Validation of an AI-Assisted Terrain-Aided Navigation Algorithm Using Real-World Flight Test Instrumentation Data
Abstract
:1. Introduction
2. Previous Work
2.1. Batch TAN Algorithms
2.2. Recursive TAN Algorithms
2.3. Hybrid TAN Algorithms
2.4. Gravity-Aided and Magnetic Navigation Algorithms
3. TAN Methodology
3.1. Modeling INS Errors Using Linearized State Equations
3.2. TAN Fundamentals
3.3. Terrain Server
3.4. Filter Formulations
3.4.1. Kalman Filter Formulation
3.4.2. Unscented Kalman Filter (UKF) Formulation
3.4.3. Particle Filter (PF) Formulation
4. Proposed Algorithms
4.1. Bank of Kalman Filters
4.2. Our TAN Algorithm
4.3. AI Supervisor
5. Simulations and Results
5.1. Simulations
5.2. Validation with Real World FTI Data
5.3. Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bekar, U.C.; Tanyeri, B.; Canoglu, A.S.; Uslu, I.E.; Gungor, N.A.; Inalhan, G. AI-assisted Digital Terrain System for an Advanced Jet Trainer. In Proceedings of the 2024 AIAA DATC/IEEE 43rd Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 29 September–3 October 2024; pp. 1–10. [Google Scholar] [CrossRef]
- Golden, J.P. Terrain contour matching (TERCOM): A cruise missile guidance aid. In Proceedings of the Image Processing for Missile Guidance, SPIE, San Diego, CA, USA, 29 July–1 August 1980; Volume 238, pp. 10–18. [Google Scholar]
- Hostetler, L.; Beckmann, R. Sandia Inertial Terrain-Aided Navigation System. 1977. Available online: https://scholar.google.com.tr/scholar?cluster=3935347283561463586&hl=tr&as_sdt=0,5 (accessed on 29 May 2025).
- Hostetler, L.; Andreas, R. Nonlinear Kalman filtering techniques for terrain-aided navigation. IEEE Trans. Autom. Control 1983, 28, 315–323. [Google Scholar] [CrossRef]
- Ekütekin, V. Navigation and Control Studies on Cruise Missiles. Ph.D. Thesis, Middle East Technical University, Ankara, Turkiye, 2007. [Google Scholar]
- Johnson, N.; Tang, W.; Howell, G. Terrain aided navigation using maximum a posteriori estimation. In Proceedings of the IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences, Las Vegas, NV, USA, 20 March 1990; pp. 464–469. [Google Scholar]
- Erhui, W.; Guohua, G.; Lincheng, S.; Wensen, C. A probability-based terrain-aided navigation approach and its relative terrain navigability analysis. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT’96), Shanghai, China, 2–6 December 1996; pp. 781–785. [Google Scholar]
- Qingtang, F.; Lincheng, S.; Wenseng, C. Terrain aided navigation using PDAF. In Proceedings of the IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China, 8–13 October 2003; Volume 2, pp. 1063–1068. [Google Scholar]
- Zhou, H.; Zhang, C.y. Terrain aided navigation based on computer vision. In Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No. 02EX527), Shanghai, China, 10–14 June 2002; Volume 3, pp. 2164–2166. [Google Scholar]
- Chen, Z.; Yu, P. Model study for terrain aided navigation systems. In Proceedings of the IEEE International Symposium on Industrial Electronics, Xi’an, China, 25–29 May 1992; pp. 848–849. [Google Scholar]
- Wang, W.; Chen, Z. Error model identification on digital map of TAN system based on EKF. In Proceedings of the 1994 IEEE International Conference on Industrial Technology-ICIT’94, Guangzhou, Chin, 5–9 December 1994; pp. 818–822. [Google Scholar]
- Yu, P.J.; Chen, Z.; Hung, J.C. Performance evaluation of six terrain stochastic linearization techniques for TAN. In Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991, Dayton, OH, USA, 20–24 May 1991; pp. 382–388. [Google Scholar]
- Baird, C.A.; Snyder, F.B.; Beierle, M. Terrain-aided altitude computations on the AFTI/F-16. In Proceedings of the IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences, Las Vegas, NV, USA, 20 March 1990; pp. 474–481. [Google Scholar]
- Hollowell, J. Heli/SITAN: A terrain referenced navigation algorithm for helicopters. In Technical Report; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 1990. [Google Scholar]
- Pei, Y.; Chen, Z.; Hung, J. BITAN-II: An improved terrain aided navigation algorithm. In Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation, Taipei, Taiwan, 9 August 1996; Volume 3, pp. 1675–1680. [Google Scholar]
- Chen, Z. BUAA Inertial Terrain Aided Navigation. Icas92 1992. Available online: https://scholar.google.com.tr/scholar?q=BUAA+Inertial+Terrain+Aided+Navigation&hl=tr&as_sdt=0%2C5&as_ylo=1992&as_yhi=1992 (accessed on 29 May 2025).
