A Review of Advancements in Inspection, Manufacturing and Repair, and Robots for On-Orbit Servicing, Assembly, and Manufacturing (OSAM) of Spacecraft
Abstract
1. Introduction
- Section 1 introduces OSAM, detailing its background, significance, and future potential.
- Section 2 explores inspection technologies, outlining their contributions to spacecraft maintenance.
- Section 3 examines manufacturing and repair techniques, focusing on their applications for sustainable spacecraft operations.
- Section 4 highlights robotic technological advancements, emphasizing their role in autonomous OSAM operations.
- Section 5 concludes with a summary of OSAM’s current state and proposes directions for future research.
2. Inspection and Fault Detection Technologies
2.1. Traditional Inspection Systems
2.2. Emerging and Evolving Inspection Systems
2.3. Inspection Platforms
3. Manufacturing and Repair Techniques
3.1. Additive Manufacturing (AM) Techniques
3.2. Repair and Refurbishment Techniques
Advanced Techniques for Repair Optimization
3.3. Material Challenges
3.3.1. Robotic Control in Microgravity Control
3.3.2. Thermal and Power Management
3.3.3. Autonomy of Repair and Manufacturing Systems
3.3.4. Resource Management and in Situ Utilization
3.3.5. Quality Control and Reliability of Manufactured Parts
3.4. Integrated Manufacturing and Repair Platforms
4. Space Robotic Technologies for OSAM
4.1. Repair and Maintenance Robots
4.2. Refueling and Life-Extension Servicing with Robots
4.3. Space Debris Capture Robots
4.4. Manufacturing/Assembly Robots
4.5. CubeSats, SmallSats, and Constellations
4.6. From Teleoperation to Autonomy: Algorithms and Fault Tolerance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duke, H.; On-Orbit Servicing Opportunities for U.S. Military Satellite Resiliency. Washington, DC, September 2021. Available online: https://aerospace.csis.org/wp-content/uploads/2021/09/20210914_Duke_OSAM.pdf. (accessed on 22 July 2025).
- Wang, Z.; Wang, P.; Duan, J.; Tian, W. Review of On-Orbit Assembly Technology with Space Robots. Aerospace 2025, 12, 375. [Google Scholar] [CrossRef]
- Ai, C.; Gao, Z.; Pan, J.; Liu, L.; Yan, J.; Tian, Y. Vacuum ultrasonic welding of the CF/PEEK rods by small-sized on-orbit welding end. J. Phys. Conf. Ser. 2025, 3009, 012039. [Google Scholar] [CrossRef]
- Post, S. Space Shuttle Case Studies: Challenger and Columbia. In Proceedings of the 121st ASEE Annual Conference and Exposition, Indianapolis, Indiana, 15–18 June 2014. [Google Scholar]
- McDanels, S.J.; Mayeaux, B.M.; Russell, R.W.; Collins, T.E.; Jerman, G.A.; Shah, S.R.; Piascik, R.S. An overview of the space shuttle Columbia accident from recovery through reconstruction. J. Fail. Anal. Prev. 2006, 6, 82–91. [Google Scholar] [CrossRef]
- Kulu, E. Satellite Constellations-2024 Survey, Trends and Economic Sustainability. 2024. Available online: www.newspace.im (accessed on 1 January 2025).
- Kessler, D.J.; Anz-Meador, P.D. Critical Number of Spacecraft in Low Earth Orbit-Using Satellite Fragmentation Data to Evaluate the Stability of the Orbital Debris Environment; ESA: Paris, France, 2001. [Google Scholar]
- Kessler, D.J.; Johnson, N.L.; Liou, J.-C.; Matney, M. The Kessler Syndrome: Implications to Future Space operations; AAS: San Diego, CA, USA, 2010. [Google Scholar]
- Company Northrop Grumman. MEV-1 & 2 (Mission Extension Vehicle-1 and -2); Northrop Grumman: Falls Church, VA, USA, 2019. [Google Scholar]
- Company Northrop Grumman. Mission Extension Vehicle (MEV) Fact Sheet; Northrop Grumman: Falls Church, VA, USA, 2020. [Google Scholar]
- Pyrak, M.; Anderson, J. Performance of Northrop grumman’s mission extension vehicle (MEV) RPO imagers at GEO. In Autonomous Systems: Sensors, Processing and Security for Ground, Air, Sea and Space Vehicles and Infrastructure 2022; SPIE: Bellingham, WA, USA, 2022; pp. 64–82. [Google Scholar]
- Kulu, E. Nanosatellite Launch Forecasts-Track Record and Latest Prediction. In Proceedings of the 36th Annual Small Satellite Conference, Logan, Utah, 6-11 August 2022. [Google Scholar]
- Choi, C.; Nakka, Y.K.; Rahmani, A.; Chung, S.J. Resilient Multi-Agent Collaborative Spacecraft Inspection. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 4–11 March 2023; IEEE Computer Society: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Mian, S.; Garrett, T.; Glandon, A.; Manderino, C.; Balachandran, S.; Muñoz, C.A.; Dolph, C.V. Autonomous Spacecraft Inspection with Free-Flying Drones. In Proceedings of the 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 11–15 October 2020. [Google Scholar]
- Wijayatunga, M.C.; Armellin, R.; Holt, H.; Pirovano, L.; Lidtke, A.A. Design and guidance of a multi-active debris removal mission. Astrodynamics 2023, 7, 383–399. [Google Scholar] [CrossRef]
- Lavagna, M.; Silvestrini, S.; Capra, L.; Bechini, M.; Ceresoli, M.; Quirino, M.; Labate, D.; Duzzi, M.; Tudor, S.-V.; Colagrossi, A.; et al. E.Inspector:VIS-IR Imaging Real Debris to Support Active Removal and on Orbit Servicing. In Proceedings of the IAF Space Systems Symposium, Milan, Italy, 14–18 October 2024. [Google Scholar]
- Pace, R. Repair of Major System Elements on Skylab; NASA: Huntsville, AL, USA, 1974. [Google Scholar]
- Van Hoy, S.E. Historical Spacesuit Development Strategies in Response to National Objectives. Saber Scroll J. 2023, 11, 1–25. [Google Scholar]
- Hill, T.R.; Johnson, B.J. EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars. In Proceedings of the 2010 IEEE Aerospace Conference, Big Sky, MT, USA, 6-13 March 2010. [Google Scholar]
- Mukhachev, P.A.; Sadretdinov, T.R.; Pritykin, D.A.; Ivanov, A.B.; Solov’ev, S.V. Modern Machine Learning Methods for Telemetry-Based Spacecraft Health Monitoring. Autom. Remote Control 2021, 82, 1293–1320. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Salama, A.; Ibrahim, H.A.; Sayed, M.A.E.; Yacout, S. Prediction of Battery Remaining Useful Life on Board Satellites Using Logical Analysis of Data. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019. [Google Scholar]
- Kichak, R.; Nesc; Young, E.; Pandipati, C.; Cooke, R. International Space Station (ISS) External Television (TV) Camera Shutdown Investigation. 2009. Available online: https://ntrs.nasa.gov/api/citations/20090014721/downloads/20090014721.pdf (accessed on 1 January 2025).
- Gillett, R.; Kerr, A.; Sallaberger, C.; Maharaj, D.; Richards, R.; Ulitsky, A.A. A Hybrid Range Imaging System Solution for In-Flight Space Shuttle Inspection. In Proceedings of the Canadian Conference on Electrical and Computer Engineering 2004, Niagara Falls, ON, Canada, 2–5 May 2004. [Google Scholar]
- Kann, L.A.; Voelz, D.G.; Kann, J.L. Ground-Based Imaging and Inspection of Commercial Satellites. 1999. Available online: https://spp.fas.org/military/program/lincoln/proc1999scc.pdf (accessed on 1 January 2025).
- Meza, L.; Tung, F.; Anandakrishnan, S.; Spector, V.; Hyde, T. Line of Sight Stabilization of James Webb Space Telescope; National Aeronautics and Space Administration: Washington, DC, USA, 2005. [Google Scholar]
- Deutsch, L.J.; Lichten, S.M.; Hoppe, D.J.; Russo, A.J.; Cornwell, D.M. Toward a NASA deep space optical communications system. In Proceedings of the 15th International Conference on Space Operations, Marseille, France, 28 May–1 June 2018; American Institute of Aeronautics and Astronautics Inc., AIAA: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Kearsley, A.T.; Webb, R.P.; Grime, G.W.; Wozniakiewicz, P.J.; Price, M.C.; Burchell, M.J.; Salge, T.; Spratt, J. Cosmic dust impacts on the Hubble Space Telescope. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2024, 382, 20230194. [Google Scholar] [CrossRef]
- Evans, B. Space Shuttle: An Experimental Flying Machine Foreword by Former Space Shuttle Commander Sid Gutierrez; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Dunn, J.; Benson, E.; Norcross, J.; Newby, N. Evidence Report Risk of Injury and Compromised Performance Due to EVA Operations Contributing Team; Johnson Space Center: Houston, TX, USA, 2022. [Google Scholar]
- Bell, E.R.; Coan, D.A.; Oswald, D.C. A Discussion on the making of an EVA: What it really takes to walk in space. In Proceedings of the SpaceOps 2006 Conference, Rome, Italy, 19–23 June 2006. [Google Scholar] [CrossRef]
- Aggarwal, S. Development of Space Law During Cold War. 2019. Available online: www.lawjournals.org (accessed on 1 January 2025).
- Cosmonauts Plug Small Air Leak on the International Space Station. Available online: https://spaceflightnow.com/2018/08/30/cosmonauts-plug-small-air-leak-on-the-international-space-station/ (accessed on 1 January 2025).
- Ghiasvand, S.; Xie, W.-F.; Mohebbi, A. Deep neural network-based robotic visual servoing for satellite target tracking. Front. Robot. AI 2024, 11, 1469315. [Google Scholar] [CrossRef]
- Aziz, S. Lessons learned from the robotics operations on STS-114 (Return to Flight). In Proceedings of the SpaceOps 2006 Conference, Rome, Italy, 19–23 June 2006; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2006. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Tang, G. Survey of orbital dynamics and control of space rendezvous. Chin. J. Aeronaut. 2014, 27, 1–11. [Google Scholar] [CrossRef]
- Dennehy, C.J.; Carpente, J.R. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission. 2011. Available online: http://www.sti.nasa.gov (accessed on 1 January 2025).
- Geosynchronous Space Situational Awareness. 2020. Available online: https://www.spaceforce.mil/About-Us/Fact-Sheets/Article/2197772/geosynchronous-space-situational-awareness-program/ (accessed on 1 January 2025).
- Pearlman, M.R.; Degnar, J.J.; Bosworth, J.M. The International Laser Ranging Service. 2002. Available online: https://ilrs.gsfc.nasa.gov/docs/cospar_paper_warsaw_final.pdf (accessed on 1 January 2025).
