An Overview of CubeSat Missions and Applications
Abstract
:1. Introduction
2. The Success of CubeSats and Its Enabling Factors
2.1. The Reduction of Launch Costs and Rideshare Opportunities
- Primary payload: The term primary payload refers to the satellite or other type of spacecraft for the launch of which the launch is procured. It is usually the largest and most expensive of the payloads and it is the one that usually dictates the launch profile, final orbit, as well as the integration procedures to a large degree. The primary payload is also the payload that usually separates first from the payload adapter of the launch vehicle.
- Secondary payload: The term secondary payload refers to satellites that are usually smaller in size compared to the primary payload and are parts of independent missions that have little to no impact on the primary payload.
- Tertiary payload: The term tertiary payload refers to very small satellites that in no way interfere with the mission primary payload.
2.2. The Miniaturization of Electronics and the Emergence of COTS Solutions
2.3. Standardization
- Structural Standardization: The Poly-PicoSatellite Orbital Deployer (P-POD) system, developed by Cal Poly San Luis Obispo and NASA, which allows CubeSats to be deployed safely and reliably into space [28]. This standardization ensures compatibility with a variety of launch vehicles, reducing integration complexity and costs. Figure 5a presents an example of the P-POD system.
- Electronic Standardization: While no strict electronic standard exists, the PC/104 form factor has emerged as the de facto industry standard for CubeSat avionics [29]. PC/104 components are designed to fit within the limited internal volume of CubeSats while maximizing available space. Their stack-through connectors facilitate the quick and easy assembly of complex electronic stacks that run the length of the satellite. An example of a typical PC/104 electronics board, such as the ones utilized in cubesat manufacturing, is given in Figure 5b.
- Battery Standardization: Similarly, in terms of battery storage, CubeSat designers commonly utilize COTS cylindrical 18650 batteries to create complete battery packs for the satellite’s EPS in a cost-effective manner. Common material choices used for the manufacturing of these batteries are Lithium-Ion (Li-Ion), Lithium-polymer (Li-pol), Lithium-Chloride (Li-Cl), Nickel-Cadmium (Ni-Cd), and Nickel-metal hydride (Ni-MH) [30].
- Communication Standardization: CubeSats utilize a range of established communication protocols, including the Serial Peripheral Interface (SPI), Controller Area Network Bus (CAN Bus), Inter-Integrated Circuit (I2C), Universal Asynchronous Receiver-Transmitter (UART), SpaceWire, and Ethernet. These standard protocols enable seamless communication between onboard subsystems and ground stations, improving efficiency and interoperability.
2.4. Support from Space Agencies and Research Institutions
2.5. A New Business Model
3. CubeSats as Earth Observation and Earth Science Platforms
3.1. The Role of CubeSats in Earth Observation Missions
3.2. The Role of CubeSats in Earth Science Missions
4. The Use of CubeSats as Telecommunication and Asset- Monitoring Platforms
4.1. Radio Communication CubeSat Technologies
4.2. Optical Communication CubeSat Missions and Applications
5. CubeSats as Astronomical Exploration and Research Enabling Platforms
5.1. UV/VIS/IR Telescopes
5.2. X-Ray Spectrometers
5.3. Gamma-Ray Burst Detectors
5.4. Particle Detectors
5.5. Radio Interferometers
6. CubeSats as Platforms for Chemical and Biological Experimentation in Space
7. CubeSats as Deep-Space Exploration Platforms
7.1. The Role of CubeSats in Lunar Exploration Missions
7.2. CubeSat Missions for Planetary Exploration
7.3. CubeSats as Asteroid Exploration Probes
8. The Use of CubeSats in Novel Technology Demonstration Missions
8.1. Propulsion and Maneuvering Demonstration
8.2. Communications, AI, and Automation Technology Demonstration
8.3. Space Environment and Radiation Testing
8.4. Quantum Technology Demonstration
8.5. Novel Mission Architectures and In-Orbit Demonstration
9. Review Conclusions and Discussion
9.1. CubeSats in Earth Observation and Earth Science Missions
9.2. The Role of CubeSats in the Telecommunication and Asset-Monitoring Fields
9.3. CubeSat Missions Dedicated to Astronomical and Heliophysics Research
9.4. Chemical and Biological Experimentation in Space Using CubeSat Platforms
9.5. The Utilization of CubeSats in Deep-Space Exploration Missions
9.6. CubeSats as Technology Demonstration Platforms
9.7. CDS Evolution and Regulatory Considerations
9.8. CubeSat Platform Limitations and Intrinsic Challenges
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
3GPP | 3rd Generation Partnership Project |
I2C | Inter-Integrated Circuit |
ABS | Acrylonitrile Butadiene Styrene |
ADS-B | Automatic Dependent Surveillance–Broadcast |
AI | Artificial Intelligence |
AIS | Automatic Identification System |
AOCS | Attitude and Orbit Control System |
ASI | Agenzia Spaziale Italiana |
ATF | Along-Track Formation |
CAN Bus | Controller Area Network Bus |
CDS | CubeSat Design Specification |
CLSI | CubeSat Launch Initiative |
CMOS | Complementary Metal Oxide Semiconductor |
COMM | Communication System |
COTS | Commercial of the Shelf |
CPU | Central Processing Unit |
CT | Computed Tomography |
CZT | Cadmium Zinc Telluride |
EPS | Electrical Power System |
ESA | European Space Agency |
ESPA | Evolved Expendable Launch Vehicle Secondary Payload Adapter |
FCC | Federal Communications Commission |
FPGA | Field-Programmable Gate Arrays |
FUV | Far-Ultraviolet |
GFP | Green Fluorescent Protein |
GIRO | Global Ionospheric Radio Observatory |
GNSS | Global Navigation Satellite System |
GNSS-R | Global Navigation Satellite System Reflectometry |
GNSS-RO | Global Navigation Satellite System Radio Occultation |
GNC | Guidance, Navigation and Control |
GPS | Global Positioning System |
GSD | Ground Sampling Distance |
GSFC | Goddard Space Flight Center |
GPU | Graphic Processing Unit |
GRBs | Gamma-Ray Bursts |
I2C | Inter-Integrated Circuit |
IADC | Inter-Agency Space Debris Coordination Committee |
IDM | Ion Drift Meter |
IEEE | Institute of Electrical and Electronics Engineers |
INMS | Ion and Neutral Mass Spectrometers |
INTA | Spanish Institute of Aerospace Technology |
IOV | In-Orbit Validation |
IOD | In-Orbit Demonstration |
IR | Infrared |
ISL | Inter-Satellite Link |
ISR | Incoherent Scatter Radar |
ISS | International Space Station |
ITU | International Telecommunication Union |
JAXA | Japan Aerospace Exploration Agency |
JEM | Japanese Experiment Module |
JPL | Jet Propulsion Laboratory |
J-SSOD | JEM Small Satellite Orbital Deployer |
LANL | Los Alamos National Laboratory |
LEO | Low Earth Orbit |
LET | Linear Energy Transfer |
LIDAR | Light Detection And Ranging |
LVF | Linear Variable Filter |
LWIR | Long-Wave Infrared |
MEO | Medium Earth Orbit |
MIMO | Multiple-Input-Multiple-Output |
MIT | Massachusetts Institute of Technology |
MSFC | Marshall Space Flight Center |
MWIR | Medium-Wave Infrared |
NEA | Near-Earth Asteroid |
NIR | Near-Infrared |
NRCSD | Nanoracks CubeSat Deployer |
NRHO | Near-Rectilinear Halo Orbit |
NT | Non-Terrestrial |
NUV | Near-Ultraviolet |
OBDH | Onboard Data Handling |
PEI/PC | Polyetherimide-polycarbonate |
PLA | Polylactic acid |
PNT | Positioning, Navigation and Timing |
P-POD | Poly-PicoSatellite Orbital Deployer |
PSDS3 | Planetary Science Deep Space SmallSat Studies |
RAAF | Royal Australian Air-Force |
RGB | Red-Green-Blue |
RPA | Retarding Potential Analyzer |
RPO | Rendezvous and Proximity Operations |
SAR | Synthetic Aperture Radar |
SDR | Software Defined Radio |
SEPs | Solar Energetic Particles |
SESLO | Space Environment Survivability of Living Organisms |
SEVO | Space Environment Viability of Organics |
SIMPLEx | Small, Innovative Missions for PLanetary Exploration |
SHS | Spatial Heterodyne Spectrometers |
SLS | Space Launch System |
SPI | Serial Peripheral Interface |
SSA | Space Situational Awareness |
STRU | Structure |
SWIR | Short-Wave Infrared |
TCS | Thermal Control System |
TIR | Thermal Infrared |
TIRS | Thermal Infrared Spectrometer |
TRL | Technology Readiness Level |
TT&C | Telemetry, Tracking & Command |
U | Unit (Basic CubeSat form factor) |
UART | Universal Asynchronous Receiver-Transmitter |
UHF | Ultra-High Frequency |
ULA | United Launch Alliance |
UN COPUOS | United Nations Committee on the Peaceful Uses of Outer Space |
US | United States |
UV | Ultraviolet |
VHF | Very-High Frequency |
VIS | Visible |
VLF | Very-Low Frequency |
VNIR | Visible and Near-Infrared |
VPU | Vision Processing Unit |
VUV | Vacuum Ultraviolet |
References
- Maini, A.K.; Agrawal, V. Introduction to Satellites and Their Applications. In Satellite Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; Chapter 1; pp. 1–31. [Google Scholar] [CrossRef]
- Konecny, G. Small Satellites—A Tool for Earth Observation. In Proceedings of the 20th ISPRS Congress, Commission 4, Istanbul, Turkey, 12–23 July 2004; pp. 580–582. Available online: https://www.isprs.org/proceedings/XXXV/congress/comm4/comm4.aspx (accessed on 12 January 2025).
- California Polytechnic State University. The CubeSat Program: CubeSat Design Specification, Rev. 14.1. Available online: https://www.cubesat.org/ (accessed on 5 July 2024).
- Wallops Supports Small Spacecraft Hitching Ride with Landsat 9. Available online: https://www.nasa.gov/centers-and-facilities/wallops/wallops-supports-small-spacecraft-hitching-ride-with-landsat-9/ (accessed on 12 January 2025).
- Nanoracks. CubeSat Services. Available online: https://nanoracks.com/wp-content/uploads/Cubesat-Services.pdf (accessed on 7 July 2024).
- JEM Small Satellite Orbital Deployer (J-SSOD). Available online: https://humans-in-space.jaxa.jp/en/biz-lab/experiment/facility/ef/jssod/ (accessed on 12 January 2025).
- Landsat 9 Small Satellite Deployment. Available online: https://images.nasa.gov/details/KSC-20210624-PH-JNN01_0003 (accessed on 12 January 2025).
- Libre Space Foundation. UPsat. Available online: https://libre.space/projects/upsat/ (accessed on 6 July 2024).
- Ippolito, L.J., Jr. Satellite Subsystems. In Satellite Communications Systems Engineering; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2017; pp. 35–48. [Google Scholar]
- Ampatzoglou, A.; Kostopoulos, V. Design, Analysis, Optimization, Manufacturing, and Testing of a 2U Cubesat. Int. J. Aerosp. Eng. 2018, 2018, 9724263. [Google Scholar] [CrossRef]
- NASA. Artemis I. Available online: https://www.nasa.gov/reference/artemis-i/ (accessed on 10 July 2024).
- Blackwell, W.J.; Braun, S.; Zavodsky, B.; Velden, C.; Greenwald, T.; Herndon, D.; Bennartz, R.; DeMaria, M.; Chirokova, G.; Atlas, R.; et al. Overview of the NASA TROPICS CubeSat Constellation Mission. In Proceedings of SPIE 10769, CubeSats and NanoSats for Remote Sensing II; Pagano, T.S., Norton, C.D., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2018; p. 1076908. [Google Scholar] [CrossRef]
- NASA. NASA Selects CubeSat, SmallSat Mission Concept Studies. Available online: https://www.jpl.nasa.gov/news/nasa-selects-cubesat-smallsat-mission-concept-studies/ (accessed on 10 July 2024).
- Ledkov, A.; Aslanov, V. Hybrid Electrostatic Ion Beam Shepherd Schemes for Active Space Debris Removal from GEO to Disposal Orbit. Astrodynamics 2025, 9, 273–288. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Su, J.; Li, J.; Xu, M.; Bai, S. Relative Orbit Transfer Using Constant-Vector Thrust Acceleration. Acta Astronaut. 2025, 229, 715–735. [Google Scholar] [CrossRef]
- Smith, T.K.; Akagi, J.; Droge, G. Model Predictive Control for Formation Flying Based on D’Amico Relative Orbital Elements. Astrodynamics 2025, 9, 143–163. [Google Scholar] [CrossRef]
- Kulu, E. Nanosats Database. Figures. Available online: https://www.nanosats.eu/#figures (accessed on 13 January 2025).
- Mathieu, E.; Rosado, P.; Roser, M. Space Exploration and Satellites. Our World in Data. 2022. Available online: https://ourworldindata.org/space-exploration-satellites (accessed on 13 January 2025).
