Mars-On-Orbit Color Image Spectrum Model and Color Restoration
Abstract
1. Introduction
- Unlike models based on three stimulus functions, the color imaging spectral model starts from the radiation energy spectrum of ambient light, A quantitative spectral imaging method has been developed, considering factors such as optical lenses, Bayer filter arrays, and the quantum characteristics of image sensors.
- Unlike subjective indicators based on the three stimulus functions, the color spectrum model proposed in this paper relies only on measurable physical quantities, making it more objective.
- In terms of solving CCM, the least squares method is first used to estimate CCM. Then, the CIE DE 2000 color deviation weight matrix is designed to optimize CCM, effectively reducing color deviation and improving restoration accuracy.
2. Related Works
3. Materials and Methods
3.1. Color Image Spectrum Model
3.1.1. Optical Transmission Model
3.1.2. Photoelectric Conversion Model
3.1.3. Bayer Filter Spectrum Model
3.1.4. Brief Summary
3.2. Deep Space Color Restoration Combined with On-Orbit Spectrum
3.2.1. Deep Space True Color Calculation Module
3.2.2. Color Deviation Iterative Optimization Algorithm
4. Results
4.1. Evaluation Index
4.2. Principal Verification
- Placing the camera in front of the integrating sphere.
- Covering the camera lens with a file.
- Setting the appropriate exposure time.
- Scanning the fixed visible light band with the integrating sphere and filter to test the output response of the four channels.
4.3. Ground Verification Test
4.3.1. Experimental Design
4.3.2. Test Results
4.4. On-Orbit Verification and Results
5. Discussion
6. Conclusions
- Proposed the color image spectrum model to quantitatively describe the color imaging process in deep space environments, solving the problem of how to obtain true color values with the lacking of a color palettes, and providing a theoretical basis for color recovery of color cameras by fusing spectral information.
- Proposed a method for on-orbit joint color restoration of color cameras for deep space exploration, which aims to solve the problem of color bias in remote sensing images caused by the complex operating environment, poor lighting conditions, and the unavailability of color restoration boards in on-orbit conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, F.; Liu, Q.; Wang, H.; Ren, Z.; Zhou, F.; Kang, C. Deep-Space Background Low-Light Image Enhancement Method Based on Multi-Image Fusion. Appl. Sci. 2025, 15, 4837. [Google Scholar] [CrossRef]
- Fan, M.; Lu, W.; Niu, W.; Peng, X.; Yang, Z. A large-scale invariant matching method based on DeepSpace-ScaleNet for small celestial body exploration. Remote Sens. 2022, 14, 6339. [Google Scholar] [CrossRef]
- Li, G.; Xi, B.; He, Y.; Zheng, T.; Li, Y.; Xue, C.; Chanussot, J. Diamond-Unet: A novel semantic segmentation network based on U-Net network and transformer for deep space rock images. IEEE Geosci. Remote. Sens. Lett. 2024, 21, 8002205. [Google Scholar] [CrossRef]
- Chi, W. Prospects of Global Space Science Breakthroughs and China’s Contributions. Bull. Chin. Acad. Sci. 2022, 37, 1050–1065. [Google Scholar]
- Xu, L.; Li, H.; Pei, Z.; Zou, Y.; Wang, C. A brief introduction to the international lunar research station program and the interstellar express mission. Chin. J. Space Sci. 2022, 42, 511–513. [Google Scholar] [CrossRef]
- Suo, J.; Long, H.; Ma, Y.; Zhang, Y.; Liang, Z.; Yan, C.; Zhao, R. Resource-Exploration-Oriented Lunar Rocks Monocular Detection and 3D Pose Estimation. Aerospace 2024, 12, 4. [Google Scholar] [CrossRef]