- Flohrer, T.; Krag, H. Space Surveillance and Tracking in Esa’s Ssa Programme. Available online: http://spacedebris2017.sdo.esoc.esa.int (accessed on 1 January 2025).
- Kauffman, J. Lost in space: A critique of NASA’s crisis communications in the Columbia disaster. Public Relations Rev. 2005, 31, 263–275. [Google Scholar] [CrossRef]
- Wu, B.; Liu, W.C. Calibration of boresight offset of LROC NAC imagery for precision lunar topographic mapping. ISPRS J. Photogramm. Remote Sens. 2017, 128, 372–387. [Google Scholar] [CrossRef]
- Cui, B.; Tao, W.; Zhao, H. High-Precision 3D Reconstruction for Small-to-Medium-Sized Objects Utilizing Line-Structured Light Scanning: A Review. Remote Sens. 2021, 13, 4457. [Google Scholar] [CrossRef]
- Hua, L.; Lu, Y.; Deng, J.; Shi, Z.; Shen, D. 3D reconstruction of concrete defects using optical laser triangulation and modified spacetime analysis. Autom. Constr. 2022, 142, 104469. [Google Scholar] [CrossRef]
- Dumont, A. A COMBINATION OF ADVANCED PHOTOGRAMMETRY AND LASER TRIANGULATION TECHNIQUES (VIDEO LASER SCAN™) FOR THE FREE-FLYING 3D INSPECTION OF SUBSEA ASSETS. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, XLIII-B2-2022, 929–934. [Google Scholar] [CrossRef]
- Ou, Y.; Fan, J.; Zhou, C.; Kang, S.; Zhang, Z.; Hou, Z.-G.; Tan, M. Structured Light-Based Underwater Collision-Free Navigation and Dense Mapping System for Refined Exploration in Unknown Dark Environments. IEEE Trans. Syst. Man, Cybern. Syst. 2024, 55, 110–123. [Google Scholar] [CrossRef]
- Dias, N.G.; Arribas, B.N.; Gordo, P.; Sousa, T.; Marinho, J.; Melicio, R.; Amorim, A.; Livio, B.; Michel, P. HERA Mission LIDAR Mechanical and Optical Design. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1226, 012094. [Google Scholar] [CrossRef]
- Heese, B.; Freudenthaler, V.; Kosmale, M.; Seefeldner, M.; Wiegner, M. First results from the portable lidar system POLIS. In Proceedings of the 22nd Internation Laser Radar Conference (ILRC 2004), Matera, Italy, 12–16 July 2004; p. 79. [Google Scholar]
- Heese, C.; Sodnik, Z.; Orchard, D.; Kightley, P. LIDAR add-on for spaceborne optical communication terminals. In Proceedings of the 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Naha, Japan, 14–16 November 2017; pp. 219–223. [Google Scholar] [CrossRef]
- Bortotto, A.; Degli Agli, G.; Pozzato, N.; Dignani, M.; Favotto, F.; Mattiazzi, F.; Mihailovic, M.; Branz, F.; Olivieri, L.; Caon, A.; et al. Autonomous Docking Manoeuvre Testing in the Framework of the ERMES Experiment. Aerotec. Missili Spaz. 2025, 1–15. [Google Scholar] [CrossRef]
- Zhu, W.; Mu, J.; Shao, C.; Hu, J.; Wang, B.; Wen, Z.; Han, F.; Li, S. System Design for Pose Determination of Spacecraft Using Time-of-Flight Sensors. Space Sci. Technol. 2022, 2022, 9763198. [Google Scholar] [CrossRef]
- Sirbu, M.; Rusu, A.; Coordinator, N.P.A.E.S.; Mihalache, A.D.C.-E. Mapping Mars: How the Curiosity Rover Uses Photogrammetry to Explore the Red Planet. J. Young Sci. 2023, 10, 127–136. [Google Scholar]
- Peng, M.; Di, K.; Wang, Y.; Wan, W.; Liu, Z.; Wang, J.; Li, L. A Photogrammetric-Photometric Stereo Method for High-Resolution Lunar Topographic Mapping Using Yutu-2 Rover Images. Remote Sens. 2021, 13, 2975. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Jiang, Z.; Xu, Y.; Liu, L.; Miao, Y. Research on Non-destructive test of porous ceramic insulation material for spacecraft based on Terahertz continuous wave imaging technology. In Proceedings of the 2021 IEEE International Workshop on Metrology for AeroSpace, Naples, Italy, 23–25 June 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 485–489. [Google Scholar] [CrossRef]
- Hassan, O.S.; Rahman, M.S.U.; Mustapha, A.A.; Gaya, S.; Abou-Khousa, M.A.; Cantwell, W.J. Inspection of antennas embedded in smart composite structures using microwave NDT methods and X-ray computed tomography. Measurement 2024, 226, 114086. [Google Scholar] [CrossRef]
- Liu, W.C.; Wu, B. Atmosphere-aware photoclinometry for pixel-wise 3D topographic mapping of Mars. ISPRS J. Photogramm. Remote Sens. 2023, 204, 237–256. [Google Scholar] [CrossRef]
- Russell, C.T.; Raymond, C.A.; Jaumann, R.; McSween, H.Y.; De Sanctis, M.C.; Nathues, A.; Prettyman, T.H.; Ammannito, E.; Reddy, V.; Preusker, F.; et al. Dawn completes its mission at 4 Vesta. Meteorit. Planet. Sci. 2013, 48, 2076–2089. [Google Scholar] [CrossRef]
- Craft, K.; Barnouin, O.; Gaskell, R.; Palmer, E.; Weirich, J.; Perry, M.; Bierhaus, B.; Norman, C.; Huish, D.; Olds, R.; et al. Assessing stereophotoclinometry by modeling a physical wall representing asteroid Bennu. Planet. Space Sci. 2020, 193, 105077. [Google Scholar] [CrossRef]
- Palmer, E.E.; Weirich, J.R.; Gaskell, R.W.; Lambert, D.; Campbell, T.; Drozd, K.; Barnouin, O.S.; Daly, M.G.; Getzandanner, K.; Kidd, J.N.; et al. Sensitivity Testing of Stereophotoclinometry for the OSIRIS-REx Mission. I. The Accuracy and Errors of Digital Terrain Modeling. Planet. Sci. J. 2024, 5, 46. [Google Scholar] [CrossRef]
- Liu, P.; Geng, X.; Li, T.; Zhang, J.; Wang, Y.; Peng, Z.; Wang, Y.; Ma, X.; Wang, Q. The Generation of High-Resolution Mapping Products for the Lunar South Pole Using Photogrammetry and Photoclinometry. Remote Sens. 2024, 16, 2097. [Google Scholar] [CrossRef]
- Wang, R.; Law, A.C.; Garcia, D.; Yang, S.; Kong, Z. Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance. Int. J. Adv. Manuf. Technol. 2021, 117, 845–862. [Google Scholar] [CrossRef]
- Miller, K.H.; Eckert, S.E.; Cheney, S. Evaluation of Osam-1 Camera Focus Shift in a Simulated Orbital Pressure Environment; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2023. [Google Scholar]
- Daly, M.G.; Barnouin, O.S.; Dickinson, C.; Seabrook, J.; Johnson, C.L.; Cunningham, G.; Haltigin, T.; Gaudreau, D.; Brunet, C.; Aslam, I.; et al. The OSIRIS-REx Laser Altimeter (OLA) Investigation and Instrument. Space Sci. Rev. 2017, 212, 899–924. [Google Scholar] [CrossRef]
- Vavrina, M.A.; Skelton, C.E.; DeWeese, K.D.; Naasz, B.J.; Gaylor, D.E.; D’souza, C. Safe rendezvous trajectory design for the restore-l mission. Adv. Astronaut. Sci. 2019, 168, 3649–3668. [Google Scholar]
- Jakeman-Flores, H. Photonics for Space Flight Instruments. In NEPP Electronics Technology Workshop; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2021. [Google Scholar]
- Mongrard, O.; Ankersen, F.; Casiez, P.; Cavrois, B.; Donnard, A.; Vergnol, A.; Southivong, U.; Vallet, C.; Choukroun, D.; Philippe, C.; et al. LIRIS flight database and its use toward noncooperative rendezvous. EDP Sci. 2018, 10, 21–34. [Google Scholar] [CrossRef]
- Smith, T.; Barlow, J.; Bualat, M.; Fong, T.; Provencher, C.; Sanchez, H.; Smith, E. Astrobee: A New Platform for Free-Flying Robotics on the International Space Station; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2016. [Google Scholar]
- Wang, Q.-S.; Cai, G.-P. Pose estimation of a fast tumbling space noncooperative target using the time-of-flight camera. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 235, 2529–2546. [Google Scholar] [CrossRef]
- Valasek, J.; Langari, R. A Photogrammetric On-Orbit Inspection for Orbiter Thermal Protection System. Doctoral Dissertation, Texas A&M University, College Station, TX, USA, 2005. [Google Scholar]
- Razzano, F.; Di Stasio, P.; Mauro, F.; Meoni, G.; Esposito, M.; Schirinzi, G.; Ullo, S.L. AI Techniques for Near Real-Time Monitoring of Contaminants in Coastal Waters on Board Future Φsat-2 Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 16755–16766. [Google Scholar] [CrossRef]
- Naids, A.; Rossetti, D.; Bond, T.; Huang, A.; Deal, A.; Fox, K.; Heiser, M.; Buffington, J.; Autrey, D.; Craw, C.; et al. The demonstration of a robotic external leak locator on the international space station. In Proceedings of the 2018 AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 17–19 September 2018; p. 5118. [Google Scholar]
- Tomlinson, Z.; Gallagher, W.; Cassidy, J.; Roberts, B.; Facciol, K.; Easley, J. Lessons for Future In-Space Telerobotic Servicing from Robotic Refueling Mission. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; IEEE Computer Society: Los Alamitos, CA, USA, 2022. [Google Scholar] [CrossRef]
- Hudson, T.B.; Follis, P.J.; Pinakidis, J.J.; Sreekantamurthy, T.; Palmieri, F.L. Porosity detection and localization during composite cure inside an autoclave using ultrasonic inspection. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106337. [Google Scholar] [CrossRef]
- Koshti, A.M. Considerations for ultrasonic testing application for on-orbit NDE. Proc. SPIE 2015, 9437, 94372H. [Google Scholar] [CrossRef]
- Wronkowicz, A.; Dragan, K. Damage size monitoring of composite aircraft structures based on ultrasonic testing and image processing. Compos. Theory Pract. 2016, 16, 154. [Google Scholar]
- Harper, J.O.N. DARPA Set to Deliver New Space Capabilities. Natl. Def. 2020, 105, 32–35. [Google Scholar]
- Malaviarachchi, P.; Reedman, T.J.; Allen, A.C.M.; Sinclair, D. A Small Satellite Concept for On-Orbit Servicing of Spacecraft. In Proceedings of the 17th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, 11–14 August 2003. [Google Scholar]
- Hatty, I. Viability of On-Orbit Servicing Spacecraft to Prolong the Operational Life of Satellites. J. Space Saf. Eng. 2022, 9, 263–268. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Tan, C.; Liu, H.; Liu, Y. Economic value analysis of on-orbit servicing for geosynchronous communication satellites. Acta Astronaut. 2021, 180, 176–188. [Google Scholar] [CrossRef]
- Graham, A.R.; Kingston, J. Assessment of the commercial viability of selected options for on-orbit servicing (OOS). Acta Astronaut. 2015, 117, 38–48. [Google Scholar] [CrossRef]
- Rivera, A.; Stewart, A. Study of Spacecraft Deployables Failures; Space Systems Anomalies and Failures (SCAF) Workshop: Chantilly, VA, USA, 2022. [Google Scholar]