- Mendoza-Hill, A. SMD Rideshare 101; NASA Science Mission Directorate: Washington, DC, USA, 2023. Available online: https://www.nasa.gov/wp-content/uploads/2023/09/rideshare-101-final.pdf (accessed on 13 January 2025).
- SpaceX. Transporter-1 Mission. 2021. Available online: https://www.spacex.com/launches/transporter-1-mission/ (accessed on 13 January 2025).
- SpaceX. SmallSat Rideshare Program. 2025. Available online: https://www.spacex.com/rideshare/ (accessed on 13 January 2025).
- Rocket Lab. In Focus Mission Overview. 2020. Available online: https://www.rocketlabusa.com/missions/missions-launched/in-focus/ (accessed on 13 January 2025).
- European Space Agency (ESA). Vega Return to Flight Proves New Rideshare Service. 2020. Available online: https://www.esa.int/Enabling_Support/Space_Transportation/Vega/Vega_return_to_flight_proves_new_rideshare_service (accessed on 13 January 2025).
- Grönland, T.-A.; Rangsten, P.; Nese, M.; Lang, M. Miniaturization of Components and Systems for Space Using MEMS-Technology. Acta Astronaut. 2007, 61, 228–233. [Google Scholar] [CrossRef]
- Cadence PCB Solutions. Miniaturization of Satellite Technology Advancements. 2024. Available online: https://resources.pcb.cadence.com/blog/2024-miniaturization-of-satellite-technology-advancements (accessed on 13 January 2025).
- Kongsberg NanoAvionics. Mission Services. Available online: https://nanoavionics.com/mission-services/ (accessed on 13 January 2025).
- Poghosyan, A.; Golkar, A. CubeSat Evolution: Analyzing CubeSat Capabilities for Conducting Science Missions. Prog. Aerosp. Sci. 2017, 88, 59–83. [Google Scholar] [CrossRef]
- Puig-Suari, J.; Schoos, J.; Turner, C.; Wagner, T.; Connolly, R.; Block, R.P. CubeSat Developments at Cal Poly: The Standard Deployer and PolySat. In Small Payloads in Space, Proceedings of the SPIE Conference, San Diego, CA, USA, 30 July 2000; Horais, B.J., Twiggs, R.J., Eds.; SPIE: Bellingham, WA, USA, 2000; Volume 4136, pp. 72–78. [Google Scholar] [CrossRef]
- PC/104 Specification; Version 2.6; PC/104 Embedded Consortium: Sacramento, CA, USA, 2008; Available online: https://pc104.org/wp-content/uploads/2015/02/PC104_Spec_v2_6.pdf (accessed on 15 June 2025).
- Knap, V.; Vestergaard, L.K.; Stroe, D.-I. A Review of Battery Technology in CubeSats and Small Satellite Solutions. Energies 2020, 13, 4097. [Google Scholar] [CrossRef]
- Wikipedia Contributors. CSSWE CubeSat and PPOD Prior to Integration. Available online: https://en.wikipedia.org/wiki/CubeSat#/media/File:CSSWE_CubeSat_and_PPOD_prior_to_integration.png (accessed on 7 February 2025).
- Wikipedia Contributors. PC/104. Wikipedia, The Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/PC/104 (accessed on 13 January 2025).
- National Aeronautics and Space Administration (NASA). CubeSat Launch Initiative Introduction. Available online: https://www.nasa.gov/cubesat-launch-initiative-introduction/ (accessed on 13 January 2025).
- European Space Agency (ESA). About Fly Your Satellite! Available online: https://www.esa.int/Education/CubeSats_-_Fly_Your_Satellite/About_Fly_Your_Satellite! (accessed on 13 January 2025).
- National Aeronautics and Space Administration (NASA). Small Innovative Missions for Planetary Exploration (SIMPLEx). Available online: https://soma.larc.nasa.gov/simplex/ (accessed on 13 January 2025).
- ESA. Get Your Satellite Flight Ticket. Available online: https://www.esa.int/Enabling_Support/Space_Transportation/Boost/Get_your_satellite_flight_ticket (accessed on 6 May 2025).
- European Commission: Defence Industry and Space. (IOD / IOV) In-Orbit Demonstration/In-Orbit Validation. Available online: https://defence-industry-space.ec.europa.eu/eu-space/research-development-and-innovation/orbit-demonstration-and-validation-iodiov_en (accessed on 6 May 2025).
- JAXA. Innovative Satellite Technology Demonstration Program. Available online: https://www.kenkai.jaxa.jp/eng/research/innovative/innovative.html (accessed on 10 July 2024).
- Space-π. Research and Educational Project Space-π. Available online: https://en.spacepi.space/about/ (accessed on 2 June 2025).
- Indian Space Research Organisation (ISRO). Official Website. Available online: https://www.isro.gov.in (accessed on 2 June 2025).
- China National Space Administration (CNSA). Official Website. Available online: https://www.cnsa.gov.cn/english/index.html (accessed on 2 June 2025).
- Golkar, A.; Salado, A. Definition of New Space—Expert Survey Results and Key Technology Trends. IEEE J. Miniaturization Air Space Syst. 2021, 2, 2–9. [Google Scholar] [CrossRef]
- European Union Agency for the Space Programme (EUSPA). What Is Earth Observation? Available online: https://www.euspa.europa.eu/eu-space-programme/copernicus/what-Earth-observation (accessed on 15 October 2024).
- Japan Aerospace Exploration Agency (JAXA). Earth Observation Satellites. Available online: https://earth.jaxa.jp/en/eo-knowledge/eosatellite-type/index.html (accessed on 15 October 2024).
- CAST Navigation. GNSS in Earth Science Research: GNSS-RO, GNSS-R, and GNSS-GR. Available online: https://castnav.com/gnss-in-earth-science-research-gnss-ro-gnss-r-and-gnss-gr/ (accessed on 14 October 2024).
- Freeman, A.; Malphrus, B.K.; Staehle, R. CubeSat Science Instruments. In Cubesat Handbook; Cappelletti, C., Battistini, S., Malphrus, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 67–83. [Google Scholar] [CrossRef]
- Kulu, E. Nanosats Database. CubeSat Instruments List. Available online: https://www.nanosats.eu/tables#instruments (accessed on 15 October 2024).
- Simera Sense. Camera Products. Available online: https://simera-sense.com/cameras/ (accessed on 15 April 2025).
- Dragonfly Aerospace. Cubesat Cameras Product Information. Available online: https://dragonflyaerospace.com/products/ (accessed on 15 October 2024).
- Dragonfly Aerospace. Chameleon SWIR Product Information. Available online: https://dragonflyaerospace.com/products/chameleon-swir/ (accessed on 15 October 2024).
- Satlantis. Space Cameras Product Information. Available online: https://www.satlantis.com/space-cameras/ (accessed on 15 October 2024).
- ThothX (ARG2). Argus IR Spectrometers. Available online: https://www.thothx.com/technology/argus (accessed on 15 October 2024).
- Rincón-Urbina, S.R.; Cárdenas-García, J.M.; Pirazán-Villanueva, K.N.; Acero-Niño, I.F.; Hurtado-Velasco, R.H.; Cortés-García, E.D. Critical Design of the FACSAT-2 Mission CubeSat for the Observation and Analysis of the Colombian Territory. Revista UIS Ingenierías 2023, 22, 69–86. [Google Scholar] [CrossRef]
- Indian Space Research Organisation (ISRO). SATHYABAMASAT. Available online: https://www.isro.gov.in/SATHYABAMASAT.html (accessed on 2 June 2025).
- Krebs, G.D. SathyabamaSat (SB Sat). Gunter’s Space Page. Available online: https://space.skyrocket.de/doc_sdat/sathyabamasat.htm (accessed on 2 June 2025).
- Sputnix. Satellites|Launched Missions|OrbiCraft-Zorkiy. Available online: https://sputnix.ru/en/satellites-sputnix/in-orbit/cubesat-6u (accessed on 2 June 2025).
- Kulu, E. Nanosats Database. OrbiCraft-Zorkiy Spacecraft. Available online: https://www.nanosats.eu/sat/orbicraft-zorkiy (accessed on 2 June 2025).
- Sputnix. Satellites|Launched Missions|Zorkiy-2M. Available online: https://sputnix.ru/en/satellites-sputnix/in-orbit/zorkij-2m (accessed on 2 June 2025).
- Kulu, E. Nanosats Database. Zorkiy-2M Spacecraft. Available online: https://www.nanosats.eu/sat/zorkiy-2m (accessed on 2 June 2025).
- Satlantis. HORACIO Successfully Launched. Available online: https://www.satlantis.com/horacio-successfully-launched/ (accessed on 9 October 2024).
- eoPortal. ANSER (Advanced Nanosatellite Systems for Earth-Observation Research) Satellite Mission. Available online: https://www.eoportal.org/satellite-missions/anser (accessed on 9 October 2024).
- European Space Agency (ESA). Vega’s Fuel-Free CubeSats to Keep Formation with Wings. Available online: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Vega_s_fuel-free_CubeSats_to_keep_formation_with_wings (accessed on 9 October 2024).
- Sánchez-Sevilleja, S.; Poyatos, D.; Masa-Campos, J.L.; Aragón, V.M.; Rodríguez, J.A.; Santiago, A. Design, Development, and Qualification of a Broadband Compact S-Band Antenna for a CubeSat Constellation. Sensors 2025, 25, 1237. [Google Scholar] [CrossRef]
- Kim, H.; Oghim, S.; Mun, M.; Bang, H. A Scheduling Optimization Using Greedy Knapsack Algorithm for RANDEV CubeSat Communication and Observation Missions Analyzed with MBSE Activity Diagram. In Proceedings of the Accelerating Space Commerce, Exploration, and New Discovery Conference (ASCEND 2020), Virtual Event, 16–19 November 2020; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020. [Google Scholar] [CrossRef]
- OroraTech. Forest-1 Mission Success: A Giant Leap for OroraTech. Available online: https://ororatech.com/forest-1-mission-success-a-giant-leap-for-ororatech/ (accessed on 13 October 2024).
- Fernandes, D.R.; Seifert, M. Towards a Constellation of TIR Sensors for Wildfire Detection: First Results of FOREST-1. In Proceedings of the VH-RODA 2022 Workshop, Frascati (Rome), Italy, 7–10 November 2022; Available online: https://earth.esa.int/eogateway/documents/20142/4139742/2.07_VH-RODA%202022%20-%20Thermal-IR%20Wildfire%20detection%20-%20DRFernandes.pdf (accessed on 13 October 2024).
- Spire Global. Leading Wildfire Monitoring Provider OroraTech Partners with Spire to Launch First Satellite in 2021. Press Release. Available online: https://spire.com/press-release/leading-wildfire-monitoring-provider-ororatech-partners-with-spire-to-launch-first-satellite-in-2021/ (accessed on 13 October 2024).
- OroraTech. Countdown to Liftoff: Retracing the FOREST-2 Thermal Sensor Launch into Orbit. Available online: https://ororatech.com/resources/news-blog/countdown-to-liftoff-retracing-the-forest-2-thermal-sensor-launch-into-orbit (accessed on 15 October 2024).
- Miles, A.; Maranto, D.; Xu, S.; Liang, R.; Li, Y.D.; Rock, J.; Imrit, A.A.; Kou, M.; Fatima, A.; Kasum, A.; et al. FINCH: A Blueprint for Accessible and Scientifically Valuable Remote Sensing Missions. In Proceedings of the 36th Annual Small Satellite Conference, Logan, UT, USA, 6–11 August 2022; Utah State University: Logan, UT, USA, 2022. Paper ID: SSC22-WKVII-04. Available online: https://digitalcommons.usu.edu/smallsat/2022/all2022/88/ (accessed on 15 October 2024).
- European Space Agency (ESA). Technology CubeSats | VULCAIN. Available online: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Technology_CubeSats/VULCAIN (accessed on 15 October 2024).
- Buongiorno, M.F.; Lavagna, M.R.; Labate, D.; Tudor, S.V.; Masini, A.; De Carlo, P.; Romaniello, V.; Silvestri, M.; Pirat, C. VULCAIN: A CubeSat Mission for Monitoring Volcanoes and Active Thermal Areas. In Proceedings of the IGARSS 2023—IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 265–267. [Google Scholar] [CrossRef]
- Planet Labs PBC. Planet to Launch 36 SuperDove Satellites with SpaceX. Available online: https://www.planet.com/pulse/planet-to-launch-36-superdove-satellites-with-spacex/ (accessed on 9 October 2024).
- Gutierrez Ahumada, J.A.; Doerksen, K.; Zeller, S. Automated Fleet Commissioning Workflows at Planet. In Proceedings of the 35th Annual Small Satellite Conference, Logan, UT, USA, 7–12 August 2021; Paper ID: SSC1-XII-04. Available online: https://digitalcommons.usu.edu/smallsat/2021/all2021/214/ (accessed on 9 October 2024).
- Kulu, E. Nanosats Database. Dove Flock Satellite Constellation. Available online: https://www.nanosats.eu/sat/dove-flock (accessed on 9 October 2024).
- OroraTech. OroraTech Launches FOREST-3 with SpaceX: Their Latest Pioneering Thermal Satellite for Wildfire Detection. Available online: https://ororatech.com/resources/news-blog/ororatech-launches-forest-3-with-spacex-their-latest-pioneering-thermal-satellite-for-wildfire-detection (accessed on 14 April 2025).