- Liang, Z.; Long, H.; Zhu, Z.; Cao, Z.; Yi, J.; Ma, Y.; Liu, E.; Zhao, R. High-Precision Disparity Estimation for Lunar Scene Using Optimized Census Transform and Superpixel Refinement. Remote Sens. 2024, 16, 3930. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, J.; Chang, L.; Deng, L.; Li, D.; Si, C. SpaceLight: A Framework for Enhanced On-Orbit Navigation Imagery. Aerospace 2024, 11, 503. [Google Scholar] [CrossRef]
- Frosio, T.; Menaa, N.; Bertreix, P.; Rimlinger, M.; Theis, C. A novel technique for the optimization and reduction of gamma spectroscopy geometry uncertainties. Appl. Radiat. Isot. 2020, 156, 108953. [Google Scholar] [CrossRef]
- Peng, X.; Liu, E.H.; Tian, S.L.; Fang, L.; Zhang, H. Study of high-precision velocimetry technique based on absorption spectrum for deep space exploration. Acta Astronaut. 2022, 199, 327–336. [Google Scholar] [CrossRef]
- Han, M.; Lyu, Z.; Qiu, T.; Xu, M. A review on intelligence dehazing and color restoration for underwater images. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 1820–1832. [Google Scholar] [CrossRef]
- Li, X.; Lu, D.; Pan, Y. Color restoration and image retrieval for Dunhuang fresco preservation. IEEE MultiMedia 2000, 7, 38–42. [Google Scholar] [CrossRef]
- Charrière, R.; Hébert, M.; Trémeau, A.; Destouches, N. Color calibration of an RGB camera mounted in front of a microscope with strong color distortion. Appl. Opt. 2013, 52, 5262–5271. [Google Scholar] [CrossRef]
- Florides, G.A.; Christodoulides, P. The color of the Moon in visible light through a review of published photographs. A paradox? Int. J. Cult. Herit. 2021, 6, 48–62. [Google Scholar]
- Yerramreddy, D.R.; Marasani, J.; Gowtham, P.S.V.; Don, S. Analysis of Image Restoration Techniques on Lunar Surface Images. In Proceedings of the 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 8–10 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- McCord, T.B. Color differences on the lunar surface. J. Geophys. Res. 1969, 74, 3131–3142. [Google Scholar] [CrossRef]
- Bell, J.F., III; Godber, A.; McNair, S.; Caplinger, M.; Maki, J.; Lemmon, M.; Van Beek, J.; Malin, M.; Wellington, D.; Kinch, K.; et al. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving. Earth Space Sci. 2017, 4, 396–452. [Google Scholar]
- Fries, M.D.; Lee, C.; Bhartia, R.; Razzell Hollis, J.; Beegle, L.W.; Uckert, K.; Graff, T.G.; Abbey, W.; Bailey, Z.; Berger, E.L.; et al. The SHERLOC calibration target on the Mars 2020 Perseverance rover: Design, operations, outreach, and future human exploration functions. Space Sci. Rev. 2022, 218, 46. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, D.; Liu, J.; Guo, L.; Xue, B.; Yang, J.; Yang, B.; Wang, X.; Huang, H.; Liu, B.; et al. A reflectance calibration method for Multispectral Camera (MSCam) on the Zhurong rover. Icarus 2022, 387, 115208. [Google Scholar] [CrossRef]
- Zhao, R.J.; Liu, E.H.; Wang, J.; Yu, G.B. A method of color correction for Chang’E-3 satellite camera topography image. J. Astronaut. 2016, 37, 341–347. [Google Scholar] [CrossRef]
- Ren, X.; Li, C.-L.; Liu, J.-J.; Wang, F.-F.; Yang, J.-F.; Liu, E.-H.; Xue, B.; Zhao, R.-J. A method and results of color calibration for the Chang’e-3 terrain camera and panoramic camera. Res. Astron. Astrophys. 2014, 14, 1557. [Google Scholar] [CrossRef]
- Levin, R.L.; Levin, G.V. Solving the color calibration problem of Martian lander images. In Proceedings of the Instruments, Methods, and Missions for Astrobiology VII, San Diego, CA, USA, 3–8 August 2003; SPIE: Bellingham, WA, USA, 2004; Volume 5163, pp. 158–170. [Google Scholar]