- Chandra, A.; Kalita, H.; Furfaro, R.; Thangavelautham, J. End to end satellite servicing and space debris management. In Proceedings of the Space Traffic Management Conference, Austin, TX, USA, 26–27 February 2019. [Google Scholar]
- Xue, Z.; Liu, J.; Wu, C.; Tong, Y. Review of in-space assembly technologies. Chin. J. Aeronaut. 2021, 34, 21–47. [Google Scholar] [CrossRef]
- Alfattni, R. Comprehensive Study on Materials used in Different Types of Additive Manufacturing and their Applications. Int. J. Math. Eng. Manag. Sci. 2022, 7, 92–114. [Google Scholar] [CrossRef]
- Jose, S.A.; Jackson, J.; Foster, J.; Silva, T.; Markham, E.; Menezes, P.L. In-Space Manufacturing: Technologies, Challenges, and Future Horizons. J. Manuf. Mater. Process. 2025, 9, 84. [Google Scholar] [CrossRef]
- O’hAra, W.J.; Kish, J.M.; Werkheiser, M.J. Turn-key use of an onboard 3D printer for international space station operations. Addit. Manuf. 2018, 24, 560–565. [Google Scholar] [CrossRef]
- Mostafaei, A.; Elliott, A.M.; Barnes, J.E.; Li, F.; Tan, W.; Cramer, C.L.; Nandwana, P.; Chmielus, M. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Prog. Mater. Sci. 2021, 119, 100707. [Google Scholar] [CrossRef]
- Azurmendi, N.; Lores, A.; Guraya, C.; Agote, I. Binder Jetting of High Dimensional Stability Alloy for Space Applications; European Powder Metallurgy Association (EPMA): Chantilly, France, 2020. [Google Scholar]
- Lores, A.; Azurmendi, N.; Agote, I.; Espinosa, E.; García-Blanco, M.B. A study of parameter and post-processing effects on surface quality improvement of Binder Jet 3D-printed Invar36 alloy parts. Prog. Addit. Manuf. 2022, 7, 917–930. [Google Scholar] [CrossRef]
- Grippi, T.; Torresani, E.; Rios, A.C.; Maximenko, A.L.; Zago, M.; Cristofolini, I.; Molinari, A.; Bordia, R.K.; Olevsky, E.A. Mitigation of gravity-induced distortions of binder-jetting components during rotational sintering. Addit. Manuf. Lett. 2024, 10, 100215. [Google Scholar] [CrossRef]
- Svetlizky, D.; Das, M.; Zheng, B.; Vyatskikh, A.L.; Bose, S.; Bandyopadhyay, A.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater. Today 2021, 49, 271–295. [Google Scholar] [CrossRef]
- Abadi, S.M.A.N.R.; Hagqvist, P.; Sikström, F.; Choquet, I. CFD-Based Feasibility Study of Laser-Directed Energy Deposition with a Metal Wire for On-Orbit Manufacturing. Front. Space Technol. 2022, 3, 880012. [Google Scholar] [CrossRef]
- Van Staaveren, N.M.; Uludağ, M.Ş. Applying Wire-Based Directed Energy Deposition for In-Space Manufacturing of Solar Array Structures. Available online: http://repository.tudelft.nl/ (accessed on 1 January 2025).
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Tao, R.; Shi, J.; Rafiee, M.; Akbarzadeh, A.; Therriault, D. Fused filament fabrication of PVDF films for piezoelectric sensing and energy harvesting applications. Mater. Adv. 2022, 3, 4851–4860. [Google Scholar] [CrossRef]
- Wolf, A.; Carvalho, J.; Campos, T.; Figueiredo, B.; Cruz, P.J. Support-Strategies for Robocasting Ceramic Building Compo-nents Exceeding the Geometric Limits in Printing Clay. In Proceedings of the 41st eCAADe Conference, Graz University of Technology, Graz, Austria, 20–23 September 2023. [Google Scholar]
- Kauzya, J.-B.; Hayes, B.; Hayes, A.C.; Thompson, J.F.; Bellerjeau, C.; Evans, K.; Osio-Norgaard, J.; Gavai, G.; Dikshit, K.; Bruns, C.; et al. Direct ink writing of viscous inks in variable gravity regimes using parabolic flights. Acta Astronaut. 2024, 219, 569–579. [Google Scholar] [CrossRef]
- Quinn, M.; Lafont, U.; Versteegh, J.; Guo, J. Effect of low vacuum environment on the fused filament fabrication process. CEAS Space J. 2021, 13, 369–376. [Google Scholar] [CrossRef]
- Kühn-Kauffeldt, M.; Kühn, M.; Mittermeier, C.; Kiendl, J. Fused filament fabrication of polyetheretherketone in vacuum: The influence of high vacuum on layer adhesion in z-orientation. Prog. Addit. Manuf. 2024, 10, 5205–5215. [Google Scholar] [CrossRef]
- Cao, D. Investigation into surface-coated continuous flax fiber-reinforced natural sandwich composites via vacuum-assisted material extrusion. Prog. Addit. Manuf. 2023, 9, 1135–1149. [Google Scholar] [CrossRef]
- Tang, J.; Wu, X.; Wong, K.C. Research on Space-based Artificial Intelligence 3D Printing. Ph.D. Thesis, The University of Sydney, Sydney, Australia, 2023. [Google Scholar]
- Sobelman, Z.Z.; Asundi, Z.A. Exploring Additive Manufacturing in a Space Environment—A Exploring Additive Manufacturing in a Space Environment—A Capstone Design Project Experience Capstone Design Project Experience Exploring additive manufacturing in a space environment—A capstone design project Exploring Additive Manufacturing in a Space Environment-A Capstone Design Project Experience Exploring Additive Manufacturing in a Space Environment—A Capstone Design Project Experience. 2023. Available online: https://peer.asee.org/43593 (accessed on 1 January 2025).
- de Seijas, M.O.V.; Piskacev, M.; Celotti, L.; Nadalini, R.; Daurskikh, A.; Baptista, A.; Berg, M.; Caltavituro, F.; Major, I.; Devine, D.M.; et al. Closing the loop in space 3D printing: Effect of vacuum, recycling, and UV aging on high performance thermoplastics produced via filament extrusion additive manufacturing. Acta Astronaut. 2024, 219, 164–176. [Google Scholar] [CrossRef]
- Laurenzi, S.; Zaccardi, F.; Toto, E.; Santonicola, M.G.; Botti, S.; Scalia, T. Fused Filament Fabrication of Polyethylene/Graphene Composites for In-Space Manufacturing. Materials 2024, 17, 1888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Van Hooreweder, B.; Ferraris, E. Fused Filament Fabrication on the Moon. JOM 2022, 74, 1111–1119. [Google Scholar] [CrossRef]
- Tyagi, S.; Yadav, A.; Deshmukh, S. Review on mechanical characterization of 3D printed parts created using material jetting process. Mater. Today: Proc. 2022, 51, 1012–1016. [Google Scholar] [CrossRef]
- Zhao, L.; Luo, J.; Zhou, Y.; Huang, J.; Qi, L. Computation of aluminum droplet ejection and flight in microgravity. Int. J. Mech. Sci. 2024, 267, 108997. [Google Scholar] [CrossRef]
- Jiang, L.; Li, W.; Wolf, R.; Marander, M.; Kirscht, T.; Liu, F.; Jones, J.M.; Hill, C.; Jiang, S.; Qin, H. High-Sensitivity Fully Printed Flexible BaTiO3- Based Capacitive Humidity Sensor for In-Space Manufacturing by Electrohydrodynamic Inkjet Printing. IEEE Sensors J. 2024, 24, 24659–24667. [Google Scholar] [CrossRef]
- Huang, J.; Qi, L.; Luo, J.; Zhao, L.; Yi, H. Suppression of gravity effects on metal droplet deposition manufacturing by an anti-gravity electric field. Int. J. Mach. Tools Manuf. 2020, 148, 103474. [Google Scholar] [CrossRef]
- Korkut, V.; Yavuz, H. In-Space Additive Manufacturing Based on Metal Droplet Generation Using Drop-on-Demand Technique. J. Mater. Eng. Perform. 2022, 31, 6101–6111. [Google Scholar] [CrossRef]
- Singh, D.D.; Mahender, T.; Reddy, A.R. Powder bed fusion process: A brief review. Mater. Today Proc. 2021, 46, 350–355. [Google Scholar] [CrossRef]
- Yim, S.; Wang, H.; Aoyagi, K.; Yamanaka, K.; Chiba, A. Role of gravity magnitude on flowability and powder spreading in the powder bed fusion additive manufacturing process: Towards additive manufacturing in space. Addit. Manuf. 2024, 94, 104441. [Google Scholar] [CrossRef]
- Koike, R.; Sugiura, Y. Metal powder bed fusion in high gravity. CIRP Ann. 2021, 70, 191–194. [Google Scholar] [CrossRef]
- Moreira, A.L.M.S.; Santos, T.I.D.; Junior, J.P.A.; Olivier, N.C.; Dantas, A.C.S. Computer simulation of pressure drop in a powder bed stabilized by a gas flow for 3D printing process in a zero gravity environment. Cerâmica 2023, 69, 318–324. [Google Scholar] [CrossRef]
- D’aNgelo, O.; Kuthe, F.; Liu, S.-J.; Wiedey, R.; Bennett, J.M.; Meisnar, M.; Barnes, A.; Kranz, W.T.; Voigtmann, T.; Meyer, A. A gravity-independent powder-based additive manufacturing process tailored for space applications. Addit. Manuf. 2021, 47, 102349. [Google Scholar] [CrossRef]
- Kenny, V.; Bapat, S.; Malshe, A.P. Exploring the feasibility of processing Inconel-718 and highland regolith composite using laser-assisted powder bed fusion. Procedia CIRP 2024, 121, 198–203. [Google Scholar] [CrossRef]
- Stewart, B.C.; Doude, H.R.; Mujahid, S.; Fox, E.T.; Edmunson, J.E.; Abney, M.B.; Rhee, H. Novel Selective Laser Printing Via Powder Bed Fusion of Ionic Liquid Harvested Iron for Martian Additive Manufacturing. J. Mater. Eng. Perform. 2022, 31, 6060–6068. [Google Scholar] [CrossRef]
- Dou, R.; Tang, W.; Hu, K.; Wang, L. Ceramic paste for space stereolithography 3D printing technology in microgravity environment. J. Eur. Ceram. Soc. 2022, 42, 3968–3975. [Google Scholar] [CrossRef]
- Miller, Z.; Stidham, B.; Fairbanks, T.; Maldonado, C. The Use of Stereolithography (SLA) Additive Manufacturing in Space-Based Instrumentation. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; IEEE Computer Society: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Miller, Z.; Fernandes, P.; Hunter, B.; Maldonado, C.; Patterson, B.; Skoug, R. The Use of Metallized Stereolithography Additively Manufactured Components in Space. In Proceedings of the 2024 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2024; IEEE Computer Society: Washington, DC, USA, 2024. [Google Scholar] [CrossRef]
- König, N.F.; Reuter, M.; Reuß, M.; Kromer, C.S.F.; Herder, M.; Garmshausen, Y.; Asfari, B.; Israel, E.; Lima, L.V.; Puvati, N.; et al. Xolography for 3D Printing in Microgravity. Adv. Mater. 2024, 37, e2413391. [Google Scholar] [CrossRef] [PubMed]
- Palacios, F.D.; Alvarez, G.S.; Rojas, G.; Clavijo, M.; Ordoñez, J.; Nallar, K. Exploring Microgravity Liquid Printing Based on Resin Solidification for Outer Space Applications. Key Eng. Mater. 2023, 956, 195–202. [Google Scholar] [CrossRef]
- Friz, P.D.; Tiffin, D.J.; Rosenthal, E. The Space Superhighway: A Cost Analysis of an In-Space Logistics Resupply Network. 2022. Available online: https://arc.aiaa.org/doi/10.2514/6.2022-4254 (accessed on 1 January 2025).