- OroraTech. OroraTech Receives inCubed Co-Funding for Wildfire Monitoring Constellation. Available online: https://ororatech.com/ororatech-receives-incubed-co-funding/ (accessed on 14 April 2025).
- SpaceWatch Global. OroraTech Accelerates Deployment of Its Thermal Satellite Constellation. Available online: https://spacewatch.global/2022/10/ororatech-accelerates-deployment-of-its-thermal-satellite-constellation/ (accessed on 14 April 2025).
- OroraTech. OroraTech Launches World’s First Satellite Constellation for Wildfire Detection and Data Accumulation. Available online: https://ororatech.com/resources/news-blog/ororatech-launches-world-s-first-satellite-constellation-for-wildfire-detection-and-data-accumulation (accessed on 14 April 2025).
- Carreno-Luengo, H.; Camps, A.; Via, P.; Munoz, J.F.; Cortiella, A.; Vidal, D.; Jané, J.; Catarino, N.; Hagenfeldt, M.; Palomo, P.; et al. 3Cat-2—An Experimental Nanosatellite for GNSS-R Earth Observation: Mission Concept and Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4540–4551. [Google Scholar] [CrossRef]
- Pirat, C.; Hömer, A.; Dielacher, A.; Wenger, M.; Moser-Moritsch, M.; Tscherne, C.; Walker, R. Preliminary In-Orbit Results of the PRETTY ESA Technology CubeSat. In Proceedings of the Small Satellites Systems and Services Symposium (4S 2024), Palma de Mallorca, Spain, 26–30 May 2024; SPIE: Bellingham, WA, USA, 2025; Volume 13546, p. 30. [Google Scholar] [CrossRef]
- Cutler, J.W.; Bahcivan, H. Radio Aurora Explorer: A Mission Overview. J. Spacecr. Rockets 2014, 51, 39–47. [Google Scholar] [CrossRef]
- Fish, C.S.; Swenson, C.M.; Crowley, G.; Barjatya, A.; Neilsen, T.; Gunther, J.; Azeem, I.; Pilinski, M.; Wilder, R.; Allen, D.; et al. Design, Development, Implementation, and On-orbit Performance of the Dynamic Ionosphere CubeSat Experiment Mission. Space Sci. Rev. 2014, 181, 61–120. [Google Scholar] [CrossRef]
- Imperial College London. Space and Atmospheric Physics Research Group. Space Missions: TRIO-CINEMA. Available online: https://www.imperial.ac.uk/space-and-atmospheric-physics/research/missions-and-projects/space-missions/trio-cinema/ (accessed on 2 June 2025).
- Stromberg, E.; Crowley, G.; Azeem, I.; Fish, C.; Frazier, C.; Reynolds, A.; Swenson, A.; Tash, T.; Gleason, R.; Blay, R.; et al. Scintillation Observations and Response of The Ionosphere to Electrodynamics (SORTIE) Mission First Light. In Proceedings of the 34th Annual Small Satellite Conference, Logan, UT, USA, 1–6 August 2020. Paper ID: SSC20-WKVII-09. [Google Scholar]
- Francisco, C.; Henriques, R.; Barbosa, S. A Review on CubeSat Missions for Ionospheric Science. Aerospace 2023, 10, 622. [Google Scholar] [CrossRef]
- Zhang, K.; Fu, E.; Wu, F.; Xu, X.; Rea, A.; Kuleshov, Y.; Biadeglgne, B. GNSS Radio Occultation for Weather and Climate Research: A Case Study in Australia. In Proceedings of the International Global Navigation Satellite Systems (IGNSS) Symposium 2007, Sydney, Australia, 4–6 December 2007; University of New South Wales: Sydney, Australia, 2007. [Google Scholar]
- Zhran, M. An Evaluation of GNSS Radio Occultation Atmospheric Profiles from Sentinel-6. Egypt. J. Remote Sens. Space Sci. 2023, 26, 654–665. [Google Scholar] [CrossRef]
- Spire Global. LEMUR Space Platform: GNSS Radio Occultation and ADS-B Data Collection. Available online: https://spire.com/space-services/lemur-space-platform/ (accessed on 18 October 2024).
- SpaceNews. SmallSat Developer Spire Entering Commercial Weather Business. Available online: https://spacenews.com/smallsat-developer-spire-entering-commercial-weather-biz/ (accessed on 18 October 2024).
- Arnold, D.; Peter, H.; Mao, X.; Miller, A.; Jäggi, A. Precise Orbit Determination of Spire Nano Satellites. Adv. Space Res. 2023, 72, 5030–5046. [Google Scholar] [CrossRef]
- Forsythe, V.V.; Duly, T.; Hampton, D.; Nguyen, V. Validation of Ionospheric Electron Density Measurements Derived from Spire CubeSat Constellation. Radio Sci. 2020, 55, e2019RS006953. [Google Scholar] [CrossRef]
- Chang, H.; Lee, J.; Wang, Y.; Breitsch, B.; Morton, Y.J. Preliminary Assessment of CICERO Radio Occultation Performance by Comparing with COSMIC-1 Data. In Proceedings of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), Virtual Event, 21–25 September 2020; Institute of Navigation: Manassas, VA, USA, 2020; pp. 3888–3900. [Google Scholar] [CrossRef]
- Krebs, G.D. CICERO 1, …, 12 / OSM 1 CICERO. Gunter’s Space Page. Available online: https://space.skyrocket.de/doc_sdat/cicero.htm (accessed on 14 October 2024).
- GeoOptics Inc. GeoOptics Orbiting Observatory to Monitor the Changing Earth. Available online: https://geooptics.com/geooptics-orbitiing-observatory-to-monitor-the-changing-earth/ (accessed on 14 October 2024).
- EO Handbook. CEOS EO Handbook—Earth Observation Satellite Capabilities and Plans | Imaging Multi—Spectral Radiometers (VIS/IR). Available online: https://eohandbook.com/eohb2011/earth_radiometers.html (accessed on 28 January 2025).
- DA-Group. Radiometers for Satellites. Available online: https://www.da-group.com/solutions/space/radiometers-for-satellites/ (accessed on 28 January 2025).
- Padmanabhan, S.; Gaier, T.C.; Tanner, A.B.; Brown, S.T.; Lim, B.H.; Reising, S.C.; Stachnik, R.; Bendig, R.; Cofield, R. TEMPEST-D Radiometer: Instrument Description and Prelaunch Calibration. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10213–10226. [Google Scholar] [CrossRef]
- NASA Earth Science Technology Office (ESTO). TEMPEST-D Deorbits After Successfully Validating Advanced Remote Sensing Instruments. Available online: https://esto.nasa.gov/tempest-d-deorbits-after-successfully-validating-advanced-remote-sensing-instruments/ (accessed on 28 January 2025).
- NASA TROPICS Mission Team. Time-Resolved Observations of Precipitation Structure and Storm Intensity with a Constellation of Smallsats (TROPICS). Available online: https://weather.ndc.nasa.gov/tropics/ (accessed on 15 October 2024).
- National Aeronautics and Space Administration (NASA). NASA’s Small Spacecraft Produces First 883-Gigahertz Global Ice Cloud Map. Available online: https://www.nasa.gov/technology/nasas-small-spacecraft-produces-first-883-gigahertz-global-ice-cloud-map/ (accessed on 28 January 2025).
- von Arnim, M.; Mammadov, I.; Draschka, L.; Scharnagl, J.; Schilling, K. The CloudCT Formation of 10 Nano-Satellites for Computed Tomography to Improve Climate Predictions. In Proceedings of the 73rd International Astronautical Congress (IAC 2022), Paris, France, 18–22 September 2022; International Astronautical Federation: Paris, France, 2022. Available online: https://www.researchgate.net/publication/363891743_The_CloudCT_Formation_of_10_Nano-satellites_for_Computed_Tomography_to_Improve_Climate_Predictions (accessed on 18 October 2024).
- Scharnagl, J.; Schilling, K. The CloudCT Nano-Satellite Formation to Characterize the Interior of Clouds for Improved Climate Prediction. In Proceedings of the 11th International Workshop on Satellite and Constellations Formation Flying, Milano, Italy, 7–10 June 2022. [Google Scholar]
- Peral, E.; Statham, S.; Im, E.; Tanelli, S.; Imken, T.; Price, D.; Sauder, J.; Chahat, N.; Williams, A. The Radar-in-a-Cubesat (RAINCUBE) and Measurement Results. In Proceedings of the IGARSS 2018—IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 6297–6300. [Google Scholar] [CrossRef]
- Mahyoub, S.; Fadil, A.; Mansour, E.M.; Rhinane, H.; Al-Nahmi, F. Fusing of Optical and Synthetic Aperture Radar (SAR) Remote Sensing Data: A Systematic Literature Review (SLR). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-4/W12, 127–138. [Google Scholar] [CrossRef]
- Sommervold, O.; Gazzea, M.; Arghandeh, R. A Survey on SAR and Optical Satellite Image Registration. Remote Sens. 2023, 15, 850. [Google Scholar] [CrossRef]
- NASA Jet Propulsion Laboratory (JPL). RAINCUBE 6U CubeSat [Image]. Available online: https://www.jpl.nasa.gov/images/pia22457-raincube-6u-cubesat/ (accessed on 18 October 2024).
- OHB Italia. The SATURN Mission. Available online: https://www.ohb-italia.it/the-saturn-mission/ (accessed on 11 October 2024).
- Battilana, M.; Capuani, G.; Lamarca, V.; Maioli, L.; Mancini, M.L.; Tampellini, M.; Geraec, F.; Giudici, D.; Gascione, P.; Marini, J.; et al. SATURN: A Technological Demonstration Mission for Distributed SAR Imaging. In Proceedings of the 37th Annual Small Satellite Conference, Logan, UT, USA, 5–10 August 2023; Paper ID: SSC23-WII-02. Available online: https://digitalcommons.usu.edu/smallsat/2023/all2023/15/ (accessed on 18 October 2024).
- Petrushevsky, N.; Monti Guarnieri, A.; Manzoni, M.; Prati, C.; Tebaldini, S. An Operational Processing Framework for Spaceborne SAR Formations. Remote Sens. 2023, 15, 1644. [Google Scholar] [CrossRef]
- Rennich, P.; Wye, L.; Lee, S. SRI CubeSat Imaging Radar for Earth Science, (SRI-CIRES): Initial Flight Demonstrations. In Proceedings of the CubeSat Developers Workshop, Cal Poly State University, San Luis Obispo, CA, USA, 23–25 April 2019; Available online: http://mstl.atl.calpoly.edu/~workshop/archive/2019/Spring/Day%202/Session%201/PatrickRennich.pdf (accessed on 18 October 2024).
- Kulu, E. Nanosats Database. Zhixing-3 A Spacecraft. Available online: https://www.nanosats.eu/sat/zhixing-3a (accessed on 2 June 2025).
- Jones, A. China’s Tianzhou-4 Cargo Spacecraft Deployed a Small Satellite Before Deorbiting. SpaceNews. Available online: https://spacenews.com/chinas-tianzhou-4-cargo-spacecraft-deployed-a-small-satellite-before-deorbiting/ (accessed on 2 June 2025).
- European Commission CORDIS—EU research results. Final Report Summary—QB50 (An International Network of 50 CubeSats for Multi-Point, In-Situ Measurements in the lOwer Thermosphere and Re-Entry Research). Available online: https://cordis.europa.eu/project/id/284427/reporting (accessed on 12 October 2024).
- eoPortal. ISS: NanoRacks-QB50. Available online: https://www.eoportal.org/satellite-missions/iss-nanoracks-qb50#sensor-complement (accessed on 12 October 2024).
- Gill, E.; Sundaramoorthy, P.; Bouwmeester, J.; Zandbergen, B.; Reinhard, R. Formation Flying Within a Constellation of Nano-Satellites: The QB50 Mission. Acta Astronaut. 2013, 82, 110–117. [Google Scholar] [CrossRef]
- NASA Jet Propulsion Laboratory (JPL). Polar Radiant Energy in the Far-InfraRed Experiment (PREFIRE). Available online: https://www.jpl.nasa.gov/missions/prefire/ (accessed on 12 October 2024).
- Vos, N.; L’Ecuyer, T.S.; Michaels, T. Enabling Process Science with CubeSat Intersections: An Orbit Resampling Study Inspired by PREFIRE. EGUsphere 2024, 1–35. [Google Scholar] [CrossRef]
- Iida, T.; Futamata, R.; Yamazaki, M.; Kamogawa, M. Design and Development of Prelude, Satellite for Seismic Precedence Detection and Verification Using VLF Radio Waves for Navigation Obtained in Orbit. In Proceedings of the 35th Annual Small Satellite Conference, Logan, UT, USA, 7–12 August 2021; Paper ID: SSSC21-WKV-08. Available online: https://digitalcommons.usu.edu/smallsat/2021/all2021/262/ (accessed on 16 October 2024).
- Iida, T.; Yamazaki, M.; Kamogawa, M. Development of a Prelude Satellite Equipped with Electric Field and Plasma Measurement Sensors Based on Statistical Evaluation of Seismic Precursors Using Artificial VLF Radio Waves Obtained from In-Orbit Observations. In Proceedings of the 36th Annual Small Satellite Conference, Logan, UT, USA, 6–11 August 2022; Paper ID: SSC22-WKP1-14. Available online: https://digitalcommons.usu.edu/smallsat/2022/all2022/203/ (accessed on 16 October 2024).
