Reassessing the ICAO’s Standard Taxi/Ground Idle Time: A Statistical Analysis of Taxi Times at 71 U.S. Hub Airports
Abstract
:1. Introduction
2. Background
3. Materials and Methods
4. Results
4.1. Research Question 1
4.2. Research Question 2a
4.3. Research Question 2b
5. Discussion and Conclusions
- The FAA ASPM dataset publishes the airport operations data of 77 U.S. commercial airports. Among these 77 airports, 71 airports are categorized as hub airports (small, medium, large). In this study, the average quarter-hour taxi times for the 71 U.S. hub airports were collected and analyzed;
- The quarter-hour taxi time observations that contained a zero for either taxi-in time or taxi-out time were removed from the collected data sample. A zero taxi-in or taxi-out time indicates no landing or take-off operations, respectively. Therefore, in this study, for a quarter-hour taxi time observation to be considered for data analysis, at least one departure and one arrival operation must have occurred in that quarter-hour;
- According to the FAA ASPM dataset [9], taxi-in time is the “time difference between the Wheels On time and Gate In time, in minutes” (para. 40); taxi-out time is the “time differences between the Wheel Off time and Gate Out time, in minutes” (para. 42). In ICAO [6] SARPs Annex 16, taxi/ground idle for a standard LTO cycle is defined as “the operating phases involving taxi and idle between the initial starting of the propulsion engine(s) and the initial of the take-off roll and between the time of runway turn-off and final shutdown of all propulsion engine(s)” (pg. I-1-2). The potential discrepancies in the definitions of taxi times and idle mode may affect the analysis and results of the study. The FAA ASPM definitions do not consider the time when an aircraft stays at the gate with the engine(s) on, which is included in the ICAO definitions, whereas the ICAO definitions do not include the time spent on the runway, which is included in the ASPM data. While the differences in these two definitions are significant, the ASPM dataset does not provide a means to bridge the gap between them; taxi time and/or idle time data from other reliable and credible source(s) may be needed to eliminate these discrepancies;
- The FAA ASPM dataset provides the average taxi-in time and average taxi-out time for each quarter-hour, and not the specific taxi-in time or taxi-out time for each operation. The samples collected may have a higher standard deviation than the taxi time data of individual flights;
- The collected samples for each of the research questions violated the normality and constant variance assumptions for t-tests. Despite these violations, the large sample sizes in each RQ dataset may ensure the robustness and reliability of the data analysis results due to the Central Limit Theorem (CLT);
- The TIMs of the ICAO standard LTO cycle are designed for the estimation of emissions for turbine engine models. The quarter-hour taxi times collected from the FAA ASPM dataset may include taxi times for aircraft equipped with other types of engines. Type-of-engine data are not available from the ASPM dataset. The lack of engine-type data may reduce the effectiveness of the statistical analysis;
- Other factors that may cause variations in taxi time such as aircraft taxi speed, airport layout, and weather conditions are not considered in this study,
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Federal Aviation Administration Section 7. Taxi and Ground Movement Procedures. Available online: https://www.faa.gov/air_traffic/publications/atpubs/atc_html/chap3_section_7.html (accessed on 13 February 2025).
- Lee, D.S.; Pitari, G.; Grewe, V.; Gierens, K.; Penner, J.E.; Petzold, A.; Prather, M.J.; Schumann, U.; Bais, A.; Berntsen, T. Transport Impacts on Atmosphere and Climate: Aviation. Atmos. Environ. 2009, 44, 4678–4734. [Google Scholar] [CrossRef] [PubMed]
- Linn, W.S.; Szlachcic, Y.; Gong, H.; Kinney, P.L.; Berhane, K.T. Air Pollution and Daily Hospital Admissions in Metropolitan Los Angeles. Environ. Health Perspect. 2000, 108, 427. [Google Scholar] [CrossRef]
- Barrett, S.R.H.; Britter, R.E.; Waitz, I.A. Global Mortality Attributable to Aircraft Cruise Emissions. Environ. Sci. Technol. 2010, 44, 7736–7742. [Google Scholar] [CrossRef]
- International Civil Aviation Organization. 2022 Environmental Reports. Available online: https://www.icao.int/environmental-protection/Pages/ICAO_environmental_reports.aspx (accessed on 13 February 2025).