- Hyde, J.L.; Christiansen, E.L.; Lear, D.M.; Ii, C.; Lozano, M.A. SpaceX Dragon Spacecraft Post Flight MMOD Inspection Campaign; NASA: Huntsville, AL, USA, 2023. [Google Scholar]
- Li, P.; Zou, G.; Chang, L.; Guo, W.; Tian, K.; Li, X.; Wang, H. UV-stimulated self-healing SiO2/CeO2 microcapsule with excellent UV-blocking capability in epoxy coating. Bull. Mater. Sci. 2023, 46, 1–9. [Google Scholar] [CrossRef]
- Pernigoni, L.; Lafont, U.; Grande, A.M. Self-healing polymers for space: A study on autonomous repair performance and response to space radiation. Acta Astronaut. 2023, 210, 627–634. [Google Scholar] [CrossRef]
- Yu, S.; Zhong, J.; Zhong, Y.; Yu, M.; Liu, Z.; Shen, L. Improvement of Extrinsic Self-Healing Performance by Dual pH-Responsive, Two-Compartment Microcapsules. ACS Appl. Polym. Mater. 2024, 6, 4005–4013. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, F.; Pan, W.; Yao, Y.; Liu, Y.; Leng, J. Shape memory polymer foam: Active deformation, simulation and validation of space environment. Smart Mater. Struct. 2022, 31, 035008. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, Y.; Zhang, X.; Li, Z.; Zhao, L.; Wang, Z.; Gao, W. Highly Homogeneous Polysiloxane Flexible Coating for Low Earth Orbital Spacecraft with Ultraefficient Atomic Oxygen Resistance and Self-Healing Behavior. ACS Appl. Polym. Mater. 2019, 1, 3253–3260. [Google Scholar] [CrossRef]
- Smith, N. Passive, Self-Healable, Dielectric Elastomers for Structural Health Passive, Self-Healable, Dielectric Elastomers for Structural Health Monitoring Monitoring. Available online: https://commons.erau.edu/edt/709 (accessed on 1 January 2025).
- Lang, F.; Nickel, N.H.; Bundesmann, J.; Seidel, S.; Denker, A.; Albrecht, S.; Brus, V.V.; Rappich, J.; Pech, B.; Landi, G.; et al. Radiation Hardness and Self-Healing of Perovskite Solar Cells. 2016. Available online: https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.201603326 (accessed on 1 January 2025).
- Zhu, Y.; Cao, K.; Chen, M.; Wu, L. Synthesis of UV-Responsive Self-Healing Microcapsules and Their Potential Application in Aerospace Coatings. ACS Appl. Mater. Interfaces 2019, 11, 33314–33322. [Google Scholar] [CrossRef]
- Galabova, K.K.; de Weck, O.L. Economic case for the retirement of geosynchronous communication satellites via space tugs. Acta Astronaut. 2006, 58, 485–498. [Google Scholar] [CrossRef]
- Ehn, E.J.; Rubin, J.S. Multidisciplinary Architectural Study of On-Orbit Space Vehicle Refueling. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2022. [Google Scholar]
- Weiss, B.M.; Rönnbäck, A.Ö.; Laufer, R.; Clauss, M. DESIGN FOR X: ENABLING THE REUSE OF SPACE HARDWARE? Proc. Des. Soc. 2023, 3, 1257–1266. [Google Scholar] [CrossRef]
- Ren, J.; Kong, N.; Zhuang, Y.; Zhang, J.; Ma, S.; Wang, B.; Liu, W. A review on the interfaces of orbital replacement unit: Great efforts for modular spacecraft. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 235, 1941–1967. [Google Scholar] [CrossRef]
- Buta, R.-C.; Kirei, B.S.; Codau, C.; Pastrav, A.; Farcas, C.; Simedroni, R.; Dolea, P.; Palade, T.; Puschita, E. Design and Validation of a SpW Converter for Intra-Spacecraft Communications. In Proceedings of the 2021 44th International Conference on Telecommunications and Signal Processing (TSP), Brno, Czech Republic, 26–28 July 2021; pp. 381–385. [Google Scholar]
- Riesbeck, L.; Griego, R.S. It is Easy Being Green: A Practical Guide to Integrate Serviceability into Spacecraft and Mission Designs. In Proceedings of the 2nd International Orbital Debris Conference, Sugar Land, TX, USA, 4–7 December 2023. [Google Scholar]
- Cavaciuti, A.J.; Heying, J.H.; Davis, J. In-Space Servicing, Assembly, and Manufacturing for The New Space Economy; Center for Space Policy and Strategy: Chantilly, VA, USA, 2022. [Google Scholar]
- Cho, W.-I.; Na, S.-J.; Zhang, L.-J.; Ning, J.; Long, J.; Wang, X. A Review of Laser Welding Research in Space Environments. J. Weld. Join. 2024, 42, 575–586. [Google Scholar] [CrossRef]
- Liu, X.; Dong, Q.; Wang, P.; Chen, H. Review of Electron Beam Welding Technology in Space Environment. Optik 2021, 225, 165720. [Google Scholar] [CrossRef]
- Naden, N.; Prater, T.J.; Marshall, G.C. A Review of Welding in Space and Related Technologies. 2020. Available online: https://ntrs.nasa.gov/citations/20200002259 (accessed on 1 January 2025).
- Wylie, M.; Barilaro, L. An investigation into cold weld adhesion for spacecraft repair after a space debris impact using space education based sub-orbital sounding rocket platform. In Proceedings of the 4th Symposium on Space Educational Activities, Barcelona, Spain, 27–29 April 2022. [Google Scholar]
- Luchinsky, D.G.; Wheeler, K.R.; Roberts, C.E.; Hanson, I.M. Analysis of Arc Welding Process in Space. 2021. Available online: https://ntrs.nasa.gov/citations/20210022016 (accessed on 1 January 2025).
- Snyder, M.P.; Dunn, J.J.; Gonzalez, E.G. Effects of microgravity on extrusion based additive manufacturing. In Proceedings of the AIAA SPACE 2013 Conference and Exposition, San Diego, CA, USA, 10–12 September 2013. [Google Scholar] [CrossRef]
- Prater, T.; Werkheiser, N.; Ledbetter, F.; Jehle, A. NASA’s In-Space Manufacturing Project: Toward a Multimaterial Fabrication laboratory for the International Space Station. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 12–14 September 2017; p. 5277. [Google Scholar]
- Pant, H.; Arora, A.; Gopakumar, G.S.; Chadha, U.; Saeidi, A.; Patterson, A.E. Applications of wire arc additive manufacturing (WAAM) for aerospace component manufacturing. Int. J. Adv. Manuf. Technol. 2023, 127, 4995–5011. [Google Scholar] [CrossRef]
- Diao, C.; Eimer, E.; Mancini, S.; Krishnaswamy, S.; Schwarz, F.; Pagone, E.; Ding, J.; Williams, S.; Pinter, Z.; Martina, F. WAAM of large-scale space components Manufacture of Large-Scale Space Exploration Components using Wire + Arc Additive Manufacturing. In Proceedings of the 33rd Congress of the International Council of the Aeronautical Sciences, Stockholm, Sweden, 4–9 September 2022. [Google Scholar]
- Miyake, R.; Sasahara, H.; Suzuki, A.; Ouchi, S. Wire Arc Additive and High-Temperature Subtractive Manufacturing of Ti-6Al-4V. Appl. Sci. 2021, 11, 9521. [Google Scholar] [CrossRef]
- Hwang, E.; Choi, J.; Hong, S. Emerging laser-assisted vacuum processes for ultra-precision, high-yield manufacturing. Nanoscale 2022, 14, 16065–16076. [Google Scholar] [CrossRef] [PubMed]
- DiMarzio, K.; Kugler, J.W.; French, K.D.; Quiros, G.A.; Abromitis, K.E. Enabling Persistent Platforms Through OSAM Technologies. In Proceedings of the AIAA Scitech Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar]
- Ochs’, W.R.; Barbehenn, G.M.; Crabb, W.G.; Martin, L. The Hubble Space Telescope Servicing Missions: Past, Present, and Future Operational Challenges. In Proceedings of the Fourth International Symposium on Space Mission Operations and Ground Data Systems, Munich, Germany, 16–20 September 1996. [Google Scholar]
- Cole, T.J. On-orbit repair of satellites using fastener capture plates to eliminate debris. In Proceedings of the 2011 Aerospace Conference, Big Sky, MT, USA, 5–12 March 2011. [Google Scholar] [CrossRef]
- Aziz, S. Lessons learned from the STS-120/ISS 10A robotics operations. Acta Astronaut. 2010, 66, 157–165. [Google Scholar] [CrossRef]
- Coleshill, E.; Oshinowo, L.; Rembala, R.; Bina, B.; Rey, D.; Sindelar, S. Dextre: Improving maintenance operations on the International Space Station. Acta Astronaut. 2009, 64, 869–874. [Google Scholar] [CrossRef]
- Xing, X.; Wang, S.; Liu, W. An Improved DDPG and Its Application in Spacecraft Fault Knowledge Graph. Sensors 2023, 23, 1223. [Google Scholar] [CrossRef]
- Sigmund, O.; Maute, K. Topology optimization approaches. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [Google Scholar] [CrossRef]
- Bendsoe, M.P. Structural Optimization Optimal shape design as a material distribution problem. Struct. Optim. 1989, 1, 193–202. [Google Scholar] [CrossRef]
- Braun, M.; Villa, E.I.; Riojas-Roldán, H.; Rocco, C.G. A topological optimization algorithm applied to the design of composites patch repair of mixed-mode cracked plate. J. Compos. Mater. 2017, 52, 2387–2395. [Google Scholar] [CrossRef]
- Grihon, S.; Krog, L.; Hertel, K. A380 Weight Savings Using Numerical Structural Optimisation Machine learning for composite optimization View project Rapid Sizing with manufacturing Constraints View project Stéphane Grihon Airbus. 2003. Available online: https://www.researchgate.net/publication/259709151 (accessed on 1 January 2025).
