.; Ejea, J.B.; Maset, E.; Jordán, J.; Dede, E. Measuring Coupling Coefficient of Windings With Dissimilar Turns’ Number or Tight Coupling Using Resonance. IEEE Trans. Power Electron. 2018, 33, 9790–9802. [Google Scholar] [CrossRef]
- Gilabert, D.; Sanchis-Kilders, E.; Martínez, P.J.; Maset, E.; Ferreres, A.; Esteve, V. Zero Ripple Current With Coupled Inductors in Continuous Conduction Mode Under PWM Signals. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 4260–4269. [Google Scholar] [CrossRef]
- Gilabert, D.; Sanchis-Kilders, E.; Martínez, P.J.; Maset, E.; Ferreres, A.; Esteve, V. Design of Zero-Ripple-Current Coupled Inductors With PWM Signals in Continuous Conduction Mode. IEEE Trans. Ind. Electron. 2021, 68, 304–311. [Google Scholar] [CrossRef]
- ECSS-E-HB-10-02A; Requirements, E.; Division, S. Verification Guidelines. European Cooperation for Space Standardization: Noordwijk, The Netherlands, 2010. Available online: https://ecss.nl/hbstms/ecss-e-10-02a-verification-guidelines/ (accessed on 27 July 2025).
- Pacific, S. Schrader Pacific Datasheet. Datasheet, Schrader s.a.s, Pontarlier Cedex—France. 2021. Available online: https://schrader-pacific.fr/en (accessed on 27 July 2025).
- Flitney, R. Seals and Sealing Handbook; Elsevier, Ltd.: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- ERIKS. ERIKS. 2020. Available online: https://eriks.com/en/ (accessed on 27 July 2025).
- Jousten, K. Handbook of Vacuum Technology; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; ISBN 978-3-527-41338-6. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/9783527688265.fmatter (accessed on 27 July 2025).
- EPIDOR. EPIDOR Seals and Rubber Technology. Datasheet, EPI industries, Barcelona, Spain. 2025. Available online: https://www.epi-industries.com/en/companies/#epidor-seals-and-rubber-technology (accessed on 27 July 2025).
- Apiezon. APIEZON Ultra High and High Vacuum Greases. Datasheet, APIEZON. 2018. Available online: https://apiezon.com/products/vacuum-greases/apiezon-n-grease/ (accessed on 27 July 2025).
- SurTec. Surtec 650V datasheet. Datasheet, SurTec International GmbH, Bensheim, Germany. 2019. Available online: https://www.surtec.com/en/products-services/surtec-650-v/ (accessed on 27 July 2025).
- MAP. MAP SG121-FD White Silicone Coating Low Outgassing. Datasheet, MAP Space Coating, Mazères, France. 2019. Available online: https://www.map-coatings.com/web/content/116829?unique=37255549cfa3b57f0f19c3957064fec122c0ff36 (accessed on 27 July 2025).
- MAP. MAP PSX: Adhesion Primer for space use. Technical data sheet. Datasheet, MAP Space Coating, Mazères, France. 2016. Available online: https://www.map-coatings.com/en_US/ (accessed on 27 July 2025).
- ECSS-Q-ST-70-02C; Requirements, E.; Division, S. Space Product Assurance: Thermal Vacuum Outgassing Test for the Screening of Space Materials. European Cooperation for Space Standardization: Noordwijk, The Netherlands, 2008. Available online: https://ecss.nl/standard/ecss-q-st-70-02c-thermal-vacuum-outgassing-test-for-the-screening-of-space-materials/ (accessed on 27 July 2025).
- Guo, Q.; Liu, Y.; Mao, S.; Zhang, H.; Chen, L.; Liu, S.; Chen, B. Outgassing Test of Contamination Sensitive Unit for Space Optical Instruments. In Proceedings of the AOPC 2020: Telescopes, Space Optics, and Instrumentation, Beijing, China, 30 November–2 December 2020; Xue, S., Zhang, Z., Eds.; International Society for Optics and Photonics. 2020; Volume 11570, pp. 67–71. [Google Scholar] [CrossRef]
- AB, H. Hexagon AB (Patran and MSC Nastran). 2025. Available online: https://hexagon.com (accessed on 27 July 2025).