- Klofas, B.; Anderson, J.; Leveque, K. A Survey of CubeSat Communication Systems. Available online: https://www.klofas.com/papers/CommSurvey-Bryan_Klofas.pdf (accessed on 16 October 2024).
- Long, M.; Lorenz, A.; Rodgers, G.; Tapio, E.; Tran, G.; Jackson, K.; Twiggs, R.; Bleier, T.E.; Solutions, S. SSC02-IX-6 A CubeSat-Derived Design for a Unique Academic Research Mission in Earthquake Signature Detection. Available online: https://www.researchgate.net/publication/266493859_SSC02-IX-6_A_CUBESAT_DERIVED_DESIGN_FOR_A_UNIQUE_ACADEMIC_RESEARCH_MISSION_IN_EARTHQUAKE_SIGNATURE_DETECTION (accessed on 16 October 2024).
- Krebs, G.D. APSS 1 (QuakeTEC, Te Waka Āmiorangi o Aotearoa). Gunter’s Space Page. Available online: https://space.skyrocket.de/doc_sdat/quaketec.htm (accessed on 16 October 2024).
- Yee, J.-H.; Gjerloev, J.; Perez, R.; Swartz, W.H.; Misra, S.; Chidambaram, O.; Ruf, C. The EZIE Way to Measure the Ionospheric Electrojets with a Three-CubeSat Constellation. In Proceedings of the 35th Annual Small Satellite Conference, Logan, UT, USA, 7–12 August 2021; Paper ID: SSC21-VI-07. Available online: https://digitalcommons.usu.edu/smallsat/2021/all2021/177/ (accessed on 16 October 2024).
- Misra, S.; Padmanabhan, S.; Kangaslahti, P.; Montes, O.; Bosch-Lluis, J.; Cofield, R.; Ramos, I.; Yee, J.-H. The Electrojet Zeeman Imaging Explorer (EZIE) Mission and the Microwave Electrojet Magnetogram (MEM) Radiometer Instrument. In Proceedings of the 36th Annual Small Satellite Conference, Logan, UT, USA, 6–11 August 2022; Paper ID: SSC22-III-05. Available online: https://digitalcommons.usu.edu/smallsat/2022/all2022/154/ (accessed on 16 October 2024).
- Johns Hopkins APL. Electrojet Zeeman Imaging Explorer (EZIE) Spacecraft. Available online: https://ezie.jhuapl.edu/mission/ezie-spacecraft/ (accessed on 12 October 2024).
- NASA Blogs Home. EZIE Mission Blog. Available online: https://blogs.nasa.gov/ezie/ (accessed on 16 April 2024).
- NASA Scientific Visualization Studio: Electrojet Zeeman Imaging Explorer (EZIE) Mission. Available online: https://svs.gsfc.nasa.gov/14542 (accessed on 15 January 2025).
- Funase, R.; Ikari, S.; Miyoshi, K.; Kawabata, Y.; Nakajima, S.; Nomura, S.; Funabiki, N.; Ishikawa, A.; Kakihara, K.; Matsushita, S.; et al. Mission to Earth–Moon Lagrange Point by a 6U CubeSat: EQUULEUS. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 30–44. [Google Scholar] [CrossRef]
- Funase, R.; Kawabata, Y.; Nakajima, S.; Fuse, R.; Sekine, H.; Koizumi, H. EQUULEUS: Artemis-1 CubeSat to Successfully Demonstrate Trajectory Control Techniques Within the Sun–Earth–Moon Region to Enable Future Deep Space Missions by Small Satellites. In Small Satellites Systems and Services Symposium (4S 2024); SPIE: Bellingham, WA, USA, 2025; p. 135460I. [Google Scholar] [CrossRef]
- Babuscia, A.; Angkasa, K. Telemetry, Tracking, and Command (TT&C). In Cubesat Handbook; Cappelletti, C., Battistini, S., Malphrus, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 221–235. [Google Scholar] [CrossRef]
- IEEE Std 521-2019 (Revision of IEEE Std 521-2002); IEEE Standard Letter Designations for Radar-Frequency Bands. IEEE: Piscataway, NJ, USA, 2020; pp. 1–15. [CrossRef]
- Liu, S.; Theoharis, P.I.; Raad, R.; Tubbal, F.; Theoharis, A.; Iranmanesh, S.; Abulgasem, S.; Khan, M.U.A.; Matekovits, L. A Survey on CubeSat Missions and Their Antenna Designs. Electronics 2022, 11, 2021. [Google Scholar] [CrossRef]
- eoPortal. GomX-4 (GomSpace Express-4). Available online: https://directory.eoportal.org/satellite-missions/gomx-4#summary (accessed on 27 November 2024).
- León Pérez, L.; Koch, P.; Walker, R. GOMX-4—The Twin European Mission for IOD Purposes. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–9 August 2018; Paper ID: SSC18-VII-07. Available online: https://digitalcommons.usu.edu/smallsat/2018/all2018/296/ (accessed on 27 November 2024).
- NASA. Integrated Solar Array and Reflectarray Antenna (ISARA). Available online: https://www.nasa.gov/smallspacecraft/isara/ (accessed on 30 November 2024).
- Hodges, R.E.; Lewis, D.K.; Radway, M.J.; Toorian, A.S.; Aguirre, F.H.; Hoppe, D.J.; Shah, B.; Gray, A. The ISARA Mission—Flight Demonstration of a High Gain Ka-Band Antenna for 100 Mbps Telecom. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–9 August 2018; Paper ID: SSC18-VI-03. Available online: https://digitalcommons.usu.edu/smallsat/2018/all2018/292/ (accessed on 27 November 2024).
- ESA CSC: Connectivity & Secure Communications. W-Cube: CubeSat-Based W-Band Channel Measurements. Available online: https://connectivity.esa.int/projects/wcube (accessed on 27 November 2024).
- GomSpace. Communication Systems. Available online: https://gomspace.com/shop/subsystems/communication-systems/default.aspx (accessed on 21 November 2024).
- ISISPACE. Communication Systems. Available online: https://www.isispace.nl/product-category/communication-systems/ (accessed on 21 November 2024).
- Space Inventor. Equipment Catalogue. Available online: https://space-inventor.com/modules (accessed on 21 November 2024).
- NanoAvionics. CubeSat & SmallSat Components—Subsystems. Available online: https://nanoavionics.com/cubesat-components/ (accessed on 21 November 2024).
- AAC Clyde Space. Space Products & Components | Communications. Available online: https://www.aac-clyde.space/what-we-do/space-products-components/communications (accessed on 21 November 2024).
- CubeCom. Communication Systems for Satellites. Available online: https://cubecom.space/ (accessed on 27 November 2024).
- Anywaves. Space Antenna Makers. Available online: https://anywaves.com/ (accessed on 27 November 2024).
- Arifin, J. Study of CUBESAT Systems for IoT. In Proceedings of the 12th International Renewable Engineering Conference (IREC), Amman, Jordan, 14–15 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Laursen, L. CubeSat Operators Launch an IoT Space Race: New Tech and Lower Costs Make It Possible to Monitor Devices Straight from Orbit. IEEE Spectrum, 27 March 2023. Available online: https://spectrum.ieee.org/cubesat (accessed on 21 November 2024).
- Lepcha, P.; Malmadayalage, T.D.; Örger, N.C.; Purio, M.A.; Duran, F.; Kishimoto, M.; El-Megharbel, H.A.; Cho, M. Assessing the Capacity and Coverage of Satellite IoT for Developing Countries Using a CubeSat. Appl. Sci. 2022, 12, 8623. [Google Scholar] [CrossRef]
- Ground Control. Satellite IoT Use Cases for Real-World Applications. Available online: https://www.groundcontrol.com/blog/satellite-iot-use-cases-for-real-world-applications/ (accessed on 21 November 2024).
- Luxembourg Space Agency: OQ TECHNOLOGY Concludes Its TIGER-1 Mission Successfully and Embarks on Global 5G Satellite Alliance. Available online: https://space-agency.public.lu/en/news-media/news/2020/OQTECHNOLOGY.html (accessed on 24 November 2024).
- OQ Technology Company Timeline. Available online: https://www.oqtec.space/company/timeline (accessed on 24 November 2024).
- OQ Technology. OQ Technology to Become World’s Largest 5G NB-IoT LEO Satellite Operator. Available online: https://www.oqtec.space/news/oq-technology-to-become-worlds-largest-5g-nb-iot-leo-satellite-operator (accessed on 24 November 2024).
- NewSpace Index. OQ Technology Satellite Constellation. Available online: https://www.newspace.im/constellations/oq-technology (accessed on 24 November 2024).
- OQ Technology. OQ Technology hAs Been Successfully Awarded a EUR 1.1 Million Contract to Design, Build, and Demonstrate Nanosatellites for 5G IoT and Hyperspectral Earth Observation. Available online: https://www.oqtec.com/news/oq-technology-has-been-successfully-awarded-a-eur-1-1-million-contract-to (accessed on 24 November 2024).
- Krebs, G.D. “SpaceBEE 10, …, 180”. Gunter’s Space Page. Available online: https://space.skyrocket.de/doc_sdat/spacebee-10.htm (accessed on 21 November 2024).
- Kulu, E. NewSpace Index. Swarm Technologies Satellite Constellation. Available online: https://www.newspace.im/constellations/swarm-technologies (accessed on 2 June 2025).
- eoPortal. Sateliot_X Constellation. Available online: https://www.eoportal.org/satellite-missions/sateliot-iot#eop-quick-facts-section (accessed on 21 November 2024).
- Alén Space. Alén Space Designs and Manufactures Four Satellites for SatelIoT’s 5G Constellation. Available online: https://alen.space/alen-space-designs-and-manufactures-four-satellites-for-sateliots-5g-constellation/ (accessed on 21 November 2024).
- Wu, S.; Chen, W.; Cao, C.; Zhang, C.; Mu, Z. A Multiple-CubeSat Constellation for Integrated Earth Observation and Marine/Air Traffic Monitoring. Adv. Space Res. 2021, 67, 3712–3724. [Google Scholar] [CrossRef]
- Cornell Law School. 47 CFR §80.393—Frequencies for AIS Stations. Available online: https://www.law.cornell.edu/cfr/text/47/80.393 (accessed on 17 November 2024).
- Textron Aviation Inc. ADS-B Out Explained. Available online: https://txtav.com/en/journey/articles/articles/adsb-out-explained (accessed on 17 November 2024).
- Alén Space. AIS PAYLOAD. Available online: https://alen.space/products/ais-payload/ (accessed on 17 November 2024).
- SatLab. Polaris 4-Channel AIS Receiver. Available online: https://www.satlab.com/products/polaris-ais/ (accessed on 17 November 2024).
- Satlab. QubeAIS Receiver. Available online: https://www.satlab.com/products/qubeais/ (accessed on 17 November 2024).
- GomSpace. Compact ADS-B Patch Antenna for Aircraft Tracking. Available online: https://gomspace.com/shop/subsystems/payloads/nanocom-ads-b-patch-antenna.aspx (accessed on 17 November 2024).
- Alén Space. ADS-B Payload. Available online: https://alen.space/products/adsb-payload/ (accessed on 17 November 2024).
- SatLab. Polaris-ADSB Receiver. Available online: https://www.satlab.com/products/polaris-adsb/ (accessed on 17 November 2024).
- Coleshill, E.; Cain, J.; Newland, F.; D’Souza, I. NTS—A Nanosatellite Space Trial. Acta Astronaut. 2010, 66, 1475–1480. [Google Scholar] [CrossRef]
- UTIAS Space Flight Laboratory. Can-X 6/NTS Automatic Identification System Receiver for Ship Tracking. Available online: https://www.utias-sfl.net/can-x-6-nts/ (accessed on 17 November 2024).
- eoPortal. CanX-6 (Canadian Advanced Nanosatellite eXperiment-6)/Nanostellite Tracking Ships (NTS). Available online: https://www.eoportal.org/satellite-missions/canx-6#canx-6-canadian-advanced-nanosatellite-experiment-6–nts (accessed on 17 November 2024).
- Skauen, A.N. Quantifying the Tracking Capability of Space-Based AIS Systems. Adv. Space Res. 2016, 57, 527–542. [Google Scholar] [CrossRef]
- UTIAS Space Flight Laboratory. AISSat-1, -2, and -3. Available online: https://www.utias-sfl.net/aissat-1-2-and-3/ (accessed on 17 November 2024).
- Larsen, J.A.; Mortensen, H.P. In Orbit Validation of the AAUSAT3 SDR-Based AIS Receiver. In Proceedings of the 6th International Conference on Recent Advances in Space Technologies (RAST 2013), Istanbul, Turkey, 12–14 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 487–491. [Google Scholar] [CrossRef]
- European Space Agency (ESA). University Teams Selected for Phase 2 of Fly Your Satellite! Available online: https://www.esa.int/Education/CubeSats_-_Fly_Your_Satellite/University_teams_selected_for_phase_2_of_Fly_Your_Satellite%21 (accessed on 17 November 2024).