- Liu, J.; Gaynor, A.T.; Chen, S.; Kang, Z.; Suresh, K.; Takezawa, A.; Li, L.; Kato, J.; Tang, J.; Wang, C.C.L.; et al. Current and future trends in topology optimization for additive manufacturing. Struct. Multidiscip. Optim. 2018, 57, 2457–2483. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, H.; Wang, C.; Zhou, L.; Yuan, S.; Zhang, W. A review of topology optimization for additive manufacturing: Status and challenges. Chin. J. Aeronaut. 2021, 34, 91–110. [Google Scholar] [CrossRef]
- Willner, R.; Lender, S.; Ihl, A.; Wilsnack, C.; Gruber, S.; Brandão, A.; Pambaguian, L.; Riede, M.; López, E.; Brueckner, F.; et al. Potential and challenges of additive manufacturing for topology optimized spacecraft structures. J. Laser Appl. 2020, 32, 032012. [Google Scholar] [CrossRef]
- Orsatelli, J.-B.; Paroissien, E.; Lachaud, F.; Schwartz, S. Bonded flush repairs for aerospace composite structures: A review on modelling strategies and application to repairs optimization, reliability and durability. Compos. Struct. 2022, 304, 116338. [Google Scholar] [CrossRef]
- Naik, B.R.; Chadalla, S.K.; Awasthi, A.; Tondon, R.; Yadav, D.K.; Taher, W.M.; Nagpal, A. The application of metal matrix composite materials in propulsion system valves. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Cai, M.; Yang, T.; Li, H.; Yang, H.; Han, J. Experimental and Simulation Study on Shielding Performance of Developed Hydrogenous Composites. Space Sci. Technol. 2022, 2022, 9754387. [Google Scholar] [CrossRef]
- Hepp, A.F.; Kumta, P.N.; Velikokhatnyi, O.I.; Datta, M.K. Chapter 14—Batteries for aeronautics and space exploration: Recent developments and future prospects. In Lithium-Sulfur Batteries; Kumta, P.N., Hepp, A.F., Datta, M.K., Velikokhatnyi, O.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 531–595. [Google Scholar] [CrossRef]
- Li, J.; Aierken, A.; Liu, Y.; Zhuang, Y.; Yang, X.; Mo, J.H.; Fan, R.K.; Chen, Q.Y.; Zhang, S.Y.; Huang, Y.M.; et al. A Brief Review of High Efficiency III-V Solar Cells for Space Application. Front. Phys. 2021, 8, 631925. [Google Scholar] [CrossRef]
- Pernigoni, L.; Lafont, U.; Grande, A.M. Self-healing materials for space applications: Overview of present development and major limitations. CEAS Space J. 2021, 13, 341–352. [Google Scholar] [CrossRef]
- Shyam, R.B.A.; Hao, Z.; Montanaro, U.; Dixit, S.; Rathinam, A.; Gao, Y.; Neumann, G.; Fallah, S. Autonomous Robots for Space: Trajectory Learning and Adaptation Using Imitation. Front. Robot. AI 2021, 8, 638849. [Google Scholar] [CrossRef]
- Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S. A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 2014, 68, 1–26. [Google Scholar] [CrossRef]
- Papadopoulos, E.; Aghili, F.; Ma, O.; Lampariello, R. Robotic Manipulation and Capture in Space: A Survey. Front. Robot. AI 2021, 8, 686723. [Google Scholar] [CrossRef]
- Doetsch, K. Canada’s role on space station. Acta Astronaut. 2005, 57, 661–675. [Google Scholar] [CrossRef]
- Gibbs, G.; Sachdev, S. Canada and the International Space Station program: Overview and status. Acta Astronaut. 2002, 51, 591–600. [Google Scholar] [CrossRef]
- Hirzinger, G.; Brunner, B.; Dietrich, J.; Heindl, J.; Oberpfaffenhofen, L.R. ROTEX-The First Remotely Controlled Robot in Space. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994. [Google Scholar]
- Nagatomo, M.; Mitome, T.; Kawasaki, K.; Ezawa, N.; Kasuga, K. MFD robot arm and its flight experiment. In Space 98; ASCE: Reston, VA, USA, 1998; pp. 319–324. [Google Scholar]
- Miller, D.; Saenz-Otero, A.; Wertz, J.; Chen, A.; Berkowski, G.; Brodel, C.; Carlson, S.; Carpenter, D.; Chen, S.; Cheng, S. SPHERES: A testbed for long duration satellite formation flying in micro-gravity conditions. In Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Clearwater, FL, USA, 23–26 January 2000; pp. 167–179. [Google Scholar]
- Miller, D.W.; Wilson, E.; How, J.; Sanenz-Otero, A.; Chamitoff, G. Synchronized Position Hold, Engage, Reorient, Experimental Satellites. 2009. Available online: https://ntrs.nasa.gov/citations/20090014826. (accessed on 1 January 2025).
- Carlino, R.; Jonathan, B.; Jose, B.; Maria, B.; Aric, K.; Yunji, K.; Ruben Garcia, R.; Trey, S.; Andres Mora, V. Astrobee free flyers: Integrated and tested. Ready for launch! In Proceedings of the International Astronautical Congress, Washington, DC, USA, 21–25 October 2019. [Google Scholar]
- Bualat, M.G.; Smith, T.; Smith, E.E.; Fong, T.; Wheeler, D.W. Astrobee: A new tool for ISS operations. In Proceedings of the 2018 SpaceOps Conference, Marseille, France, 28 May–1 June 2018; p. 2517. [Google Scholar]
- Fröding, B.; Peterson, M. Friendly AI. Ethics Inf. Technol. 2021, 23, 207–214. [Google Scholar] [CrossRef]
- Mitani, S.; Goto, M.; Konomura, R.; Shoji, Y.; Hagiwara, K.; Shigeto, S.; Tanishima, N. Int-Ball: Crew-Supportive Autonomous Mobile Camera Robot on ISS/JEM. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–15. [Google Scholar] [CrossRef]
- Yamaguchi, S.P.; Yamamoto, T.; Watanabe, H.; Itakura, R.; Wada, M.; Mitani, S.; Hirano, D.; Watanabe, K.; Nishishita, T.; Kawai, Y.; et al. Int-Ball2: ISS JEM Internal Camera Robot with Increased Degree of Autonomy—Design and Initial Checkout. In Proceedings of the 2024 International Conference on Space Robotics (iSpaRo), Luxembourg, 24–27 June 2024; pp. 328–333. [Google Scholar] [CrossRef]
- Shoemaker, J.; Wright, M.; Tchoryk, J.P. Orbital express space operations architecture program. In Spacecraft Platforms and Infrastructure; Shoemaker, J., Wright, M., Eds.; SPIE: Bellingham, WA, USA, 2004; pp. 57–65. [Google Scholar] [CrossRef]
- Friend, R.B.; Howard, R.T.; Motaghedi, P. Orbital Express program summary and mission overview. In Sensors and Systems for Space Applications II; Howard, R.T., Motaghedi, P., Eds.; SPIE: Bellingham, WA, USA, 2008; p. 695803. [Google Scholar] [CrossRef]
- Henshaw, C.G. The DARPA Phoenix Spacecraft Servicing Program: Overview and Plans for Risk Reduction. 2014. Available online: https://api.semanticscholar.org/CorpusID:207900392 (accessed on 1 January 2025).
- Lennon, J.; Henshaw, C.; Purdy, W. An architecture for autonomous control of a robotic satellite grappling mission. In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Kissimmee, FL, USA, 8–12 January 2008; p. 7259. [Google Scholar]
- Debus, T.; Dougherty, S. Overview and performance of the front-end robotics enabling near-term demonstration (FREND) robotic arm. In Proceedings of the AIAA Infotech@Aerospace Conference, Washington, DC, USA, 6–9 April 2009; p. 1870. [Google Scholar]
- Diftler, M.A.; Mehling, J.S.; Abdallah, M.E.; Radford, N.A.; Bridgwater, L.B.; Sanders, A.M. Robonaut 2—The first humanoid robot in space. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2178–2183. [Google Scholar] [CrossRef]
- Bluethmann, W.; Ambrose, R.; Diftler, M.; Askew, S.; Huber, E.; Goza, M.; Rehnmark, F.; Lovchik, C.; Magruder, D. Robonaut: A Robot Designed to Work with Humans in Space. Auton. Robot. 2003, 14, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, R.; Aldridge, H.; Askew, R.; Burridge, R.; Bluethmann, W.; Diftler, M.; Lovchik, C.; Magruder, D.; Rehnmark, F. Robonaut: NASA’s space humanoid. IEEE Intell. Syst. 2000, 15, 57–63. [Google Scholar] [CrossRef]
- Breon, S.R.; Boyle, R.F.; Francom, M.B.; DeLee, C.H.; Francis, J.J.; Mustafi, S.; Barfknecht, P.W.; McGuire, J.M.; Krenn, A.G.; Zimmerli, G.A.; et al. Robotic Refueling Mission-3—An overview. IOP Conf. Ser. Mater. Sci. Eng. 2020, 755, 12002. [Google Scholar] [CrossRef]
- Bassett, D.A. The Special Purpose Dexterous Manipulator for ISS. In Proceedings of the 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany, 29 September–3 October 2003; p. P-5. [Google Scholar]
- Mayfield, M. Industry offering on-orbit satellite servicing. Natl. Def. 2021, 105, 25–26. [Google Scholar]
- Redd, N.T. Bringing satellites back from the dead: Mission extension vehicles give defunct spacecraft a new lease on life-[News]. IEEE Spectr. 2020, 57, 6–7. [Google Scholar] [CrossRef]
- Bultitude, J.; Burkhardt, Z.; Harris, M.; Jelderda, M.; Suresh, S.A.; Fettes, L.; Faber, D.; Schiel, J.; Cho, J.; Levitt, D. Development and Launch of the World’s First Orbital Propellant Tanker. In Proceedings of the 35th Annual Small Satellite Conference, Logan, UT, USA, 7–12 August 2021. [Google Scholar]
- La Luna, S.; Maggi, F.; Zuin, D. Prospective of self-pressurized technology for in space satellite mission. In Proceedings of the 9th European Conference for Aeronautics and Space Sciences (EUCASS), Lille, France, 27 June–1 July 2022. [Google Scholar]
- Sharma, T.; Dwivedi, P. The Self-Refuelling Rejuvenator: An Autonomous Probe for Extending Satellite Life. In Proceedings of the International Astronautical Congress 2024, Milan, Italy, 14–18 October 2024. [Google Scholar]
- Shoemaker, M.A.; Vavrina, M.; Gaylor, D.E.; Mcintosh, R.; Volle, M.; Jacobsohn, J. OSAM-1 decommissioning orbit design. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, CA, USA, 9–13 August 2020. [Google Scholar]
- Reed, B.B.; Smith, R.C.; Naasz, B.J.; Pellegrino, J.F.; Bacon, C.E. The restore-L servicing mission. In Proceedings of the AIAA space 2016, Long Beach, CA, USA, 13–16 September 2016; p. 5478. [Google Scholar]
- Klinkrad, H. Space Debris: Models and Risk Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- NSS-1740.14; Guidelines and Assessment Procedures for Limiting Orbital Debris. NASA: Washington, DC, USA, 1995; Volume 1740, p. 14.