- ECSS-E-ST-32-10C Rev.2, Corr.1; Requirements, E.; Division, S. Space Engineering: Structural Factors of Safety for Spaceflight Hardware. European Cooperation for Space Standardization: Noordwijk, The Netherlands, 2019. Available online: https://ecss.nl/standard/ecss-e-st-32-10c-rev-2-corr-1-structural-factors-of-safety-for-spaceflight-hardware-1-august-2019/ (accessed on 27 July 2025).
Voltage | TuMag-Power | TuMag-Subsystems | SCIP-Power | SCIP-Subsystems |
---|---|---|---|---|
+3.3 V | 5.15 W | DPU, AMHD | 5.15 W | DPU, AMHD |
+5 V | 4.65 W | DPU, AMHD, HVPS | 3.75 W | DPU, AMHD |
+12 V | 45.0 W | DPU, AMHD, HVPS | 36.75 W | DPU, AMHD |
−12 V | 0.75 W | AMHD | 0.50 W | AMHD |
+24 V | 4.50 W + 32.0 W | Cameras & Mechs, HVPS | 6.75 W | Cameras |
Bus voltage () | 7.05 W | Heaters | 46.0 W | Heaters |
Bus voltage () | – | – | 22.0 W + 7.0 W | SMM, PMU |
Load Event/Nature | Level | Yield Limit FoS |
---|---|---|
Quasi-static load X-axis | 8 g | 1.25 |
Quasi-static load Y-axis | 6 g | 1.25 |
Quasi-static load Z-axis | 5 g | 1.25 |
Pressure loads | 1.27 bar 1 | 1.50 |
Thermo-elastic, Hot case | 65 °C 2 | 1.25 |
Thermo-elastic, Cold case | −70 °C 2 | 1.25 |
Inductance | Vout | Lorequired (µH) | Lomeasured (µH) | Loequivalent (µH) |
---|---|---|---|---|
L1 | +12V0 | 240 | 242 | 300 |
L2 | −12V0 | 1800 | 323 | 2110 |
L3 | +12V0 aux | 1800 | 326 | 2500 |
Analysis | Element | Level (MPa) | MoS |
---|---|---|---|
Quasi-static | Housing Leg | 63.2 | 3.7 |
(vertical axis) | HVPS board | 84.4 | 1.9 |
Thermo-elastic | Housing lower part | 183 | 0.6 |
(cold case) | HVPS board | 70.2 | 2.5 |
Overpressure | Housing upper part | 182 | 0.4 |
(in-flight) | HVPS board | 28.5 | 7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasent-Blesa, J.L.; Sanchis-Kilders, E.; Ferreres, A.; Gilabert, D.; Blanco Rodríguez, J.; Ejea, J.B. Design and In-Flight Performance of the Power Converter Module and the Pressurised Enclosure for a Scientific Payload Onboard a Stratospheric Balloon. Aerospace 2025, 12, 822. https://doi.org/10.3390/aerospace12090822
Gasent-Blesa JL, Sanchis-Kilders E, Ferreres A, Gilabert D, Blanco Rodríguez J, Ejea JB. Design and In-Flight Performance of the Power Converter Module and the Pressurised Enclosure for a Scientific Payload Onboard a Stratospheric Balloon. Aerospace. 2025; 12(9):822. https://doi.org/10.3390/aerospace12090822
Chicago/Turabian StyleGasent-Blesa, José Luis, Esteban Sanchis-Kilders, Agustín Ferreres, David Gilabert, Julián Blanco Rodríguez, and Juan B. Ejea. 2025. "Design and In-Flight Performance of the Power Converter Module and the Pressurised Enclosure for a Scientific Payload Onboard a Stratospheric Balloon" Aerospace 12, no. 9: 822. https://doi.org/10.3390/aerospace12090822
APA StyleGasent-Blesa, J. L., Sanchis-Kilders, E., Ferreres, A., Gilabert, D., Blanco Rodríguez, J., & Ejea, J. B. (2025). Design and In-Flight Performance of the Power Converter Module and the Pressurised Enclosure for a Scientific Payload Onboard a Stratospheric Balloon. Aerospace, 12(9), 822. https://doi.org/10.3390/aerospace12090822