- Nielsen, J.D.; Larsen, J.A. A Decentralized Design Philosophy for Satellites. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies (RAST 2011), Istanbul, Turkey, 9–11 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 543–546. [Google Scholar] [CrossRef]
- AMSAT-UK Radio Amateur Satellites. AAUSAT5 Communicates with Students on Earth. Available online: https://amsat-uk.org/2015/11/04/aausat5-communicates-with-students-on-earth/ (accessed on 17 November 2024).
- Alminde, L.K.; Christiansen, J.; Laursen, K.K.; Midtgaard, A.; Bisgaard, M.; Jensen, M.; Gosvig, B.; Birklykke, A.; Koch, P.; Le Moullec, Y. GomX-1: A Nanosatellite Mission to Demonstrate Improved Situational Awareness for Air Traffic Control. In Proceedings of the 26th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 13–16 August 2012; Paper ID: SSC12-I-6. Available online: https://digitalcommons.usu.edu/smallsat/2012/all2012/13/ (accessed on 17 November 2024).
- Nies, G.; Stenger, M.; Krčál, J.; Hermanns, H.; Bisgaard, M.; Gerhardt, D.; Haverkort, B.; Jongerden, M.; Larsen, K.G.; Wognsen, E.R. Mastering Operational Limitations of LEO Satellites—The GomX-3 Approach. Acta Astronaut. 2018, 151, 726–735. [Google Scholar] [CrossRef]
- Brown, M.; Smith, B.M.; Capon, C.J.; Abay, R.; Polo, M.C.; Gehly, S.; Bowden, G.; Bright, C.; Lambert, A.; Boyce, R. SSA Experiments for the Australian M2 Formation Flying CubeSat Mission. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Maui, HI, USA, 15–18 September 2020; Available online: https://www.researchgate.net/publication/345698529_SSA_Experiments_for_the_Australian_M2_Formation_Flying_CubeSat_Mission (accessed on 17 November 2024).
- UNSW Canberra Space. M2 Mission. Available online: https://www.unsw.edu.au/canberra/our-research/research-centres-institutes/unsw-canberra-space/missions/m2 (accessed on 17 November 2024).
- Brown, M.; Boyce, R.; Lambert, A.; Peters, E.; Gehly, S.; Boland, S.; Jeffreson, R.; Kremor, A.; Bateman, T.; Capon, C.; et al. Formation Flying and Change Detection for the UNSW Canberra Space ’M2’ Low Earth Orbit Formation Flying CubeSat Mission. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Maui, HI, USA, 27–30 September 2022; Available online: https://www.researchgate.net/publication/374501350_Formation_Flying_and_Change_Detection_for_the_UNSW_Canberra_Space_’M2’_Low_Earth_Orbit_Formation_Flying_CubeSat_Mission (accessed on 17 November 2024).
- CORDIS—EU Research Results. SATELLITE-BASED ADS-B FOR LOWER SEPARATION-MINIMA APPLICATION (SALSA). D3.1 Compilation of SB ADS-B Space Segment Configuration. Available online: https://cordis.europa.eu/project/id/699337/results (accessed on 17 November 2024).
- Jaffer, G.; Malik, R.A.; Aboutanios, E.; Rubab, N.; Nader, R.; Eichelberger, H.U.; Vandenbosch, G.A.E. Air traffic monitoring using optimized ADS-B CubeSat constellation. Astrodyn. 2024, 8, 189–208. [Google Scholar] [CrossRef]
- Baker, K. Space-Based ADS-B: Performance, Architecture and Market. In Proceedings of the 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 9–11 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Dmytryszyn, M.; Crook, M.; Sands, T. Lasers for Satellite Uplinks and Downlinks. Sci 2021, 3, 4. [Google Scholar] [CrossRef]
- NASA. Optical Communications Overview. Available online: https://www.nasa.gov/technology/space-comms/optical-communications-overview/ (accessed on 30 October 2024).
- Tanaka, T.; Kawamura, Y.; Tanaka, T. Development and Operations of Nanosatellite FITSAT-1 (NIWAKA). Acta Astronaut. 2015, 107, 112–129. [Google Scholar] [CrossRef]
- Pack, D.W.; Kinum, G.; Johnson, P.D.; Wilkinson, T.S.; Coffman, C.M.; Purcell, C.R.; Mauerhan, J.C.; Hardy, B.S.; Russell, R.; Mercy, K. Landsat Imagery from a CubeSat: Results and Operational Lessons from the R3 Satellite’s First 18 Months in Space. In Proceedings of the 34th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 1–6 August 2020; Paper ID: SSC20-II-02. Available online: https://digitalcommons.usu.edu/smallsat/2020/all2020/112/ (accessed on 31 October 2024).
- Krebs, G.D. TOMSat EagleScout, TOMSat R3 (AeroCube 11A, 11B). Gunter’s Space Page. Available online: https://space.skyrocket.de/doc_sdat/aerocube-11-r3.htm (accessed on 31 October 2024).
- Schieler, C.M.; Riesing, K.M.; Bilyeu, B.C.; Robinson, B.S.; Wang, J.P.; Roberts, W.T.; Piazzolla, S. TBIRD 200-Gbps CubeSat Downlink: System Architecture and Mission Plan. In Proceedings of the 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Kyoto, Japan, 14–17 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 181–185. [Google Scholar] [CrossRef]
- Choi, C.Q. NASA’s Laser Link Boasts Record-Breaking 200-Gb/s Speed. IEEE Spectrum, 30 November 2022. Available online: https://spectrum.ieee.org/laser-communications (accessed on 31 October 2024).
- Schieler, C.M.; Bilyeu, B.C.; Chang, J.S.; Garg, A.S.; Horvath, A.J.; Riesing, K.M.; Robinson, B.S.; Wang, J.P.; Piazzolla, S.; Keer, B. Recent On-Orbit Results and ARQ Performance Analysis for the TBIRD 200-Gbps Mission. In Proceedings of the 2023 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Kyoto, Japan, 13–16 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 49–55. [Google Scholar] [CrossRef]
- European Space Agency (ESA). FSSCat Mission Profile. Available online: https://earth.esa.int/eogateway/missions/fsscat (accessed on 31 October 2024).
- Camps, A.; Munoz-Martin, J.F.; Ruiz-de-Azua, J.A.; Fernandez, L.; Perez-Portero, A.; Llaveria, D.; Herbert, C.; Pablos, M.; Golkar, A.; Gutierrrez, A.; et al. FSSCat Mission Description and First Scientific Results of the FMPL-2 Onboard 3CAT-5/A. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1291–1294. [Google Scholar] [CrossRef]
- Murphy, K.; NASA. CubeSat Set to Demonstrate NASA’s Fastest Laser Link from Space. Available online: https://www.nasa.gov/directorates/somd/cubesat-set-to-demonstrate-nasas-fastest-laser-link-from-space/ (accessed on 15 January 2025).
- Yenchesky, L.; Cierny, O.; Grenfell, P.; Kammerer, W.; Periera, P.D.V.; Sevigny, T.; Cahoy, K. Optomechanical Design and Analysis for Nanosatellite Laser Communications. In Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 3–8 August 2019; Paper ID: SSC19-XII-05. Available online: https://digitalcommons.usu.edu/smallsat/2019/all2019/161/ (accessed on 15 January 2025).
- Grenfell, P.; Serra, P.; Cierny, O.; Kammerer, W.; Gunnison, G.; Kusters, J.; Payne, C.; Cahoy, K.; Clark, M.; Ritz, T.; et al. Design and Prototyping of a Nanosatellite Laser Communications Terminal for the CubeSat Laser Infrared Crosslink (CLICK) B/C Mission. In Proceedings of the 34th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 1–6 August 2020; Paper ID: SSC20-WKVI-02. Available online: https://digitalcommons.usu.edu/smallsat/2020/all2020/37/ (accessed on 15 January 2025).
- Millour, F.; Ottogalli, S.; Maamri, M.; Stibbe, A.; Ferrero, F.; Rolland, L.; Rebeyrolle, S.; Marcotto, A.; Agabi, K.; Beaulieu, M.; et al. The Nice Cube (Nice3) Nanosatellite Project. arXiv 2018, arXiv:1808.09848. [Google Scholar] [CrossRef]
- European Space Agency (ESA). European Space Agency Works with Greek Ministry of Digital Governance for Secure and Resilient Connectivity. Available online: https://connectivity.esa.int/news/european-space-agency-works-greek-ministry-digital-governance-secure-and-resilient-connectivity (accessed on 1 November 2024).
- Velazco, J.E.; de la Vega, J.S. Q4—A CubeSat Mission to Demonstrate Omnidirectional Optical Communications. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- AstroLight. ATLAS-1 Space-to-Earth Laser Communication Terminal. Available online: https://astrolightspace.com/atlas/ (accessed on 30 October 2024).
- Tesat-Spacecom. Products: SCOT20. Available online: https://www.tesat.de/products (accessed on 30 October 2024).
- AAC Clyde Space. CubeCat Laser Communication Module. Available online: https://www.aac-clyde.space/what-we-do/space-products-components/communications/cubecat (accessed on 30 October 2024).
- Stellar Project. LaserCube: Enabling the Optical Communication Highway for Small Satellites. Available online: https://stellarproject.space/product/lasercube/ (accessed on 30 October 2024).
- Cappelletti, C.; Robson, D. CubeSat Missions and Applications. In Cubesat Handbook; Cappelletti, C., Battistini, S., Malphrus, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 53–65. [Google Scholar] [CrossRef]
- Smith, M.; Donner, A.; Knapp, M.; Pong, C.; Smith, C.; Luu, J.; Di Pasquale, P.; Campuzano, B. On-Orbit Results and Lessons Learned from the ASTERIA Space Telescope Mission. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–9 August 2018; Paper ID: SSC18-I-08. Available online: https://digitalcommons.usu.edu/smallsat/2018/all2018/255/ (accessed on 1 February 2025).
- Knapp, M.; Seager, S.; Demory, B.-O.; Krishnamurthy, A.; Smith, M.W.; Pong, C.M.; Bailey, V.P.; Donner, A.; Di Pasquale, P.; Campuzano, B.; et al. Demonstrating High-Precision Photometry with a CubeSat: ASTERIA Observations of 55 Cancri e. Astron. J. 2020, 160, 23. [Google Scholar] [CrossRef]
- Ramiaramanantsoa, T.; Bowman, J.D.; Shkolnik, E.L.; Loyd, R.O.P.; Ardila, D.R.; Barman, T.; Basset, C.; Beasley, M.; Cheng, S.; Gamaunt, J.; et al. Onboard Dynamic Image Exposure Control for the Star—Planet Activity Research CubeSat (SPARCS). Mon. Not. R. Astron. Soc. 2021, 509, 5702–5713. [Google Scholar] [CrossRef]
- Nowak, M.; Lacour, S.; Crouzier, A.; David, L.; Lapeyrère, V.; Schworer, G. Short Life and Abrupt Death of PicSat, a Small 3U CubeSat Dreaming of Exoplanet Detection. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation 2018: Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, Austin, TX, USA, 10–15 June 2018; Volume 10698. [Google Scholar] [CrossRef]
- NASA Science Editorial Team. The CUTE Mission: Innovative Design Enables Observations of Extreme Exoplanets from a Small Package. NASA Science, 27 February 2024. Available online: https://science.nasa.gov/science-research/science-enabling-technology/the-cute-mission-innovative-design-enablesobservations-of-extreme-exoplanets-from-a-smallpackage/ (accessed on 1 February 2025).
- University of Sydney. The TOLIMAN Space Telescope: Searching for Habitable Planets in Alpha Centauri. Available online: https://toliman.space/ (accessed on 1 February 2025).
- Topputo, F.; Ferrari, F.; Giordano, C.; Panicucci, P.; Buonagura, C.; Martinelli, A.; Piccolo, F.; Rizza, A.; Monferrini, D.; Provinciali, L.; et al. LUMIO CubeSat: Current Status and Lessons Learnt (So Far). In Proceedings of the Small Satellites Systems and Services Symposium (4S 2024), Palma de Mallorca, Spain, 27 May–1 June 2024; Petrozzi-Ilstad, M., Ed.; SPIE: Bellingham, WA, USA,, 2025; Volume 13546. [Google Scholar] [CrossRef]
- Wikimedia Commons. File: ASTERIA CubeSat Space Telescope.jpg. Available online: https://commons.wikimedia.org/wiki/File:ASTERIA_CubeSat_space_telescope.jpg (accessed on 3 June 2025).
- NASA/JPL-Caltech. ASTERIA CubeSat Before Launch. Available online: https://www.jpl.nasa.gov/images/pia23406-asteria-cubesat-before-launch/ (accessed on 7 February 2025).
- Wikipedia Contributors. ASTERIA CubeSat Lens Alignment. Available online: https://en.wikipedia.org/wiki/ASTERIA_ (accessed on 7 February 2025).
- Novosibirsk State University. NSU Successfully Launches Second Satellite. Available online: https://english.nsu.ru/news-events/news/research/nsu-successfully-launches-second-satellite-/ (accessed on 3 June 2025).