- Bergman, N.; Ljung, L. Point-mass filter and Cramer-Rao bound for terrain-aided navigation. In Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, 12 December 1997; Volume 1, pp. 565–570. [Google Scholar]
- Nordlund, P.J.; Gustafsson, F. Recursive estimation of three-dimensional aircraft position using terrain-aided positioning. In Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, FL, USA, 13–17 May 2002; Volume 2, p. II-1121. [Google Scholar]
- Enns, R.; Morrell, D. Terrain-aided navigation using the Viterbi algorithm. J. Guid. Control. Dyn. 1995, 18, 1444–1449. [Google Scholar] [CrossRef]
- Dezert, J. Improvement of strapdown inertial navigation using PDAF. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 835–856. [Google Scholar] [CrossRef]
- Madhavan, R.; Durrant-Whyte, H.; Dissanayake, G. Natural landmark-based autonomous navigation using curvature scale space. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), Washington, DC, USA, 11–15 May 2002; Volume 4, pp. 3936–3941. [Google Scholar]
- Bruder, S.B.; Wedeward, K. Terrain aided INS robot navigation: A deferred decision making approach. In Proceedings of the 42nd Midwest Symposium on Circuits and Systems (Cat. No. 99CH36356), Las Cruces, NM, USA, 8–11 August 1999; Volume 1, pp. 135–139. [Google Scholar]
- Morisue, F.; Ikeda, K. Evaluation of map-matching techniques. In Proceedings of the Conference Record of papers presented at the First Vehicle Navigation and Information Systems Conference (VNIS’89), Toronto, ON, Canada, 11–13 September 1989; pp. 23–28. [Google Scholar]
- Xu, H.; Tian, Y.; Su, J.; Tian, J.; Liu, J. Terrain matching based on imaging laser radar. In Proceedings of the 6th International Conference on Signal Processing, Beijing, China, 26–30 August 2002; Volume 2, pp. 1043–1046. [Google Scholar]
- Bevington, J.E.; Marttila, C.A. Precision aided inertial navigation using sar and digital map data. In Proceedings of the IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences, Las Vegas, NV, USA, 20 March 1990; pp. 490–496. [Google Scholar]
- Metzger, J.; Wendel, J.; Trommer, G.F.; Tumbragel, F.; Taddiken, B. Hybrid terrain referenced navigation system using a bank of Kalman filters and a comparison technique. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, RI, USA, 16–19 August 2004; pp. 1–12. [Google Scholar]
- Yoo, Y.; Lee, W.; Lee, S.; Park, C.; Kwon, J. Improvement of TERCOM aided inertial navigation system by velocity correction. In Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA, 23–26 April 2012; pp. 1082–1087. [Google Scholar]
- Wilkinson, N.; Brookes, T.; Price, A.; Godfrey, M. Latest developments of the TERPROM® digital terrain system 2009. In Proceedings of the Joint Navigation Conference, Orlando, FL, USA, 2–4 June 2009. [Google Scholar]
- Lee, J.; Sung, C.K.; Oh, J.; Han, K.; Lee, S.; Yu, M.J. A Pragmatic Approach to the Design of Advanced Precision Terrain-Aided Navigation for UAVs and Its Verification. Remote Sens. 2020, 12, 1396. [Google Scholar] [CrossRef]