- International Civil Aviation Organization (ICAO) Annex 16-Environmental Protection-Volume II-Aircraft Engine Emissions. Available online: https://store.icao.int/en/annex-16-environmental-protection-volume-ii-aircraft-engine-emissions (accessed on 13 February 2025).
- Federal Aviation Administration Aviation System Performance Metrics (ASPM). [Dataset]. Available online: https://aspm.faa.gov/apm/sys/main.asp (accessed on 13 February 2025).
- National Plan of Integrated Airport Systems (NPIAS). Available online: https://www.faa.gov/airports/planning_capacity/npias (accessed on 13 February 2025).
- ASPM Taxi Times: Definitions of Variables—ASPMHelp. Available online: https://aspm.faa.gov/aspmhelp/index/ASPM_Taxi_Times__Definitions_of_Variables.html (accessed on 13 February 2025).
- Balakrishna, P.; Ganesan, R.; Sherry, L. Accuracy of Reinforcement Learning Algorithms for Predicting Aircraft Taxi-out Times: A Case-Study of Tampa Bay Departures. Transp. Res. Part C Emerg. Technol. 2010, 18, 950–962. [Google Scholar] [CrossRef]
- Clewlow, R.; Simaiakis, I.; Balakrishnan, H. Impact of Arrivals on Departure Taxi Operations at Airports. AIAA Guidance. In Proceedings of the Navigation and Control Conference, Toronto, ON, Canada, 2–5 August 2010. [Google Scholar] [CrossRef]
- Mirmohammadsadeghi, N.; Hu, J.; Trani, A. Enhancements to the Runway Capacity Simulation Model Using the ASDE-X Data for Estimating Airports Throughput under Various Wake Separation Systems. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar] [CrossRef]
- Park, D.K.; Kim, J.K. Influential Factors to Aircraft Taxi Time in Airport. J. Air Transp. Manag. 2022, 106, 102321. [Google Scholar] [CrossRef]
- Ravizza, S.; Atkin, J.D.; Maathuis, M.H.; Burke, E.K. A Combined Statistical Approach and Ground Movement Model for Improving Taxi Time Estimations at Airports. J. Oper. Res. Soc. 2012, 64, 1347–1360. [Google Scholar] [CrossRef]
- Srivastava, A. Improving Departure Taxi Time Predictions Using ASDE-X Surveillance Data. In Proceedings of the 2011 IEEE/AIAA 30th Digital Avionics Systems Conference, Seattle, WA, USA, 16–20 October 2011. [Google Scholar] [CrossRef]
- Lee, H.; Malik, W.; Zhang, B.; Nagarajan, B.; Jung, Y.C. Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques. In Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference, Dallas, TX, USA, 22–26 June 2015. [Google Scholar] [CrossRef]
- Lordan, O.; Sallan, J.M.; Valenzuela-Arroyo, M. Forecasting of Taxi Times: The Case of Barcelona-El Prat Airport. J. Air Transp. Manag. 2016, 56, 118–122. [Google Scholar] [CrossRef]
- Lee, H.; Malik, W.; Jung, Y.C. Taxi-Out Time Prediction for Departures at Charlotte Airport Using Machine Learning Techniques. In Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference, Washington, DC, USA, 13–17 June 2016. [Google Scholar] [CrossRef]