- Kuzin, S.; Bogachev, S.; Erkhova, N.; Pertsov, A.; Loboda, I.; Reva, A.; Kholodilov, A.V.; Ulyanov, A.; Kirichenko, A.; Malyshev, I.; et al. Solar VUV Telescope for Nanosatellites. Tech. Phys. 2022, 92, 2021. [Google Scholar] [CrossRef]
- TinyGS. Norby-2. Available online: https://tinygs.com/satellite/Norby-2 (accessed on 3 June 2025).
- ISO 21348:2007; Space environment (natural and artificial) — Process for determining solar irradiances. International Organization for Standardization (ISO): Geneva, Switzerland, 2007. Available online: https://www.iso.org/standard/39911.html (accessed on 12 June 2025).
- Kaaret, P.; Zajczyk, A.; LaRocca, D.M.; Ringuette, R.; Bluem, J.; Fuelberth, W.; Gulick, H.; Jahoda, K.; Johnson, T.E.; Kirchner, D.L.; et al. HaloSat: A CubeSat to Study the Hot Galactic Halo. Astrophys. J. 2019, 884, 162. [Google Scholar] [CrossRef]
- Trenti, M.; Ortiz del Castillo, M.; Mearns, R.; McRobbie, J.; Therakam, C.; Chapman, A.; Woods, A.; Morgan, J.; Barraclough, S.; Rodriguez Mallo, I.; et al. SpIRIT Mission: In-Orbit Results and Technology Demonstrations. arXiv 2024, arXiv:2407.14034. [Google Scholar]
- NASA. NASA Selects 4 CubeSats for Space Weather Tech Development. NASA Science, 13 December 2021. Available online: https://www.nasa.gov/science-research/heliophysics/nasa-selects-4-cubesats-for-space-weather-tech-development/ (accessed on 1 February 2025).
- Gasaway, K.F.; Tian, L.; Cox, J.; Cason, N.; Nold, B.; Rusley, D.; Azimi, B.; Racusin, J.; Perkins, J.; Moss, R.; et al. BurstCube: Behind the Scenes of a Do-No-Harm I&T Production. In Proceedings of the 38th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 3–8 August 2024; Paper ID: SSC24-III-04. Available online: https://digitalcommons.usu.edu/smallsat/2024/all2024/88/ (accessed on 1 February 2025).
- HUN-REN. High-Energy Astronomical Observations Made Possible by Latest Small Satellite, Built Through an International Collaboration Under the Leadership of CSFK Researchers. HUN-REN News, 8 December 2020. Available online: https://hun-ren.hu/en/news/high-energy-astronomical-observations-made-possible-by-latest-small-satellite-built-through-an-international-collaboration-under-the-leadership-of-csfk-researchers (accessed on 1 February 2025).
- NASA. HaloSat. Available online: https://science.nasa.gov/resource/halosat/ (accessed on 7 February 2025).
- NASA. BurstCube. NASA Science, 2024. Available online: https://science.nasa.gov/mission/burstcube/ (accessed on 13 January 2025).
- Desai, M.I.; Allegrini, F.; Ebert, R.W.; Ogasawara, K.; Epperly, M.E.; George, D.E.; Christian, E.R.; Kanekal, S.G.; Murphy, N.; Randol, B. The CubeSat Mission to Study Solar Particles. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 16–28. [Google Scholar] [CrossRef]
- Maldonado, C.A.; Deming, J.; Mosley, B.N.; Morgan, K.S.; McGlown, J.; Nelson, A.; Fernandes, P.A.; Kroupa, M.; Katko, K.; Hehlen, M.P.; et al. The Experiment for Space Radiation Analysis: A 12U CubeSat to Explore the Earth’s Radiation Belts. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–15. [Google Scholar] [CrossRef]
- Schubert, C.; Berger, S.; Bustos, J.; Redfield, B.; Vazquez, A.; Paolicelli, J. Unique Challenges of Mission Operations on SunRISE, A Low-Cost NASA Science Constellation. In Proceedings of the 2024 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2024; pp. 1–10. [Google Scholar] [CrossRef]
- NASA - Jet Propulsion Laboratory (JPL). NASA’s 6-Pack of Mini-Satellites Ready for Their Moment in the Sun. NASA Missions, 30 November 2023. Available online: https://www.nasa.gov/missions/sunrise-mission/nasas-6-pack-of-mini-satellites-ready-for-their-moment-in-the-sun/ (accessed on 1 February 2025).
- Yuri Gravity. Available online: https://yurigravity.com (accessed on 3 June 2025).
- Kitts, C.; Ronzano, K.; Rasay, R.; Mas, I.; Williams, P.; Mahacek, P.; Minelli, G.; Hines, J.; Agasid, E.; Friedericks, C.; et al. Flight Results from the GeneSat-1 Biological Microsatellite Mission. In Proceedings of the 21st Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 13–16 August 2007; Paper ID: SSC07-XI-1. Available online: https://digitalcommons.usu.edu/smallsat/2007/all2007/69/ (accessed on 7 February 2025).
- Kitts, C.; Ronzano, K.; Rasay, R.; Mas, I.; Acain, J.; Neumann, M.; Bica, L.; Mahacek, P.; Minelli, G.; Beck, E.; et al. Initial Flight Results from the PharmaSat Biological Microsatellite Mission. In Proceedings of the 23rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 10–13 August 2009; Paper ID: SSC09-IV-10. Available online: https://digitalcommons.usu.edu/smallsat/2009/all2009/27/ (accessed on 7 February 2025).
- Ehrenfreund, P.; Ricco, A.J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; et al. The O/OREOS Mission—Astrobiology in Low Earth Orbit. Acta Astronaut. 2014, 93, 501–508. [Google Scholar] [CrossRef]
- Wikipedia Contributors. GeneSat-1. Available online: https://en.wikipedia.org/wiki/GeneSat-1#/media/File:Genesat-1_1.jpg (accessed on 7 February 2025).
- Wikipedia Contributors. O/OREOS. Available online: https://en.wikipedia.org/wiki/O/OREOS#/media/File:OOREOS_Spacecraft_(PADOM_Deployed).jpg (accessed on 7 February 2025).
- Chin, M.; Spremo, S.; Snyder, T.V.; Rogers, C.; Ricco, A.J.; Chinn, T.N.; Padgen, M.R.; Henschke, M.; Parra, M.; Taylor, L.; et al. EcAMSat—NASA’s First 6U Biological Spacecraft: System Integration and Environmental Test Technical Paper. NASA Technical Reports Server (NTRS). Available online: https://ntrs.nasa.gov/api/citations/20205007906/downloads/EcAMSat-final.docx.pdf (accessed on 31 January 2025).
- Krakos, A. Lab-on-Chip Technologies for Space Research—Current Trends and Prospects. Microchim. Acta 2023, 191, 31. [Google Scholar] [CrossRef]
- Calabria, D.; Trozzi, I.; Lazzarini, E.; Pace, A.; Zangheri, M.; Iannascoli, L.; Maipan Davis, N.; Gosikere Matadha, S.S.; Baratto De Albuquerque, T.; Pirrotta, S.; et al. AstroBio-CubeSat: A Lab-in-Space for Chemiluminescence-Based Astrobiology Experiments. Biosens. Bioelectron. 2023, 226, 115110. [Google Scholar] [CrossRef]
- NASA. EcAMSat—NASA’s First 6U Biological Spacecraft. NASA Factsheet FS-2017-10-01-ARC. October 2017. Available online: https://www.nasa.gov/wp-content/uploads/2016/07/ecamsat_31oct2017-508.pdf (accessed on 31 January 2025).
- Meneghin, A.; Paglialunga, D.; Poggiali, G.; Pirrotta, S.; Impresario, G.; Sabatini, A.; Pacelli, C.; Nascetti, A.; Iannascoli, L.; Carletta, S.; et al. AstroBio CubeSat: A Nanosatellite for Space Astrobiology Experiments. In Proceedings of the 14th Europlanet Science Congress (EPSC), Virtual Meeting, 21 September–9 October 2020. EPSC2020-943. [Google Scholar] [CrossRef]
- Ricco, A.J.; Santa Maria, S.R.; Hanel, R.P.; Bhattacharya, S. BioSentinel: A 6U Nanosatellite for Deep-Space Biological Science. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 6–18. [Google Scholar] [CrossRef]
- Massaro Tieze, S.; Liddell, L.C.; Santa Maria, S.R.; Bhattacharya, S. BioSentinel: A Biological CubeSat for Deep Space Exploration. Astrobiology 2023, 23, 631–636. [Google Scholar] [CrossRef] [PubMed]
- NASA. What is BioSentinel? 2024. Available online: https://www.nasa.gov/centers-and-facilities/ames/what-is-biosentinel/ (accessed on 31 January 2025).
- Singh, S. India’s First Microbiological Nanosat, Developed by Students, to Find Ways to Keep Astronauts Healthy. The Times of India, 19 February 2025. Available online: https://timesofindia.indiatimes.com/india/indias-first-microbiological-nanosat-developed-by-students-to-find-ways-to-keep-astronauts-healthy/articleshow/118370934.cms (accessed on 3 June 2025).
- Team Antariksh. Available online: https://www.teamantariksh.in/ (accessed on 3 June 2025).
- Malphrus, B.K.; Freeman, A.; Staehle, R.; Klesh, A.T.; Walker, R. Interplanetary CubeSat Missions. In Cubesat Handbook; Cappelletti, C., Battistini, S., Malphrus, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 85–121. [Google Scholar] [CrossRef]
- Advanced Space. CAPS™: A Peer-to-Peer Navigation and Communication Technology. Available online: https://advancedspace.com/caps/ (accessed on 14 June 2025).
- Gardner, T.; Cheetham, B.; Parker, J.; Forsman, A.; Kayser, E.; Thompson, M.; Ott, C.; DeMoudt, L.; Caudill, M.; Bolliger, M.; et al. CAPSTONE: A Summary of a Highly Successful Mission in the Cislunar Environment. In Proceedings of the 37th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 5–10 August 2023; Paper ID: SSC23-I-04. Available online: https://digitalcommons.usu.edu/smallsat/2023/all2023/69/ (accessed on 14 January 2025).
- Agasid, E.; Hunter, R.; Cheetham, B. Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) Pathfinder for Artemis Gateway. In Small Satellites Systems and Services Symposium (4S 2024); Petrozzi-Ilstad, M., Ed.; SPIE: Bellingham, WA, USA, 2025; p. 135460F. [Google Scholar] [CrossRef]
- NASA’s Technology Portfolio Management System (TechPort). Cis Lunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) Project Profile. Available online: https://techport.nasa.gov/projects/106820 (accessed on 2 October 2024).
- NASA. What Is CAPSTONE? Available online: https://www.nasa.gov/smallspacecraft/capstone/ (accessed on 26 February 2025).
- NASA. Media Resources for CAPSTONE. Available online: https://www.nasa.gov/centers-and-facilities/ames/media-resources-for-capstone/ (accessed on 14 January 2025).
- NASA Space Science Data Coordinated Archive. Artemis I NSSDCA/COSPAR ID: 2022-156A. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2022-156A (accessed on 8 October 2024).
- NASA. Orion Stage Adapter Readied for Ride on Artemis I. Available online: https://www.nasa.gov/image-article/orion-stage-adapter-readied-ride-artemis-i/ (accessed on 8 October 2024).
- Terran Orbital. LunIR: Mapping the Lunar Surface. Available online: https://terranorbital.com/missions/lunir/ (accessed on 2 October 2024).
- NASA’s Technology Portfolio Management System (TechPort). Lunar InfraRed (imaging) (LunIR) Project Profile. Available online: https://techport.nasa.gov/view/94206 (accessed on 3 October 2024).
- Foust, J. Deep Space Smallsats Face Big Challenges. SpaceNews, 17 February 2023. Available online: https://spacenews.com/deep-space-smallsats-face-big-challenges/ (accessed on 3 October 2024).
- Malphrus, B.K.; Brown, K.Z.; Garcia, J.; Conner, C.; Kruth, J.; Combs, M.S.; Fite, N.; McNeil, S.; Wilczweski, S.; Haught, K.; et al. The Lunar IceCube EM-1 Mission: Prospecting the Moon for Water Ice. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 6–14. [Google Scholar] [CrossRef]
- Pritchett, R.E.; Folta, D.C.; Hur-Diaz, S.; Hughes, K. Trajectory Design and Early Mission Operations for the Lunar IceCube Mission. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference; Big Sky, MT, USA, 13–17 August 2023, American Astronautical Society: Springfield, VA, USA, 2023; NASA Technical Reports Server, Document ID: 20230010984. Available online: https://ntrs.nasa.gov/citations/20230010984 (accessed on 3 October 2024).
- Hernando-Ayuso, J.; Campagnola, S.; Yamaguchi, T.; Ozawa, Y.; Ikenaga, T. OMOTENASHI trajectory analysis and design: Landing phase. Acta Astronaut. 2019, 156, 113–124. [Google Scholar] [CrossRef]
- JAXA. OMOTENASHI (Outstanding MOon Exploration TEchnologies Demonstrated by NAno Semi-Hard Impactor). Available online: https://www.isas.jaxa.jp/home/omotenashi/img/OMOTENASHItoutline13.pdf (accessed on 3 October 2024).