- Navon, D.; Rivlin, E.; Rotstein, H. A Robust Approach to Vision-Based Terrain-Aided Localization. Navig. J. Inst. Navig. 2025, 72, 683. [Google Scholar] [CrossRef]
- Bijjahalli, S.; Sabatini, R.; Gardi, A. Advances in intelligent and autonomous navigation systems for small UAS. Prog. Aerosp. Sci. 2020, 115, 100617. [Google Scholar] [CrossRef]
- Lee, J.; Sung, C.; Nam, S. CRLB analysis for a robust TRN based on a combination of RNN and PF. Int. J. Aeronaut. Space Sci. 2020, 21, 265–276. [Google Scholar] [CrossRef]
- González-García, J.; Gómez-Espinosa, A.; Cuan-Urquizo, E.; García-Valdovinos, L.G.; Salgado-Jiménez, T.; Escobedo Cabello, J.A. Autonomous underwater vehicles: Localization, navigation, and communication for collaborative missions. Appl. Sci. 2020, 10, 1256. [Google Scholar] [CrossRef]
- Kim, Y.; Back, S.; Song, D.; Lee, B.Y. Aerial Map-Based Navigation by Ground Object Pattern Matching. Drones 2024, 8, 375. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.; Bang, H. Enhanced Terrain-Referenced Navigation Through Adaptive Radar Altimeter Error Estimation with Monte Carlo Sampling. Int. J. Aeronaut. Space Sci. 2025, 1–21. [Google Scholar] [CrossRef]
- Choe, Y.; Song, J.W.; Park, C.G. Lightweight marginalized particle filtering with enhanced consistency for terrain referenced navigation. IEEE Trans. Aerosp. Electron. Syst. 2021, 58, 2493–2504. [Google Scholar] [CrossRef]
- Canciani, A.J. Magnetic navigation on an F-16 aircraft using online calibration. IEEE Trans. Aerosp. Electron. Syst. 2021, 58, 420–434. [Google Scholar] [CrossRef]
- Wang, B.; Ma, Z.; Huang, L.; Deng, Z.; Fu, M. A filtered-marine map-based matching method for gravity-aided navigation of underwater vehicles. IEEE/ASME Trans. Mechatronics 2022, 27, 4507–4517. [Google Scholar] [CrossRef]
- Yuan, G.; Zhang, H.; Yuan, K.; Zhu, L. Improved SITAN algorithm in the application of aided inertial navigation. In Proceedings of the 2012 International Conference on Measurement, Information and Control, Harbin, China, 18–20 May 2012; Volume 2, pp. 922–926. [Google Scholar]
- Wang, R.; Wang, J.; Li, Y.; Ma, T.; Zhang, X. Research Advances and Prospects of Underwater Terrain-Aided Navigation. Remote Sens. 2024, 16, 2560. [Google Scholar] [CrossRef]
- Keller, B.A.; Putman, N.F.; Grubbs, R.D.; Portnoy, D.S.; Murphy, T.P. Map-like use of Earth’s magnetic field in sharks. Current Biology 2021, 31, 2881–2886. [Google Scholar] [CrossRef]
- Newman, P.; Durrant-Whyte, H. Using sonar in terrain-aided underwater navigation. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), Leuven, Belgium, 20 May 1998; Volume 1, pp. 440–445. [Google Scholar]
- Sung, C.K.; Lee, S.J. Moment matched Gaussian kernel and region representative likelihood for performance improvement of PMF-based TRN. Int. J. Control. Autom. Syst. 2020, 18, 1691–1704. [Google Scholar] [CrossRef]
- Luque, I.D. Planes de Contingencia GNSS a Largo Plazo. 2020. Available online: https://isdefeinnova.es/wp-content/uploads/2023/05/Planes-de-contingencia-GNSS-a-largo-plazo.pdf (accessed on 29 May 2025).