- Shi, Z.; Liu, C.; Ren, W.; Shuangli, D.; Zhao, M. Convolutional neural networks for sand dust image color restoration and visibility enhancement. Chin. J. Image Graph 2022, 27, 1493–1508. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, B.; Wu, X.; Zhu, M. Unsupervised low-light image enhancement by extracting structural similarity and color consistency. IEEE Signal Process. Lett. 2022, 29, 997–1001. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, E. An anti-counterfeiting method for printed image by digital halftoning method. In Proceedings of the 2012 5th International Congress on Image and Signal Processing, Agadir, Morocco, 28–30 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 562–566. [Google Scholar]
- Liu, S.; Long, H.; Ma, Y.; Qiao, L.; Liang, Z.; Cao, Z.; Zhao, Y.; Yi, J.; Zhu, Z.; Tang, Y.; et al. Deep-space exploration camera on-orbit white balance calibration based on correlated color temperature interpolation. In Proceedings of the International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024), Guangzhou, China, 1–3 March 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13180, pp. 575–585. [Google Scholar]
- Rodgers, D.H.; Beauchamp, P.M.; Soderblom, L.A.; Brown, R.H.; Chen, G.S.; Lee, M.; Sandel, B.R.; Thomas, D.A.; Benoit, R.T.; Yelle, R.V. Advanced technologies demonstrated by the miniature integrated camera and spectrometer (MICAS) aboard deep space 1. Space Sci. Rev. 2007, 129, 309–326. [Google Scholar] [CrossRef]
- Park, C.; Kang, M.G. Color restoration of RGBN multispectral filter array sensor images based on spectral decomposition. Sensors 2016, 16, 719. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, J.; Xue, B.; Yan, X.; Tao, J. A novel color calibration method of multi-spectral camera based on normalized RGB color model. Results Phys. 2020, 19, 103498. [Google Scholar] [CrossRef]
- Wang, B.; Song, S.; Gong, W.; Cao, X.; He, D.; Chen, Z.; Lin, X.; Li, F.; Sun, J. Color restoration for full-waveform multispectral LiDAR data. Remote Sens. 2020, 12, 593. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, X.; Chen, W.; Yan, W.; Zeng, X.; Tan, X.; Gao, X.; Fu, Q.; Guo, L.; Zhang, Q.; et al. A new approach to color correction and equalization for generating mars global color image mosaics from Tianwen-1 MoRIC images. ISPRS J. Photogramm. Remote Sens. 2025, 225, 291–301. [Google Scholar] [CrossRef]
- He, Z.; Xu, R.; Li, C.; Yuan, L.; Liu, C.; Lv, G.; Jin, J.; Xie, J.; Kong, C.; Li, F.; et al. Mars mineralogical spectrometer (MMS) on the Tianwen-1 mission. Space Sci. Rev. 2021, 217, 27. [Google Scholar] [CrossRef]
- Liu, B.; Ren, X.; Liu, D.; Liu, J.; Zhang, Q.; Huang, H.; Xu, R.; Wang, R.; Liu, C.; He, Z.; et al. Ground Validation Experiment and Spectral Detection Capability Evaluation of Mars Mineralogical Spectrometer (MMS) Aboard HX-1 Orbiter. Space Sci. Rev. 2022, 218, 1. [Google Scholar] [CrossRef]
- Caporale, A.G.; Vingiani, S.; Palladino, M.; El-Nakhel, C.; Duri, L.G.; Pannico, A.; Rouphael, Y.; De Pascale, S.; Adamo, P. Geo-mineralogical characterisation of Mars simulant MMS-1 and appraisal of substrate physico-chemical properties and crop performance obtained with variable green compost amendment rates. Sci. Total Environ. 2020, 720, 137543. [Google Scholar] [CrossRef]
- Bell III, J.; Wolff, M.; Malin, M.; Calvin, W.; Cantor, B.; Caplinger, M.; Clancy, R.; Edgett, K.; Edwards, L.; Fahle, J.; et al. Mars reconnaissance orbiter Mars color imager (MARCI): Instrument description, calibration, and performance. J. Geophys. Res. Planets 2009, 114. [Google Scholar] [CrossRef]