- Institute of Space and Astronautical Science: ISAS–JAXA. The World’s Smalest Moon Lander. OMOTENASHI: Outstanding MOon Exploration TEchnologies Demonstrated by NAno Semi-Hard Impactor. Available online: https://www.isas.jaxa.jp/home/omotenashi/index.html (accessed on 3 October 2024).
- Hardgrove, C.; Starr, R.; Lazbin, I.; Babuscia, A.; Roebuck, B.; DuBois, J.; Struebel, N.; Colaprete, A.; Drake, D.; Johnson, E.; et al. The Lunar Polar Hydrogen Mapper CubeSat Mission. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 54–69. [Google Scholar] [CrossRef]
- Morton, E. NASA’s LunaH-Map Mission Ends, Validates Science Instrument Performance. NASA Blogs, 3 August 2023. Available online: https://blogs.nasa.gov/lunah-map/2023/08/03/nasas-lunah-map-mission-ends-validates-science-instrument-performance/ (accessed on 3 October 2024).
- Lombardo, M.; Zannoni, M.; Gai, I.; Gomez Casajus, L.; Gramigna, E.; Manghi, R.L.; Tortora, P.; Di Tana, V.; Cotugno, B.; Simonetti, S.; et al. Design and Analysis of the Cis-Lunar Navigation for the ArgoMoon CubeSat Mission. Aerospace 2022, 9, 659. [Google Scholar] [CrossRef]
- Lombardo, M.; Gomez Casajus, L.; Zannoni, M.; Gai, I.; Gramigna, E.; Tortora, P.; Dotto, E.; Amoroso, M.; Pirrotta, S.; Di Tana, V.; et al. An overview of the ArgoMoon and LICIAcube flight dynamics operations. In Proceedings of the AIDAA XXVII International Congress, Materials Research Proceedings, Padova, Italy, 4–7 September 2023; Volume 37, pp. 634–638. [Google Scholar] [CrossRef]
- Payload Space. Artemis I CubeSats Fail to Power Up. Available online: https://payloadspace.com/artemis-i-cubesats-fail-to-power-up/ (accessed on 5 June 2025).
- Bittel, J. NASA’s Artemis I Launch Has Faced Several Delays. That’s Actually Common. The Washington Post. Available online: https://www.washingtonpost.com/kidspost/2022/11/15/nasa-launches-often-delayed/ (accessed on 5 June 2025).
- Cervone, A.; Topputo, F.; Speretta, S.; Menicucci, A.; Turan, E.; Di Lizia, P.; Massari, M.; Franzese, V.; Giordano, C.; Merisio, G.; et al. LUMIO: A CubeSat for observing and characterizing micro-meteoroid impacts on the Lunar far side. Acta Astronaut. 2022, 195, 309–317. [Google Scholar] [CrossRef]
- Kraft, R.H. NASA to Fly International CubeSats Aboard Artemis II Test Flight. NASA Blogs, 20 September 2024. Available online: https://www.nasa.gov/blogs/artemis/2024/09/20/nasa-to-fly-international-cubesats-aboard-artemis-ii-test-flight/ (accessed on 6 October 2024).
- Lane, R.; Ryals, C.; McLemore, C.; Hitt, D. NASA Space Launch System CubeSats: First Flight and Future Opportunities. In Proceedings of the 37th Annual Small Satellite Conference, Logan, UT, USA, 5–10 August 2023; Paper No. SSC23-XIII-01. Available online: https://digitalcommons.usu.edu/smallsat/2023/all2023/130/ (accessed on 6 October 2024).
- Klesh, A.T.; Baker, J.; Krajewski, J.; MarCO Flight Operations Team. MarCO: Flight Review and Lessons Learned. In Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 3–8 August 2019; Paper ID: SSC19-III-04. Available online: https://digitalcommons.usu.edu/smallsat/2019/all2019/276/ (accessed on 6 October 2024).
- Asmar, S.W.; Matousek, S. Mars Cube One (MarCO): Shifting the Paradigm in Relay Deep Space Operations. In Proceedings of the SpaceOps 2016 Conference, Daejeon, South Korea, 16–20 May 2016. AIAA Paper 2016-2483. [Google Scholar] [CrossRef]
- Chahat, N.; Decrossas, E.; Kobayashi, M.M. Mars Cube One. In CubeSat Antenna Design; Wiley-IEEE Press: Hoboken, NJ, USA, 2021; pp. 35–89. [Google Scholar] [CrossRef]
- NASA. Missions: Mars Cube One (MarCO). Available online: https://science.nasa.gov/mission/marco/ (accessed on 6 October 2024).
- Cottini, V.; Aslam, S.; Gorius, N.; Hewagama, T.; Glaze, L.; Ignatiev, N.; Piccioni, G.; D’Aversa, E. CUVE—CubeSat UV Experiment: Unveil Venus’ UV Absorber with CubeSat UV Mapping Spectrometer. In Proceedings of the European Planetary Science Congress, Riga, Latvia, 17–22 September 2017; Abstract No. EPSC2017-771. Available online: https://ui.adsabs.harvard.edu/abs/2017EPSC...11..771C (accessed on 6 October 2024).
- Mauro, D.; Colaprete, A.; Cook, A.; Snyder, T.; Bonner, K.; Larrabee, D.; Dono-Perez, A.; Kashani, A. The Aeolus Mission Concept: An Innovative Mission to Study the Winds and Climate of Mars. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–9 August 2018; Paper ID: SSC18-V-06. Available online: https://digitalcommons.usu.edu/smallsat/2018/all2018/285/ (accessed on 6 October 2024).
- Minton, D.; Spencer, D.; Horgan, B.; Putnam, Z.; Puig-Suari, J.; Christensen, P.; Tinker, C. CHARIOT TO THE MOONS OF MARS. In Proceedings of the 49th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2018; Available online: https://www.researchgate.net/publication/379116280_CHARIOT_TO_THE_MOONS_OF_MARS (accessed on 6 October 2024).
- Kantsiper, B. The Double Asteroid Redirection Test (DART) Mission Electric Propulsion Trade. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Tortora, P.; Di Tana, V. LICIACube, the Italian Witness of DART Impact on Didymos. In Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Turin, Italy, 19–21 June 2019; pp. 314–317. [Google Scholar] [CrossRef]
- Dotto, E.; Della Corte, V.; Amoroso, M.; Bertini, I.; Brucato, J.R.; Capannolo, A.; Cotugno, B.; Cremonese, G.; Di Tana, V.; Gai, I.; et al. LICIACube—The Light Italian Cubesat for Imaging of Asteroids In Support of the NASA DART Mission Towards Asteroid (65803) Didymos. Planet. Space Sci. 2021, 199, 105185. [Google Scholar] [CrossRef]
- Scarpa, E.; Battezzati, N.; Ciaglia, S.; Tricarico, P.; Cotugno, B.; Fazzoletto, E.; Impresario, G. The First-Ever Asteroid Fly-By Performed by a CubeSat: Outcomes of the LICIACube Mission. In Proceedings of the 37th Annual Small Satellite Conference, Logan, UT, USA, 5–10 August 2023; Paper ID: SSC23-I-01. Available online: https://digitalcommons.usu.edu/smallsat/2023/all2023/1/ (accessed on 7 October 2024).
- Lantoine, G.; Cox, A.; Sweetser, T.; Grebow, D.; Whiffen, G.; Garza, D.; Petropoulos, A.; Oguri, K.; Kangas, J.; Kruizinga, G.; et al. Trajectory & Maneuver Design of the NEA Scout Solar Sail Mission. Acta Astronaut. 2024, 225, 77–98. [Google Scholar] [CrossRef]
- Talbert, T. ART Gets Its CubeSat Companion, Its Last Major Piece. NASA, 1 October 2021. Available online: https://www.nasa.gov/science-research/planetary-science/dart-gets-its-cubesat-companion-its-last-major-piece/ (accessed on 8 October 2024).
- Talbert, T. First Images from Italian Space Agency’s LICIACube Satellite. NASA, 27 September 2022. Available online: https://www.nasa.gov/solar-system/first-images-from-italian-space-agencys-liciacube-satellite/ (accessed on 7 October 2024).
- European Space Agency (ESA). Hera: Examining the First Test of Asteroid Deflection, Performing the First Survey of a Binary Asteroid System. Available online: https://www.esa.int/Space_Safety/Hera (accessed on 7 October 2024).
- Goldberg, H.R.; Karatekin, O.; Ritter, B.; Herique, A.; Tortora, P.; Prioroc, C.; Gutierrez, B.G.; Martino, P.; Carnelli, I. The Juventas CubeSat in Support of ESA’s Hera Mission to the Asteroid Didymos. In Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 3–8 August 2019; Paper ID: SSC19-WKIV-05. Available online: https://digitalcommons.usu.edu/smallsat/2019/all2019/73/ (accessed on 7 October 2024).
- Ferrari, F.; Franzese, V.; Pugliatti, M.; Giordano, C.; Topputo, F. Preliminary Mission Profile of Hera’s Milani CubeSat. Adv. Space Res. 2021, 67, 2010–2029. [Google Scholar] [CrossRef]
- Hera Mission. Milani CubeSat. Available online: https://www.heramission.space/hera-mission-milani-cubesat (accessed on 7 October 2024).
- Hera Mission. Juventas CubeSat. Available online: https://www.heramission.space/hera-mission-juventas-cubesat (accessed on 7 October 2024).
- NASA. Asteroids | Apophis. Available online: https://science.nasa.gov/solar-system/asteroids/apophis/ (accessed on 7 October 2024).
- Fogliano, V.; Walker, R.; Simonetti, S.; Cabral, F.d.S.P.; Ambrosio, G.; Karatekin, O.; Ritter, B.; Güttler, C.; Soons, K. SATIS: A Mission Study for a Deep-Space CubeSat to Observe (99942) Apophis, a Near-Earth Potential Hazardous Asteroid, Before, During, and After the Earth Fly-By. In Small Satellites Systems and Services Symposium (4S 2024); SPIE: Bellingham, WA, USA, 2025; Volume 13546. [Google Scholar] [CrossRef]
- Olivares-Mendez, M.; Makhdoomi, M.R.; Yalçın, B.C.; Bokal, Z.; Muralidharan, V.; Ortiz Del Castillo, M.; Gaudilliere, V.; Pauly, L.; Borgue, O.; Alandihallaj, M.; et al. Zero-G Lab: A Multi-Purpose Facility for Emulating Space Operations. J. Space Saf. Eng. 2023, 10, 509–521. [Google Scholar] [CrossRef]
- Yalçın, B.C.; Martinez, C.; Coloma, S.; Skrzypczyk, E.; Olivares-Mendez, M.A. Lightweight Floating Platform for Ground-Based Emulation of On-Orbit Scenarios. IEEE Access 2023, 11, 94575–94588. [Google Scholar] [CrossRef]
- Spiegel, I.A.; Zhou, B.; Goodloe, R.; Fox, B.; DiMatteo, J. CubeSat Proximity Operations Demonstration (CPOD) Mission Results. In Proceedings of the 37th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 5–10 August 2023; Paper ID: SSC23-XI-01. Available online: https://digitalcommons.usu.edu/smallsat/2023/all2023/119/ (accessed on 4 February 2025).
- Space-π. Vizard-ion. Available online: https://spacepi.space/satellites/vizard-ion/ (accessed on 3 June 2025).
- Yaginuma, K.; Asakawa, J.; Nakagawa, Y.; Tsuruda, Y.; Koizumi, H.; Kakihara, K.; Yanagida, K.; Murata, Y.; Ikura, M.; Matsushita, S.; et al. AQT-D: CubeSat Demonstration of a Water Propulsion System Deployed from ISS. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2020, 18, 141–148. [Google Scholar] [CrossRef]
- NASA. TechEdSat-10 Deploys from Space Station. 2020. Available online: https://www.nasa.gov/image-article/techedsat-10-deploys-from-space-station/ (accessed on 4 February 2025).
- Katan, C. NASA’s Next Solar Sail: Lessons Learned from NanoSail-D2. In Proceedings of the 26th Annual AIAA/USU Conference on Small Satellites: Enhancing Global Awareness through Small Satellites, Logan, UT, USA, 13–16 August 2012; Paper ID: M12-1762. Available online: https://digitalcommons.usu.edu/smallsat/2012/all2012/84/ (accessed on 4 February 2025).
- Slavinskis, A.; Janhunen, P. Special Issue: Advances in CubeSat Sails and Tethers (1st Edition). Aerospace 2024, 11, 1016. [Google Scholar] [CrossRef]
- Spencer, D.A.; Betts, B.; Bellardo, J.M.; Diaz, A.; Plante, B.; Mansell, J.R. The LightSail 2 Solar Sailing Technology Demonstration. Adv. Space Res. 2021, 67, 2878–2889. [Google Scholar] [CrossRef]
- Porter, A.; Freedman, M.; Grist, R.; Wesson, C.; Hanson, M. Flight Qualification of a Water Electrolysis Propulsion System. In Proceedings of the 35th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 7–12 August 2021; Paper ID: SSC21-XI-06. Available online: https://digitalcommons.usu.edu/smallsat/2021/all2021/209/ (accessed on 5 February 2025).