- Bess, T.D. Mass Distribution of Orbiting Man-Made Space Debris; NASA: Huntsville, AL, USA, 1975. [Google Scholar]
- Bonnal, C.; Ruault, J.-M.; Desjean, M.-C. Active debris removal: Recent progress and current trends. Acta Astronaut. 2013, 85, 51–60. [Google Scholar] [CrossRef]
- Hruby, V.J.; DeLuccia, C.; Williams, D. Tethered robot for spacecraft self inspection and servicing. In Proceedings of the 2018 AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, 17–19 September 2018; p. 5342. [Google Scholar]
- Blackerby, C.; Okamoto, A.; Fujimoto, K.; Okada, N.; Forshaw, J.L.; Auburn, J. ELSA-d: An in-orbit end-of-life demonstration mission. In Proceedings of the 69th IAC (International Astronautical Congress), Bremen, Germany, 1–5 October 2018; Volume 6, p. 43644. [Google Scholar]
- Blackerby, C.; Okamoto, A.; Iizuka, S.; Kobayashi, Y.; Fujimoto, K.; Seto, Y.; Fujita, S.; Iwai, T.; Okada, N.; Forshaw, J. The ELSA-d end-of-life debris removal mission: Preparing for launch. In Proceedings of the International Astronautical Congress, IAC, Washington, DC, USA, 21–25 October 2019. [Google Scholar]
- Forshaw, J.; Lopez, R.; Okamoto, A.; Blackerby, C.; Okada, N. The ELSA-d End-of-life debris removal mission: Mission design, in-flight safety, and preparations for launch. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 17–20 September 2019; pp. 44–50. [Google Scholar]
- Aglietti, G.; Taylor, B.; Fellowes, S.; Ainley, S.; Tye, D.; Cox, C.; Zarkesh, A.; Mafficini, A.; Vinkoff, N.; Bashford, K.; et al. RemoveDEBRIS: An in-orbit demonstration of technologies for the removal of space debris. Aeronaut. J. 2019, 124, 1–23. [Google Scholar] [CrossRef]
- Forshaw, J.L.; Aglietti, G.S.; Fellowes, S.; Salmon, T.; Retat, I.; Hall, A.; Chabot, T.; Pisseloup, A.; Tye, D.; Bernal, C.; et al. The active space debris removal mission RemoveDebris. Part 1: From concept to launch. Acta Astronaut. 2020, 168, 293–309. [Google Scholar] [CrossRef]
- Forshaw, J.L.; Aglietti, G.S.; Navarathinam, N.; Kadhem, H.; Salmon, T.; Pisseloup, A.; Joffre, E.; Chabot, T.; Retat, I.; Axthelm, R.; et al. RemoveDEBRIS: An in-orbit active debris removal demonstration mission. Acta Astronaut. 2016, 127, 448–463. [Google Scholar] [CrossRef]
- Biesbroek, R.; Innocenti, L.; Wolahan, A.; Serrano, S.M. e.Deorbit-ESA’s active debris removal mission. In Proceedings of the 7th European Conference on Space Debris, Darmstadt, Germany, 17–21 April 2017; ESA Space Debris Office: Darmstadt, Germany, 2017. [Google Scholar]
- Biesbroek, R.; Aziz, S.; Wolahan, A.; Cipolla, S.; Richard-Noca, M.; Piguet, L. The clearspace-1 mission: ESA and clearspace team up to remove debris. In Proceedings of the 8th European Conference on Space Debris, Darmstadt, Germany, 20–23 March 2021; pp. 1–3. [Google Scholar]
- El-Shawa, S.; Cattani, B.M.; Innocenti, L.; Delaval, J. From Cradle to Grave: ESA Clean Space’s Approach to Space Sustainability. In Proceedings of the 72nd International Astronautical Congress, Dubai, United Arab Emirates, 25–29 October 2021. [Google Scholar]
- Narayanan, S.; Barnhart, D.; Rogers, R.; Ruffatto, D.; Schaler, E.; Van Crey, N.; Dean, G.; Bhanji, A.; Bernstein, S.; Singh, A.; et al. REACCH-Reactive electro-adhesive capture cloth mechanism to enable safe grapple of cooperative/non-cooperative space debris. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, 6–10 January 2020; p. 2134. [Google Scholar]
- Andreyeva, K.; MacRae, G.; Migeon, N.; Nicol, T.; Cros-Coitton, M.; Barnhart, D. Mobility of a Soft Conformable Multi-Limbed Robot Actuated by Shape Memory Alloy Wires. In Proceedings of the 2024 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2024; pp. 1–9. [Google Scholar] [CrossRef]
- Bedrossian, N. International space station assembly and operation control challenges. In Proceedings of the 23rd Annual AAS Guidance and Control Conference, Breckenridge, CO, USA, 2–6 February 2000; Volume 22. [Google Scholar]
- Gates, R.E. International Space Station (ISS) Assembly Sequence Planning. In Proceedings of the Engineering, Construction, and Operations in Space V, Albuquerque, NM, USA, 1–6 June 1996; pp. 435–442. [Google Scholar]
- Rembala, R.; Ower, C. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience. Acta Astronaut. 2009, 65, 912–920. [Google Scholar] [CrossRef]
- Eriksson, J.; Newlove-Eriksson, L.M. Outsourcing the American Space Dream: SpaceX and the Race to the Stars. Astropolitics 2023, 21, 46–62. [Google Scholar] [CrossRef]
- Smitherman, D.; Schnell, A. Gateway Lunar Habitat Modules as the Basis for a Modular Mars Transit Habitat. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–12. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Wang, W. Design and Application Prospect of China’s Tiangong Space Station. Space Sci. Technol. 2024, 3, 0035. [Google Scholar] [CrossRef]
- Yang, H. The ‘tiangong’ chinese space station project. Front. Eng. Manag. 2018, 5, 278–283. [Google Scholar]
- Fuller, S.; Lehnhardt, E.; Zaid, C.; Halloran, K. Gateway program status and overview. J. Space Saf. Eng. 2022, 9, 625–628. [Google Scholar] [CrossRef]
- Picard, M. An Overview of the CSA Recent Activities in Space Robotics. 2020. Available online: https://www.hou.usra.edu/meetings/isairas2020fullpapers/pdf/5008.pdf (accessed on 22 July 2025).