- Luo, M.R. CIE 2000 color difference formula: CIEDE2000. In Proceedings of the 9th Congress of the International Colour Association, Rochester, NY, USA, 24–29 June 2001; SPIE: Bellingham, WA, USA, 2002; Volume 4421, pp. 554–559. [Google Scholar]
- Banić, N.; Koščević, K.; Subašić, M.; Lončarić, S. The past and the present of the color checker dataset misuse. In Proceedings of the 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, 23–25 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 366–371. [Google Scholar]
- Berger, A.; Strocka, D. Quantitative assessment of artificial light sources for the best fit to standard illuminant D65. Appl. Opt. 1973, 12, 338–348. [Google Scholar] [CrossRef] [PubMed]
Quantum Efficiency R% | Quantum Efficiency % | Quantum Efficiency % | Quantum Efficiency B% | |
---|---|---|---|---|
350 | 0.56 | 1.5 | 1.5 | 1.41 |
400 | 0.38 | 0.61 | 0.62 | 1.34 |
450 | 2.03 | 12.38 | 12.55 | 61.34 |
500 | 4.9 | 63.38 | 63.56 | 50.82 |
550 | 9.27 | 91.61 | 91.15 | 14.81 |
600 | 68.87 | 28.56 | 27.96 | 7.97 |
650 | 81.96 | 15.76 | 15.47 | 9.65 |
700 | 62.82 | 28.93 | 28.37 | 13.95 |
750 | 62.09 | 38.16 | 37.44 | 14.24 |
800 | 0.54 | 0.47 | 0.46 | 0.39 |
850 | 0.02 | 0.01 | 0.01 | 0.01 |
Pre-Restoration | East Square Method | First, Iteration | Our Method | |
---|---|---|---|---|
Swatch 1 | 6.46 | 5.78 | 8.23 | 2.73 |
Swatch 2 | 4.76 | 2.93 | 6.54 | 1.68 |
Swatch 3 | 5.18 | 3.15 | 2.77 | 2.96 |
Swatch 4 | 9.54 | 9.37 | 7.67 | 4.74 |
Swatch 5 | 16.12 | 5.55 | 2.03 | 1.86 |
Swatch 6 | 10.83 | 7.21 | 6.85 | 6.73 |
Swatch 7 | 2.36 | 3.05 | 7.7 | 5.09 |
Swatch 8 | 14.47 | 6.69 | 5.91 | 2.34 |
Swatch 9 | 11.27 | 7.03 | 4.67 | 2.85 |
Swatch 10 | 38.35 | 37.93 | 36.21 | 23.56 |
Swatch 11 | 2.91 | 2.3 | 3.35 | 3.74 |
Swatch 12 | 7.88 | 8.79 | 7.18 | 7.25 |
Swatch 13 | 14.25 | 11.14 | 9.87 | 7.71 |
Swatch 14 | 17.79 | 13.44 | 13.22 | 12.45 |
Swatch 15 | 10.77 | 9.26 | 8.3 | 7.01 |
Swatch 16 | 10.64 | 8.94 | 6.76 | 5.13 |
Swatch 17 | 11.27 | 8.89 | 6.48 | 3.55 |
Swatch 18 | 7.62 | 1.15 | 1.96 | 6.02 |
Swatch 19 | 39.88 | 40.14 | 33.53 | 33.23 |
Swatch 20 | 38.34 | 38.69 | 32.76 | 32.54 |
Swatch 21 | 38.4 | 38.73 | 29.93 | 25.32 |
Swatch 22 | 34.74 | 35.11 | 22.15 | 30.35 |
Swatch 23 | 28.47 | 28.97 | 10.1 | 21.38 |
Swatch 24 | 28.28 | 28.96 | 20.2 | 22.36 |
Average | 17.11 | 15.13 | 12.28 | 11.36 |
Mars Area | Pre-Restoration | Traditional Ground Method | Our Proposed Method |
---|---|---|---|
South Crater | 30.17 | 11.08 | 8.41 |
Malea Planum | 29.91 | 11.41 | 8.57 |
Huygens Crater | 28.61 | 10.45 | 8.22 |
Arabia Terra | 30.91 | 11.3 | 8.54 |
Average color deviation | 29.9 | 11.06 | 8.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, H.; Liu, S.; Ma, Y.; Zeng, J.; Lu, K.; Zhao, R. Mars-On-Orbit Color Image Spectrum Model and Color Restoration. Aerospace 2025, 12, 696. https://doi.org/10.3390/aerospace12080696
Long H, Liu S, Ma Y, Zeng J, Lu K, Zhao R. Mars-On-Orbit Color Image Spectrum Model and Color Restoration. Aerospace. 2025; 12(8):696. https://doi.org/10.3390/aerospace12080696
Chicago/Turabian StyleLong, Hongfeng, Sainan Liu, Yuebo Ma, Junzhe Zeng, Kaili Lu, and Rujin Zhao. 2025. "Mars-On-Orbit Color Image Spectrum Model and Color Restoration" Aerospace 12, no. 8: 696. https://doi.org/10.3390/aerospace12080696
APA StyleLong, H., Liu, S., Ma, Y., Zeng, J., Lu, K., & Zhao, R. (2025). Mars-On-Orbit Color Image Spectrum Model and Color Restoration. Aerospace, 12(8), 696. https://doi.org/10.3390/aerospace12080696