- Underwood, C.; Viquerat, A.; Taylor, B.; Massimiani, C.; Duke, R.; Fellowes, S.; Schenk, M.; Stewart, B.; Bridges, C.P.; Masutti, D.; et al. The InflateSail CubeSat Mission—The First European Demonstration of Drag-Sail De-Orbiting. In Proceedings of the 4th IAA Conference on University Satellite Missions and CubeSat Workshop, Rome, Italy, 4–7 December 2017; Volume 163. [Google Scholar]
- Stohlman, O.R.; Lappas, V. Development of the Deorbitsail Flight Model. In Proceedings of the AIAA SciTech Forum, National Harbor, MD, USA, 13–17 January 2014. AIAA Paper 2014-1509. [Google Scholar] [CrossRef]
- Hunter, R.C.; Agasid, E.F.; Baker, C.E.; Treptow, J.V.; Mayer, D.J.; Phan, S.; De Rosee, R.; Stupl, J.; Fishman, J.L. NASA Small Spacecraft Technology (SST) Program: Recent and Upcoming Technology Demonstrations and Development Efforts. In Proceedings of the Small Satellites Systems and Services Symposium (4S 2024), Palma de Mallorca, Spain, 27 May–1 June 2024; Petrozzi-Ilstad, M., Ed.; SPIE: Bellingham, WA, USA, 2025; Volume 13546. [Google Scholar] [CrossRef]
- NASA. NASA Begins New Deployable Solar Array Tech Demo on Pathfinder Spacecraft. 2024. Available online: https://www.nasa.gov/general/nasa-begins-new-deployable-solar-array-tech-demo-on-pathfinder-spacecraft/ (accessed on 4 February 2025).
- NASA. Pathfinder Technology Demonstrator (PTD). 2024. Available online: https://www.nasa.gov/smallspacecraft/pathfinder-technology-demonstrator/ (accessed on 4 February 2025).
- Goodwill, J.; Wilson, C.; MacKinnon, J. Current AI Technology in Space. In Precision Medicine for Long and Safe Permanence of Humans in Space; Krittanawong, C., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 239–250. [Google Scholar] [CrossRef]
- Guerrisi, G.; Del Frate, F.; Schiavon, G. Artificial Intelligence Based On-Board Image Compression for the Φ-Sat-2 Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8063–8075. [Google Scholar] [CrossRef]
- Miller, S.; Adams, C.; Alem, N.; Cannon, H.; Grashuis, R.; Hendriks, T.; Hwang, S.; Iatauro, M.; Pires, C.; Kruger, J.; et al. Starling CubeSat Swarm Technology Demonstration Flight Results. In Proceedings of the 38th Annual Small Satellite Conference; Logan, UT, USA, 5–10 August 2024, Paper ID: SSC24-I-06. Available online: https://ntrs.nasa.gov/api/citations/20240006994/downloads/SSC24_Starling_Swarm_Flight_Results.pdf (accessed on 5 February 2025).
- Kepko, L.; Santos Soto, L.; Clagett, C.; Azimi, B.; Chai, D.; Cudmore, A.; Marshall, J.; Lucas, J. Dellingr: Reliability Lessons Learned from On-Orbit. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–9 August 2018; Paper ID: SSC18-I-01. Available online: https://digitalcommons.usu.edu/smallsat/2018/all2018/250/ (accessed on 5 February 2025).
- Kanekal, S.; Lucas, J. CeREs: The Compact Radiation Belt Explorer. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–9 August 2018; Available online: https://digitalcommons.usu.edu/smallsat/2018/all2018/259/ (accessed on 5 February 2025).
- International Amateur Radio Union (IARU). TRISAT-R Satellite Coordination Details. Available online: https://iaru.amsat-uk.org/formal_detail.php?serialnum=708 (accessed on 4 February 2025).
- University of Maribor. TRISAT-R Mission Overview. Available online: https://trisat.um.si/trisat-r.html (accessed on 4 February 2025).
- University of Montpellier. Nanosatellites Projects: Our 1U Projects. Centre Spatial Universitaire Montpellier-Nîmes (CSUM). Available online: https://csum.umontpellier.fr/en/nanosatellites-projects-our-1u-projects/ (accessed on 4 February 2025).
- Mersmann, K. Dellingr: The Little CubeSat That Could. NASA. Available online: https://www.nasa.gov/solar-system/dellingr-the-little-cubesat-that-could/ (accessed on 4 February 2025).
- European Space Agency. AI CubeSat Headed to Van Allen Belts on Vega-C. Available online: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/AI_CubeSat_headed_to_Van_Allen_Belts_on_Vega-C (accessed on 7 February 2025).
- Vergoossen, T.; Villar, A.; Lohrmann, A.; Lim, H.Y.; Shankar, D.; Bedington, R.; Wildfeuer, C.F.; Griffin, D.; Oi, D.K.L.; Bai, X.; et al. SpooQy-1: The First Nano-Satellite to Demonstrate Quantum Entanglement in Space. In Proceedings of the 34th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 1–6 August 2020; Paper ID: SSC20-WKII-02. Available online: https://digitalcommons.usu.edu/smallsat/2020/all2020/10/ (accessed on 7 February 2025).
- SpeQtral. Satellite QKD—Harnessing the Fundamental Laws of the Universe to Protect Our Most Vital Digital Communications. Available online: https://speqtralquantum.com/technology/satellite-qkd (accessed on 7 February 2025).
- Mercury, C.; Mohapatra, S.; Colquhoun, C.; Greenland, S.; Cebecauer, M.; Karagiannakis, P.; McTaggart, A.; Lowndes, D.; Stefko, M.; Rarity, J. Payload Testing of a Weak Coherent Pulse Quantum Key Distribution Module for the Responsive Operations on Key Services (ROKS) Mission. In Proceedings of the 35th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 7–12 August 2021; Utah State University: Logan, UT, USA, 2021. Paper ID: SSC21-IX-04. Available online: https://digitalcommons.usu.edu/smallsat/2021/all2021/195/ (accessed on 7 February 2025).
- Snowden, C. An Update on Missions 1 and 2: Same Name, New Vehicle, New Standard for Space Exploration. AstroForge, 10 January 2025. Available online: https://www.astroforge.com/updates/an-update-on-mission-1-mission-2-same-name-new-vehicle-new-standard-for-space-exploration (accessed on 7 February 2025).
- Nogales, C.; Grim, B.; Kamstra, M.; Campbell, B.; Ewing, A.; Hance, R.; Griffin, J.; Parke, S. MakerSat-0: 3D-Printed Polymer Degradation First Data from Orbit. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–9 August 2018; Paper ID: SSC18-WKIII-01. Available online: https://digitalcommons.usu.edu/smallsat/2018/all2018/434/ (accessed on 7 February 2025).
- Campbell, B.; Nogales, C.; Grim, B.; Kamstra, M.; Griffin, J.; Parke, S. On-Orbit Polymer Degradation Results from MakerSat-1: First Satellite Designed to Be Additively Manufactured in Space. In Proceedings of the 34th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 1–6 August 2020; Paper ID: SSC20-WKVII-04. Available online: https://digitalcommons.usu.edu/smallsat/2020/all2020/45/ (accessed on 7 February 2025).
- The CubeSat Program. CubeSat Design Specification Rev. 14.1; California Polytechnic State University: San Luis Obispo, CA, USA, 2022; Available online: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf (accessed on 10 May 2025).
- Loo, C.C.; Wang, X. Navigating the Spectrum: An Overview of ITU’s Regulatory Process for Small Satellites. In Proceedings of the 38th Annual Conference on Small Satellites, Logan, UT, USA, 3–8 August 2024; Paper ID: SSC24-XI-05. Available online: https://digitalcommons.usu.edu/smallsat/2024/all2024/134/ (accessed on 7 May 2025).
- ITU Radiocommunication Sector. ITU-R Handbook on Small Satellites. Available online: https://www.itu.int/hub/publication/r-hdb-65-2023/ (accessed on 7 May 2025).
- Federal Register the Daily Journal of the United States Government. Space Innovation; Mitigation of Orbital Debris in the New Space Age. Available online: https://www.federalregister.gov/documents/2024/08/09/2024-17093/space-innovation-mitigation-of-orbital-debris-in-the-new-space-age (accessed on 7 May 2025).
- European Space Agency (ESA). ESA’s Zero Debris Approach. Available online: https://www.esa.int/Space_Safety/Clean_Space/ESA_s_Zero_Debris_approach (accessed on 7 May 2025).
- National Aeronautics and Space Administration (NASA). Deorbit Systems—State of the Art Report. Available online: https://www.nasa.gov/smallsat-institute/sst-soa/deorbit-systems/ (accessed on 7 May 2025).
- ClearSpace. ClearSpace—In-Orbit Servicing and Space Debris Removal. 2025. Available online: https://clearspace.today/ (accessed on 5 June 2025).
- Astroscale. Astroscale: On-Orbit Servicing and Space Debris Removal Solutions. 2025. Available online: https://astroscale.com/ (accessed on 5 June 2025).
- Yalçin, B.C.; Peitso, P.; Janhunen, P.; Genzer, M.; Yli-Opas, P.; Laurila, H.; Hieta, M.; Haukka, H.; Macieira, D.; Toivanen, P.; et al. New Challenges and Opportunities of Passive Deorbiting Systems: Emulation of Micro-Gravity for the ESA-Dragliner. In Proceedings of the IEEE International Conference on Space Robotics (iSpaRo) 2024, Luxembourg, 24–27 June 2024; Available online: https://orbilu.uni.lu/handle/10993/61747 (accessed on 5 June 2025).
- Inter-Agency Space Debris Coordination Committee (IADC). Available online: https://www.iadc-home.org/what_iadc (accessed on 7 May 2025).
- Peter, H. The Importance of the UN COPUOS in the Space Debris Mitigation: What Evolution for the UN COPUOS? In Proceedings of the 8th European Conference on Space Debris (Virtual), Darmstadt, Germany, 20–23 April 2021; Flohrer, T., Lemmens, S., Schmitz, F., Eds.; ESA Space Debris Office, May 2021. Available online: https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/194 (accessed on 7 May 2025).
- Fiete, R.; Tantalo, T.; Calus, J.; Mooney, J. Image quality assessment of sparse aperture designs. In Proceedings of the 29th Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 16–18 October 2000; pp. 269–282. [Google Scholar] [CrossRef]
- Johnson, D. IEEE Spectrum. Chip-Scale Spectrometers Compete With Performance of Standard Versions. Available online: https://spectrum.ieee.org/chipscale-spectrometers-match-peformance-of-their-big-brothers (accessed on 4 June 2025).
- Dolph Microwave. How Big Are Satellite Antennas? Available online: https://www.dolphmicrowave.com/default/how-big-are-satellite-antennas/ (accessed on 4 June 2025).
Classification | Satellite Mass (kg) |
---|---|
Large satellites | >1000 |
Medium satellites | 500–1000 |
Minisatellites | 100–500 |
Microsatellites | 10–100 |
Nanosatellites | 1–10 |
Picosatellites | 0.1–1 |
Femtosatellites | <0.1 |
CubeSat Size | Maximum Dimensions (cm) | Maximum Weight (kg) |
---|---|---|
1U | 10 × 10 × 11.35 | 2 |
1.5U | 10 × 10 × 17.15 | 3 |
2U | 10 × 10 × 22.90 | 4 |
3U | 10 × 10 × 34.05 | 6 |
6U | 22.63 × 10 × 34.05 | 12 |
6U XL | 22.63 × 10 × 36.60 | 12 |
8U | 22.63 × 10 × 45.40 | 16 |
12U | 22.63 × 22.63 × 34.05 | 24 |
16U | 22.63 × 22.63 × 45.40 | 32 |
Band Definition | Band Wavelength Boundaries (µm) |
---|---|
Visible | 0.38–0.75 |
NIR | 0.75–1.4 |
SWIR | 1.4–3 |
MWIR * | 3–8 |
LWIR * | 8–15 |
FIR | 15–1000 |
Microwave | 1000–1 × |
Band Designation | Frequency Spectrum |
---|---|
HF | 3–30 MHz |
VHF | 30–300 MHz |
UHF | 300–1000 MHz |
L-band | 1–2 GHz |
S-band | 2–4 GHz |
C-band | 4–8 GHz |
Ku-band | 12–18 GHz |
K-band | 18–27 GHz |
Ka-band | 27–40 GHz |
V-band | 40–75 GHz |
W-band | 75–110 GHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzoukis, K.-P.; Moraitis, G.; Kostopoulos, V.; Lappas, V. An Overview of CubeSat Missions and Applications. Aerospace 2025, 12, 550. https://doi.org/10.3390/aerospace12060550
Bouzoukis K-P, Moraitis G, Kostopoulos V, Lappas V. An Overview of CubeSat Missions and Applications. Aerospace. 2025; 12(6):550. https://doi.org/10.3390/aerospace12060550
Chicago/Turabian StyleBouzoukis, Konstantinos-Panagiotis, Georgios Moraitis, Vassilis Kostopoulos, and Vaios Lappas. 2025. "An Overview of CubeSat Missions and Applications" Aerospace 12, no. 6: 550. https://doi.org/10.3390/aerospace12060550
APA StyleBouzoukis, K.-P., Moraitis, G., Kostopoulos, V., & Lappas, V. (2025). An Overview of CubeSat Missions and Applications. Aerospace, 12(6), 550. https://doi.org/10.3390/aerospace12060550