- Wang, X.; Brownlee, A.E.I.; Woodward, J.R.; Weiszer, M.; Mahfouf, M.; Chen, J. Aircraft Taxi Time Prediction: Feature Importance and Their Implications. Transp. Res. Part C Emerg. Technol. 2020, 124, 102892. [Google Scholar] [CrossRef]
- Gupta, S.; Johnson, M.; Wang, J. An Investigation of the Effect of Number of Hot Spots on Taxi Time at U.S. Hub Airports. In Proceedings of the 2023 ASEE Annual Conference & Exposition, Baltimore, MD, USA, 25–28 June 2023. [Google Scholar] [CrossRef]
- Wang, J.; Gupta, S.; Johnson, M. Comparison of Taxi-in and Taxi-out Times by Airport Hub Classification and Number of Hot Spots. Coll. Aviat. Rev. Int. 2024, 42. [Google Scholar] [CrossRef]
- Wang, J.; Gupta, S.; Johnson, M. Board 2: Exploring Average Taxi Times at U.S. Hub Airports with ASDE-X. In Proceedings of the 2024 ASEE Annual Conference & Exposition, Portland, OR, USA, 23–26 June 2024. [Google Scholar] [CrossRef]
- Wang, J.; Gupta, S.; Johnson, M. A Preliminary Study of Taxi-out Times Using Discrete-Event Simulation of an Airport with Intersecting Runways. In Proceedings of the 2024 ASEE North Central Section Conference, Kalamazoo, MI, USA, 22–23 March 2024. [Google Scholar] [CrossRef]
- Wang, J. Simulation Analysis of Implementing End-Around Taxiway on Crossing Runways. Ph.D. Dissertation, Purdue University, West Lafayette, IN, USA, 2024. [Google Scholar]
- International Civil Aviation Organization Airport Air Quality Manual (Second Edition). 2020. Available online: https://www.icao.int/publications/Documents/9889_cons_en.pdf (accessed on 13 February 2025).
- Song, S.-K.; Shon, Z.-H. Emissions of Greenhouse Gases and Air Pollutants from Commercial Aircraft at International Airports in Korea. Atmos. Environ. 2012, 61, 148–158. [Google Scholar] [CrossRef]
- Vujović, D.; Todorović, N. An Assessment of Pollutant Emissions Due to Air Traffic at Nikola Tesla International Airport, Belgrade, and the Link between Local Air Quality and Weather Types. Transp. Res. Part D Transp. Environ. 2017, 56, 85–94. [Google Scholar] [CrossRef]
- Kesgin, U. Aircraft Emissions at Turkish Airports. Energy 2005, 31, 372–384. [Google Scholar] [CrossRef]
- Simonetti, I.; Maltagliati, S.; Manfrida, G. Air Quality Impact of a Middle Size Airport within an Urban Context through EDMS Simulation. Transp. Res. Part D Transp. Environ. 2015, 40, 144–154. [Google Scholar] [CrossRef]
- Yılmaz, İ. Emissions from Passenger Aircraft at Kayseri Airport, Turkey. J. Air Transp. Manag. 2016, 58, 176–182. [Google Scholar] [CrossRef]
- Chilongola, F.D.; Ahyudanari, E. Aviation and Aircraft Engine Emissions at Juanda International Airport. IOP Conf. Ser. Mater. Sci. Eng. 2019, 645, 012022. [Google Scholar] [CrossRef]
- Estimation of Air Carrier Emissions at Raleigh-Durham International Airport. In Proceedings of the 102nd Annual Conference and Exhibition, Detroit, MI, USA, 16–19 June 2009; Paper 2009-A-486-AWMA. Air & Waste Management Association: Pittsburgh, PA, USA, 2009.