- Hoang, C.; Kam, J.; Mehr, D.N. CRATER: A Regolith Collection Robot for In-Situ Manufacturing of Lightweight Metamaterials. In Proceedings of the 2025 Regional Student Conferences, University of Sydney, Sydney, Australia, 1 January 2025; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2025. [Google Scholar] [CrossRef]
- Gregg, C.E.; Cheung, K.C. Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS): Robotically Assembled Sustainable Lunar Infrastructure. In Proceedings of the Lunar Surface Innovation Consortium Spring Meeting (LSIC 2023), Laurel, MD, USA, 24–25 April 2023. [Google Scholar]
- Joyce, E.R.; Fagin, M.; Shestople, P.; Snyder, M.P.; Patane, S. Made in space archinaut: Key enabler for asteroid belt colonization. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 12–14 September 2017; p. 5364. [Google Scholar]
- Patane, S.; Joyce, E.R.; Snyder, M.P.; Shestople, P. Archinaut: In-space manufacturing and assembly for next-generation space habitats. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 12–14 September 2017; p. 5227. [Google Scholar]
- Lee, N.; Backes, P.; Burdick, J.; Pellegrino, S.; Fuller, C.; Hogstrom, K.; Kennedy, B.; Kim, J.; Mukherjee, R.; Seubert, C.; et al. Architecture for in-space robotic assembly of a modular space telescope. J. Astron. Telesc. Instrum. Syst. 2016, 2, 41207. [Google Scholar] [CrossRef]
- Staritz, P.J.; Skaff, S.; Urmson, C.; Whittaker, W. Skyworker: A robot for assembly, inspection and maintenance of large scale orbital facilities. In Proceedings of the 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Seoul, Republic of Korea, 21–26 May 2001; Volume 4, pp. 4180–4185. [Google Scholar] [CrossRef]
- Hoyt, R.P.; Cushing, J.; Jimmerson, G.; Slostad, J.; Dyer, R.; Alvarado, S. SpiderFab: Process for On-Orbit Construction of Kilometer-Scale Apertures; NIAC: Greenbelt, MD, USA, 2018. [Google Scholar]
- Arney, D.; Sutherland, R.; Mulvaney, J.; Steinkoenig, D.; Stockdale, C.; Farley, M. On-Orbit Servicing, Assembly, and Manufacturing (OSAM) State of Play; The Aerospace Corporation: El Segundo, CA, USA, 2021. [Google Scholar]
- Doggett, W.R.; Dorsey, J.T.; White, B.W.; Song, K.; Raffanello, L.M.; Cline, J.E.; Teter, J.E.; Arney, D.C.; Cooper, J.R.; Mahlin, M.K.; et al. Near-term persistent platform orbital testbed: Three candidate architecture options. In Proceedings of the AIAA ASCEND, Las Vegas, NV, USA, 16–18 November 2020. [Google Scholar]
- Davoli, F.; Kourogiorgas, C.; Marchese, M.; Panagopoulos, A.; Patrone, F. Small satellites and CubeSats: Survey of structures, architectures, and protocols. Int. J. Satell. Commun. Netw. 2018, 37, 343–359. [Google Scholar] [CrossRef]
- Freeman, A. Exploring our solar system with CubeSats and SmallSats: The dawn of a new era. CEAS Space J. 2020, 12, 491–502. [Google Scholar] [CrossRef]
- Barnhart, D.J.; Shoemaker, D.M.; King, E.T.; Logue, T.; Lavis, M.J. LM LINUSSTM-Lockheed Martin In-Space Upgrade Servicing System. In Proceedings of the Small Satellite Conference, Logan, UT, USA, 5–10 August 2023. [Google Scholar]
- Suydam, A.; Pyles, J. Lockheed Martin Conceptual Design Modeling in the Dassault Systemes 3DEXPERIENCE® Platform. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 1391. [Google Scholar]
- Rivkin, A.S.; Chabot, N.L.; Stickle, A.M.; Thomas, C.A.; Richardson, D.C.; Barnouin, O.; Fahnestock, E.G.; Ernst, C.M.; Cheng, A.F.; Chesley, S.; et al. The Double Asteroid Redirection Test (DART): Planetary Defense Investigations and Requirements. Planet. Sci. J. 2021, 2, 173. [Google Scholar] [CrossRef]
- Hirabayashi, M.; Ferrari, F.; Jutzi, M.; Nakano, R.; Raducan, S.D.; Sánchez, P.; Soldini, S.; Zhang, Y.; Barnouin, O.S.; Richardson, D.C.; et al. Double Asteroid Redirection Test (DART): Structural and Dynamic Interactions between Asteroidal Elements of Binary Asteroid (65803) Didymos. Planet. Sci. J. 2022, 3, 140. [Google Scholar] [CrossRef]
- Barnouin, O.; Ballouz, R.-L.; Marchi, S.; Vincent, J.-B.; Agrusa, H.; Zhang, Y.; Ernst, C.M.; Pajola, M.; Tusberti, F.; Lucchetti, A.; et al. The geology and evolution of the Near-Earth binary asteroid system (65803) Didymos. Nat. Commun. 2024, 15, 6202. [Google Scholar] [CrossRef]
- Dotto, E.; Della Corte, V.; Amoroso, M.; Bertini, I.; Brucato, J.; Capannolo, A.; Cotugno, B.; Cremonese, G.; Di Tana, V.; Gai, I.; et al. LICIACube-The Light Italian Cubesat for Imaging of Asteroids In support of the NASA DART mission towards asteroid (65803) Didymos. Planet. Space Sci. 2021, 199, 105185. [Google Scholar] [CrossRef]
- Cheng, A.; Atchison, J.; Kantsiper, B.; Rivkin, A.; Stickle, A.; Reed, C.; Galvez, A.; Carnelli, I.; Michel, P.; Ulamec, S. Asteroid Impact and Deflection Assessment mission. Acta Astronaut. 2015, 115, 262–269. [Google Scholar] [CrossRef]
- Topputo, F.; Ferrari, F.; Franzese, V.; Pugliatti, M.; Giordano, C.; Rizza, A.; Calvi, D.; Ammirante, G.; Stesina, F.; Esposito, A. The Hera Milani CubeSat Mission. In Proceedings of the 7th IAA Planetary Defense Conference, Vienna, Austria, 26–30 April 2021; p. 163. [Google Scholar]
- Michel, P.; Küppers, M.; Bagatin, A.C.; Carry, B.; Charnoz, S.; de Leon, J.; Fitzsimmons, A.; Gordo, P.; Green, S.F.; Hérique, A.; et al. The ESA Hera Mission: Detailed Characterization of the DART Impact Outcome and of the Binary Asteroid (65803) Didymos. Planet. Sci. J. 2022, 3, 160. [Google Scholar] [CrossRef]
- Goldberg, H.; Pleguezuelo, P.R.; Carnelli, I.; Sousa, T.; Gordo, P.; Dias, N.G.; Onderwater, H.; Hellmann, D.; Kempfe, H. The ESA HERA Mission and Its Planetary Altimeter—Learning to Deflect Asteroids. In International Workshop on Space-Based Lidar Remote Sensing Techniques and Emerging Technologies; Springer: Berlin/Heidelberg, Germany, 2023; pp. 131–138. [Google Scholar]
- McDowell, J.C. The Low Earth Orbit Satellite Population and Impacts of the SpaceX Starlink Constellation. Astrophys. J. 2020, 892, L36. [Google Scholar] [CrossRef]
- Logue, T.J.; Pelton, J. Overview of commercial small satellite systems in the ‘New Space’ age. In Handbook of Small Satellites: Technology, Design, Manufacture, Applications, Economics and Regulation; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–18. [Google Scholar]
- Kokkoniemi-Tarkkanen, H.; Ahola, K.; Suomalainen, J.; Höyhtyä, M.; Säynevirta, M.; Kivistö, A. Mission-Critical Connectivity Over LEO Satellites: Performance Measurements Using OneWeb System. IEEE Aerosp. Electron. Syst. Mag. 2024, 40, 18–30. [Google Scholar] [CrossRef]
- Henri, Y. The OneWeb satellite system. In Handbook of Small Satellites: Technology, Design, Manufacture, Applications, Economics and Regulation; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1091–1100. [Google Scholar]
- Pauly, L.; Rharbaoui, W.; Shneider, C.; Rathinam, A.; Gaudillière, V.; Aouada, D. A survey on deep learning-based monocular spacecraft pose estimation: Current state, limitations and prospects. Acta Astronaut. 2023, 212, 339–360. [Google Scholar] [CrossRef]
- Lotti, A.; Modenini, D.; Tortora, P.; Saponara, M.; Perino, M.A. Deep Learning for Real-Time Satellite Pose Estimation on Tensor Processing Units. J. Spacecr. Rocket. 2023, 60, 1034–1038. [Google Scholar] [CrossRef]
- Hovell, K.; Ulrich, S. Deep Reinforcement Learning for Spacecraft Proximity Operations Guidance. J. Spacecr. Rocket. 2021, 58, 254–264. [Google Scholar] [CrossRef]
- Yao, Q. Fixed-time neural adaptive fault-tolerant control for space manipulator under output constraints. Acta Astronaut. 2022, 203, 483–494. [Google Scholar] [CrossRef]
- She, Y.; Xu, W.; Su, H.; Liang, B.; Shi, H. Fault-tolerant analysis and control of SSRMS-type manipulators with single-joint failure. Acta Astronaut. 2016, 120, 270–286. [Google Scholar] [CrossRef]
- Rekleitis, I.; Martin, E.; Rouleau, G.; L’ARchevêque, R.; Parsa, K.; Dupuis, E. Autonomous capture of a tumbling satellite. J. Field Robot. 2007, 24, 275–296. [Google Scholar] [CrossRef]
- John-Sabu, A.; Lopez, B.T. Capturing Tumbling Objects in Orbit with Adaptive Tube Model Predictive Control. In Proceedings of the 2025 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2025; pp. 1–12. [Google Scholar] [CrossRef]
- Chen, H.; Sun, Q.; Li, F.; Tang, Y. Computer vision tasks for intelligent aerospace perception: An overview. Sci. China Technol. Sci. 2024, 67, 2727–2748. [Google Scholar] [CrossRef]
- Huang, Z.; Shi, L.; Fan, L.; Yang, Y.; Shan, M. Multirobot Assembly Sequence Planning of a Large Space Telescope. J. Spacecr. Rocket. 2025, 62, 915–927. [Google Scholar] [CrossRef]
- Stolfi, A.; Angeletti, F.; Gasbarri, P.; Panella, M. A Deep Learning Strategy for On-Orbit Servicing Via Space Robotic Manipulator. Aerotec. Missili Spaz. 2019, 98, 273–282. [Google Scholar] [CrossRef]
- Kreisel, J. On-Orbit Servicing (OOS): Issues & Commercial Implications. In Proceedings of the 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany, 29 September–3 October 2003. [Google Scholar]
- Sanders, G.; Larson, W.; Sacksteder, K.; Mclemore, C. NASA in-situ resource utilization (ISRU) project: Development and implementation. In Proceedings of the AIAA SPACE 2008 Conference & Exposition, San Diego, CA, USA, 9–11 September 2008; p. 7853. [Google Scholar]
- Anand, M.; Crawford, I.; Balat-Pichelin, M.; Abanades, S.; van Westrenen, W.; Péraudeau, G.; Jaumann, R.; Seboldt, W. A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planet. Space Sci. 2012, 74, 42–48. [Google Scholar] [CrossRef]
- Gordon, N.G.; Falco, G. Reference architectures for autonomous on-orbit servicing, assembly and manufacturing (OSAM) mission resilience. In Proceedings of the 2022 IEEE International Conference on Assured Autonomy (ICAA), Perth, Australia, 22–24 March 2022; pp. 124–128. [Google Scholar] [CrossRef]
- Pelton, J.N. Current Space Debris Remediation and On-Orbit Servicing Initiatives. In New Solutions for the Space Debris Problem; Springer International Publishing: Cham, Switzerland, 2015; pp. 11–29. [Google Scholar] [CrossRef]
- Murtaza, A.; Pirzada, S.J.H.; Xu, T.; Jianwei, L. Orbital debris threat for space sustainability and way forward. IEEE Access 2020, 8, 61000–61019. [Google Scholar] [CrossRef]
- Karamanavis, V.; Dirks, H.; Fuhrmann, L.; Schlichthaber, F.; Egli, N.; Patzelt, T.; Klare, J. Characterization of deorbiting satellites and space debris with radar. Adv. Space Res. 2023, 72, 3269–3281. [Google Scholar] [CrossRef]
Technology | Operational Concept | Strengths | Weaknesses |
---|---|---|---|
Extravehicular Activity (EVA) [18,19,20] TRL 9 | Astronauts conduct manual inspection and repairs during scheduled spacewalks. |
|
|
Spacecraft Health Telemetry and Remote Sensing [20,21] TRL 9 | Embedded sensors track changes in structural loads, thermal conditions, vibration, impact events, etc. |
|
|
Fixed Onboard Cameras [22,23] TRL 9 | Mounted optical systems record surface conditions |
|
|
Orbital Imaging Platforms [24,25] TRL 9 | Nearby spacecraft or telescopes capture inspection imagery. |
|
|
Ground-Based Observation (Radar/Lasers) [26] TRL 9 | Remote sensing using Earth-based radar or optical systems to ID surface features or motion. |
|
|
Technology | Operational Concept | Strengths | Weaknesses |
---|---|---|---|
Photoclinometry [41] TRL 8 | Reconstructs surface topography from variations in light intensity across 2D images. |
|
|
3D Scanning (Structure Light and Laser Triangulation [42,43,44,45] TRL 3 | Projects a known light pattern (grid, stripe, laser line) onto a surface and captures deformation via camera to generate a 3D map. |
|
|