- Rodriquez, S.; Brashar, C.; Haydon, T.C.E.; Luong, A.; Pihlaja, C. PNT Resilience RFI Response. In Technical Report; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2020. [Google Scholar]
- Choe, Y.; Park, C.G. Point-mass filtering with boundary flow and its application to terrain referenced navigation. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3600–3613. [Google Scholar] [CrossRef]
- Li, R.K. All Source Positioning, Navigation and Timing; Artech House: Norwood, MA, USA, 2020. [Google Scholar]
- Carroll, J.D.; Canciani, A.J. Terrain-referenced navigation using a steerable-laser measurement sensor. Navigation 2021, 68, 115–134. [Google Scholar] [CrossRef]
- Han, Y.; Wang, B.; Deng, Z.; Fu, M. An improved TERCOM-based algorithm for gravity-aided navigation. IEEE Sens. J. 2016, 16, 2537–2544. [Google Scholar] [CrossRef]
- Wang, B.; Yu, L.; Deng, Z.; Fu, M. A particle filter-based matching algorithm with gravity sample vector for underwater gravity aided navigation. IEEE/ASME Trans. Mechatronics 2016, 21, 1399–1408. [Google Scholar] [CrossRef]
- Wu, L.; Ma, J.; Tian, J. A self-adaptive unscented Kalman filtering for underwater gravity aided navigation. In Proceedings of the IEEE/Ion Position, Location and Navigation Symposium, Indian Wells, CA, USA, 4–6 May 2010; pp. 142–145. [Google Scholar]
- Bao, B.; Hua, Y.; Wang, R.; Li, D. Quantum-Based Magnetic Field Sensors for Biosensing. Adv. Quantum Technol. 2023, 6, 2200146. [Google Scholar] [CrossRef]
- Noureldin, A.; Karamat, T.; Georgy, J. Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yiğit, H. Arazi Verisine Dayalı Konumlandırma ve Seyrüsefer Sistemi Tasarlanması. Master’s Thesis, Havacılık ve Uzay Teknolojileri Enstitüsü, Hava Harp Okulu Komutanlığı, Istanbul, 2012. [Google Scholar]
- Turan, B. Comparison of nonlinear filtering methods for terrain referenced aircraft navigation. In Proceedings of the 2020 IEEE/Ion Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020; pp. 144–149. [Google Scholar]
- Wang, Y.Y.; Jia, X.R.; Yang, G.L.; Wang, Y.M. Comprehensive CEP evaluation method for calculating positioning precision of navigation systems. Appl. Mech. Mater. 2013, 341, 955–960. [Google Scholar] [CrossRef]
Algorithm Type | Terrain Type Sensitivity | Computational Complexity Performance | Divergence Characteristic | Accuracy | Feasibility (Airborne Use) |
---|---|---|---|---|---|
Batch TAN | Medium | High | No | Medium–High | High |
Recursive TAN | Low | Medium–High | Yes | Medium | Medium |
Hybrid TAN | High | Medium | No | Medium–High | High |
Gravity-Aided Navigation | Low | High | Potentially Yes | Low–Medium | Low |
Magnetic Navigation | Low | High | Yes | Low–Medium | Low–Medium |
Proposed Algorithm | High | Low | No | High | High |
Terrain | ||
---|---|---|
Rough Terrain | 163.48 m | 1.29 m |
Moderate Terrain | 63.93 m | 0.41 m |
Flat Terrain | m∼0 m | m∼0 m |
Property | Accelerometer | Gyroscope | Barometric Altimeter |
---|---|---|---|
Frequency | 100 Hz | 100 Hz | 100 Hz |
Constant Bias | m/s2 | 250°/s | 0.01 Pa |
Noise Density | 2 |
184.782 m | 115.211 m | 21.158 m | 40.654 m | 21.988 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekar, Ü.C.; Tanyeri, B.; Uslu, I.E.; Gungor, N.A.; Inalhan, G. Validation of an AI-Assisted Terrain-Aided Navigation Algorithm Using Real-World Flight Test Instrumentation Data. Aerospace 2025, 12, 501. https://doi.org/10.3390/aerospace12060501
Bekar ÜC, Tanyeri B, Uslu IE, Gungor NA, Inalhan G. Validation of an AI-Assisted Terrain-Aided Navigation Algorithm Using Real-World Flight Test Instrumentation Data. Aerospace. 2025; 12(6):501. https://doi.org/10.3390/aerospace12060501
Chicago/Turabian StyleBekar, Ümit Can, Bilgehan Tanyeri, Ibrahim Enes Uslu, Nuri Arda Gungor, and Gokhan Inalhan. 2025. "Validation of an AI-Assisted Terrain-Aided Navigation Algorithm Using Real-World Flight Test Instrumentation Data" Aerospace 12, no. 6: 501. https://doi.org/10.3390/aerospace12060501
APA StyleBekar, Ü. C., Tanyeri, B., Uslu, I. E., Gungor, N. A., & Inalhan, G. (2025). Validation of an AI-Assisted Terrain-Aided Navigation Algorithm Using Real-World Flight Test Instrumentation Data. Aerospace, 12(6), 501. https://doi.org/10.3390/aerospace12060501