- Kuzu, S.L. Estimation and Dispersion Modeling of Landing and Take-off (LTO) Cycle Emissions from Atatürk International Airport. Air Qual. Atmos. Health 2017, 11, 153–161. [Google Scholar] [CrossRef]
- Van Pham, V.; Tang, J.; Alam, S.; Lokan, C.; Abbass, H.A. Aviation Emission Inventory Development and Analysis. Environ. Model. Softw. 2010, 25, 1738–1753. [Google Scholar] [CrossRef]
- Patterson, J.; Noel, G.J.; Senzig, D.A.; Roof, C.J.; Fleming, G.G. Analysis of Departure and Arrival Profiles Using Real-Time Aircraft Data. J. Aircr. 2009, 46, 1094–1103. [Google Scholar] [CrossRef]
- Mazaheri, M.; Johnson, G.R.; Morawska, L. An Inventory of Particle and Gaseous Emissions from Large Aircraft Thrust Engine Operations at an Airport. Atmos. Environ. 2011, 45, 3500–3507. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiao, Y.; Lang, J.; Chen, D.; Huang, C.; Wei, P.; Li, S.; Cheng, S. Improved Estimation of Air Pollutant Emissions from Landing and Takeoff Cycles of Civil Aircraft in China. Environ. Pollut. 2019, 249, 463–471. [Google Scholar] [CrossRef]
- Rice, C.C. Validation of Approach and Climb-Out Times-in-Mode for Aircraft Emissions Computation. Transp. Res. Rec. J. Transp. Res. Board 2003, 1850, 79–82. [Google Scholar] [CrossRef]
- Unique Aircraft NOx Emissions within the Operational LTO Cycle. Unique Flughafen Zurich AG 2004. Available online: https://www.yumpu.com/en/document/view/10746778/aircraft-nox-emissions-within-the-operational-lto-zurich-airport (accessed on 13 February 2025).
- Minitab Blog Editor Understanding T-Tests: 1-Sample, 2-Sample, and Paired T-Tests. Available online: https://blog.minitab.com/en/adventures-in-statistics-2/understanding-t-tests-1-sample-2-sample-and-paired-t-tests (accessed on 13 February 2025).
- Methods and Formulas for 1-Sample Wilcoxon—Minitab. Available online: https://support.minitab.com/en-us/minitab/help-and-how-to/statistics/nonparametrics/how-to/1-sample-wilcoxon/methods-and-formulas/methods-and-formulas/ (accessed on 13 February 2025).
- Johnson, D.B.; Mizoguchi, T. Selecting the Kth Element in X + Y and X1 + X2 + … + Xm. SIAM J. Comput. 1978, 7, 147–153. [Google Scholar] [CrossRef]
Modes | Time (in Minutes) |
---|---|
Approach | 4.0 |
Taxi/Ground Idle | 26.0 |
Take-off | 0.7 |
Climb | 2.2 |
Research Questions | Hypotheses | ||
---|---|---|---|
Parametric | Non-Parametric | ||
RQ1 | Ho: µ(taxi-in+taxi-out) = 26 min Ha: µ(taxi-in+taxi-out) ≠ 26 min for each of the 71 airports | Ho: η(taxi-in+taxi-out) = 26 min Ha: η(taxi-in+taxi-out) ≠ 26 min for each of the 71 airports | |
RQ2 | (a) | Ho: µ(taxi-in+taxi-out) = 26 min Ha: µ(taxi-in+taxi-out) ≠ 26 min for a combined sample of 71 airports | Ho: η(taxi-in+taxi-out) = 26 min Ha: η(taxi-in+taxi-out) ≠ 26 min for a combined sample of 71 airports |