LiDAR [46] TRL 8 | Uses pulse timing of reflected laser beams to generate depth maps [47,48]. |
|
|
Time-of-Flight (ToF) Cameras [49,50] TRL 7 | Calculates distance based on the time it takes for a light pulse to reflect off an object. |
|
|
Photogrammetry [51,52] TRL 5 | Builds 3D models from overlapping 2D images via feature matching and triangulation. |
|
|
Terahertz Imaging [53] TRL 3 | Uses electromagnetic waves in the terahertz range to image beneath surfaces. |
|
|
Near-Infrared Computed Tomography [54] TRL 3 | Employs near-infrared light to detect fine-scale surface or near-surface defects. |
|
|
Thermal Imaging TRL 8 | Detects temperature variations on a surface using infrared sensors to identify hotspots, insulation failures, or thermal leaks. |
|
|
Ultrasonic Testing TRL 5 | Transmits high-frequency sound waves through materials and measures the reflections to detect subsurface flaws. |
|
|
Category | Platform | Primary Purpose | Inspection Technologies |
---|---|---|---|
Robotic Arms/Manipulators | Canadarm2 | Robotic arm for ISS construction, cargo handling, EVA support | Visual cameras, assisted astronaut inspection |
Dextre | Dexterous robotic maintenance on ISS | Visual cameras, proximity sensors, VIPIR (inspection tool) | |
Cargo/Utility Spacecraft | RSGS | Geostationary satellite servicing | High resolution camera [75] |
Cygnus | Cargo resupply and inspection of ISS exterior | Mounted optical cameras | |
Autonomous Free-Flyer/ISS Interior Inspection | Astrobee | Autonomous free-flyer for ISS interior inspection | Stereo cameras, LiDAR, IMUs, microphones [66] |
SPHERES | Experimental platform for autonomous formation and navigation | Visual cameras, inertial navigation, relative positioning sensors | |
Dedicated Inspection Tool | VIPIR | High-resolution inspection tool | Zoom camera, borescope camera for detailed views |
Robotic Refueling Mission | Demonstration of remote inspection and servicing | Visual inspection via camera integrated with tools | |
Future/In-Development Platforms | Lunar Gateway (future) | Crew habitat and science platform near the Moon | Planned visual and sensor-based inspection systems |
Archinaut | In-space manufacturing with self-inspection capability | Camera-based visual inspection | |
Small Satellites | SmallSat | Cost-effective platform for various space applications | Video cameras, laser rangefinders, telemetry, photogrammetry [76] |
AM Type | Techniques | Method |
---|---|---|
Binder Jetting (BJT) TRL 5 | Binder jetting (metal, ceramic, composite) | Liquid bonding agent is applied to join layers of powdered materials solidified by curing or sintering |
Direct Energy Deposition (DED) TRL 4 | Direct energy deposition (DED), Electron Beam Freeform Fabrication (EBF3) | Focused thermal energy (laser or electron beam) fuse metal powder or wire as it is deposited layer by layer |
Material Extrusion (MEX) TRL 5 | Fused filament fabrication (FFF), Robocasting, Direct Ink Writing (DIW) | Material is extruded through a nozzle and deposited layer by layer |
Material Jetting (MJT) TRL 5 | Inkjet printing, Photopolymer jetting, Laminated object jetting | Liquid droplets of material are deposited layer by layer solidified when exposed to UV light |
Powder Bed Fusion (PBF) TRL 5 | Selective laser sintering (SLS), Electron beam melting (EBM), Laser powder bed fusion (LPBF) | A laser selectively melts powdered material from a powder bed layer by layer |
Vat Photo-polymerization (VPP) TRL 4 | Stereolithography (SLA), micro-SLA, Digital Light Processing (DLP), Xolography | Liquid photopolymer is cured by light-activated polymerization |
Repair Technology | Techniques | Method |
---|---|---|
Self-Healing Materials TRL 1-6 | Nano-tubules, microcapsules, shape-memory polymers | Embedded healing agents in structures autonomously seal cracks or restore functionality. |
Refueling TRL 1-9 | Docking systems, robotic hoses | Performed by dedicated servicing spacecraft or robotic arms, may require pre-installed ports or modular tanks. |
Refurbishing TRL 1-9 | Hardware swapping, system upgrades | Replacement or enhancement of outdated or degraded subsystems with updated technologies. |
Welding TRL 4 | Laser, electron beam, laser beam, cold welding | Performed by astronauts or robotics arms to rejoin or reinforce damaged structural elements. |
Additive Manufacturing TRL 4-5 | FDM, SLA, WAAM | In situ fabrication of replacement parts or direct material deposition over damaged areas. |
Manual Repair TRL 9 | Specialized EVA tools | Astronauts perform hands-on repairs during spacewalks using task-specific instruments. |
Category | Platform | Primary Purpose | Manufacturing Capabilities | Repair Capabilities |
---|---|---|---|---|
Free-Flying/Autonomous Manufacturing Systems | Archinaut One | In-space construction of structural elements | Robotic AM of large truss structures | Structural repairs via material deposition and robotic assembly |
SpiderFab | On-orbit fabrication of spacecraft components | AM and robotic truss assembly | Integrated structural repair through fabrication systems | |
Robotic Servicers | OSAM-1 | Refueling, servicing, and assembly | Potential integration of manufacturing in future missions | Robotic repair, tool-based servicing, and refueling |
RSGS | Geostationary satellite servicing | Modular approach allows potential addition of AM systems | Robotic arm-based component repairs and upgrades | |
Station/Infrastructure Based Facilities | Lunar Gateway | Deep space logistics and habitation | Potential hosting of AM and ISRU systems in future | Robotic and astronaut-enabled repairs, maintenance modules |
AMF (ISS Additive Manufacturing Facility) | Demonstration and support for in-space AM and repairs | FDM-based printing of tools and parts on ISS | Manual crew repair, robotic arm assisted interventions | |
Crewed Exploration Vehicles | XEV (Exploration Vehicle concepts) | Crew support in cislunar and Mars orbit missions | Mobile printing capabilities for small component fabrication | Tool-assisted EVA repairs, including sealants and patching |
OSAM Technology Focus: | Technologies/Innovations | Strengths | Challenges | Future Directions |
---|---|---|---|---|
Inspection and Fault Detection | In situ systems, SmallSats, visible-light scanning, LIDAR, thermal imaging, ultrasonic testing, telemetry | Provides comprehensive spacecraft integrity data, enhances fault detection capabilities. | Radiation interference limited real-time data processing, harsh space conditions. | AI-driven diagnostics, multisensory fusion, low-power, radiation-resistant sensors for deep space exploration. |
Manufacturing and Repair | Additive Manufacturing (AM), In situ Resource Utilization (ISRU), modular component replacement, autonomous repair robots | Enables on-demand production of parts, reduces Earth-dependence, allows in situ repair and maintenance to extend mission longevity. | Adapting AM to microgravity, high radiation, sourcing ISRU materials; precise and reliable repair in complex conditions. | Space-specific materials, flexible lightweight printing methods, autonomous repair robots capable of addressing structural and subsystem faults. |
Robotic Systems | Servicing robots, refueling robots, satellite repair, debris capture robots, soft robotics, biomimetic features | Essential for servicing, repair, and exploration tasks; biomimetic features enhance grip and adaptability. | Precision, control, and durability in hostile environments; maintaining autonomy in dynamic tasks. | AI for real-time decision-making, biomimetic adhesives, soft robotics for flexibility, advanced autonomous capabilities. |
Category | Challenges | Future Strategies | Research Priorities and Breakthrough Technologies |
---|---|---|---|
Autonomy limitations | Fully autonomous robotic systems are still not fully capable of performing OSAM procedures without human oversight. This limits the efficiency and scalability of OSAM missions. | Autonomy Development: Embedding machine learning algorithms in robotic systems allows for complete autonomy capable of efficient OSAM operations, especially in long-duration missions, or those beyond low Earth orbit (LEO) [259]. | Research: Development of explainable AI for safe decision-making real-time adaptive control under uncertainty. Breakthrough: Integration of autonomous fault detection and self-repairing robotic platforms |
Excessive cost | The cost of deploying robotic systems for servicing, assembly, or manufacturing remains high, which limits economic viability of widespread OSAM applications [260]. | Cost Reduction: The development of more affordable robotic systems, innovative on-orbit manufacturing techniques, and using resources sourced from space (from the Moon and asteroids) gives rise to strategic cost reductions [261,262]. | Research: Miniaturization of servicing payloads; standardized modular interfaces across satellites. Breakthrough: Large-scale additive manufacturing in orbit using space-sourced materials. |
Space environment challenges | The harsh environment of space, including radiation, extreme temperature fluctuation, and space debris pose significant risks in the longevity and reliability of OSAM missions [263]. | Space debris mitigation: Debris removal technologies, advanced shielding against radiation, and robust environmental adaptability is required to endure space debris and extreme conditions [264,265,266]. | Research: Radian-hardened electronics; predictive debris tracking and avoidance. Breakthrough: Self-healing materials and AI-driven debris interception systems. |
Dependence on Earth resources | Space missions heavily rely on resources and materials sent from Earth, creating logistical and cost challenges. | On-orbit manufacturing: Utilizing resources in space to manufacture components in orbit directly lowers the dependence on Earth-based resources creating greater sustainability as well as lowering costs for space operations [262]. | Research: Demonstration of closed-loop in-space recycling; qualification of ISRU-based feedstocks. Breakthrough: Fully autonomous in-space foundries capable of fabricating structural and electrical components. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dremann, K.; Hassan, M.; Davis, I.; Orosa, A.V.; Ninan, N.; Mahajan, A.; Gao, X.; Farhad, S. A Review of Advancements in Inspection, Manufacturing and Repair, and Robots for On-Orbit Servicing, Assembly, and Manufacturing (OSAM) of Spacecraft. Aerospace 2025, 12, 819. https://doi.org/10.3390/aerospace12090819
Dremann K, Hassan M, Davis I, Orosa AV, Ninan N, Mahajan A, Gao X, Farhad S. A Review of Advancements in Inspection, Manufacturing and Repair, and Robots for On-Orbit Servicing, Assembly, and Manufacturing (OSAM) of Spacecraft. Aerospace. 2025; 12(9):819. https://doi.org/10.3390/aerospace12090819
Chicago/Turabian StyleDremann, Kayla, Motaz Hassan, Isabelle Davis, Ashton Vicente Orosa, Natasha Ninan, Ajay Mahajan, Xiaosheng Gao, and Siamak Farhad. 2025. "A Review of Advancements in Inspection, Manufacturing and Repair, and Robots for On-Orbit Servicing, Assembly, and Manufacturing (OSAM) of Spacecraft" Aerospace 12, no. 9: 819. https://doi.org/10.3390/aerospace12090819
APA StyleDremann, K., Hassan, M., Davis, I., Orosa, A. V., Ninan, N., Mahajan, A., Gao, X., & Farhad, S. (2025). A Review of Advancements in Inspection, Manufacturing and Repair, and Robots for On-Orbit Servicing, Assembly, and Manufacturing (OSAM) of Spacecraft. Aerospace, 12(9), 819. https://doi.org/10.3390/aerospace12090819