(b) | Ho: µ(taxi-in+taxi-out) = 26 min Ha: µ(taxi-in+taxi-out) ≠ 26 min for airports grouped by S/M/L hubs | Ho: µ(taxi-in+taxi-out) = 26 min Ha: µ(taxi-in+taxi-out) ≠ 26 min for airports grouped by S/M/L hubs |
Data Source | ASPM Dataset 2 | NPIAS 2023–2027 3 | Average Quarter-Hour Total Taxi Time 4 (minutes) TTotal | ||||||
---|---|---|---|---|---|---|---|---|---|
Facility 1 | Date | Hour of the Day (6:00 a.m.–10:00 p.m.) | Quarter of the Hour | Departures for Metric Computation | Average Taxi-Out Time (minutes) TOut | Arrivals for Metric Computation | Average Taxi-In Time (minutes) TIn | NPIAS Hub Classification | |
ABQ | 1/1/2023 | 6 | 2 | 1 | 14 | 1 | 5 | M | 19.00 |
ABQ | 1/1/2023 | 10 | 3 | 3 | 7.67 | 2 | 5.5 | M | 13.17 |
ABQ | 1/1/2023 | 10 | 4 | 2 | 13.5 | 1 | 3 | M | 16.50 |
CLT | 10/12/2023 | 10 | 3 | 3 | 18.67 | 10 | 8.9 | L | 27.57 |
CLT | 10/12/2023 | 10 | 4 | 2 | 20 | 6 | 9.33 | L | 29.33 |
CLT | 10/12/2023 | 11 | 1 | 31 | 23.42 | 3 | 5 | L | 28.42 |
LGB | 1/4/2023 | 7 | 2 | 1 | 14 | 1 | 3 | S | 17.00 |
LGB | 1/4/2023 | 7 | 4 | 2 | 15.5 | 1 | 3 | S | 18.50 |
LGB | 1/4/2023 | 8 | 4 | 3 | 12 | 1 | 3 | S | 15.00 |
Descriptive Statistics (in Minutes) | Inferential Statistics (in Minutes) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
= Average Quarter-Hour Taxi-Out Time | ≠ 26 min | ≠ 26 min | |||||||||
Facility 1 | Hub | N 2 | Min 3 | Max 3 | Mean 3 | Median 3 | Std. Dev. 3 | 95% Confidence Interval for Mean | p-Value t-Test | 95% Confidence Achieved for Median | p-Value Wilcoxon |
BHM | S | 5132 | 6 | 130 | 18.54 | 17 | 6.76 | (18.36, 18.73) | <0.001 | (17, 17) | <0.001 |
BUF | S | 5842 | 8 | 168 | 20.02 | 17.5 | 9.5 | (19.78, 20.27) | <0.001 | (17, 17.5) | <0.001 |
DAY | S | 1870 | 8 | 117 | 21.47 | 19 | 8.06 | (21.1, 21.83) | <0.001 | (19, 19.5) | <0.001 |
HPN | S | 8717 | 6 | 184 | 20.98 | 19 | 8.13 | (20.81, 21.15) | <0.001 | (19, 19) | <0.001 |
ISP | S | 894 | 9 | 116.5 | 16.85 | 16 | 6.76 | (16.4, 17.29) | <0.001 | (15, 16) | <0.001 |
LGB | S | 5137 | 4 | 98 | 16.34 | 15 | 5.53 | (16.19, 16.49) | <0.001 | (15, 15) | <0.001 |
MHT | S | 1773 | 6 | 90 | 19.33 | 17.5 | 7.45 | (18.99, 19.68) | <0.001 | (17, 18) | <0.001 |
PSP | S | 4865 | 10 | 86 | 21.6 | 20 | 6.89 | (21.41, 21.8) | <0.001 | (19.83, 20) | <0.001 |
PVD | S | 4391 | 8 | 120 | 19.19 | 17 | 8.04 | (18.95, 19.42) | <0.001 | (17, 17) | <0.001 |
SDF | S | 10,069 | 7 | 154 | 21.12 | 19.75 | 7.14 | (20.98, 21.26) | <0.001 | (19.64, 20) | <0.001 |
TUS | S | 4727 | 9 | 498 | 18.7 | 17.5 | 9.47 | (18.43, 18.97) | <0.001 | (17, 17.5) | <0.001 |
ABQ | M | 7403 | 8 | 163 | 18.99 | 17.67 | 6.2 | (18.84, 19.13) | <0.001 | (17.5, 18) | <0.001 |
ANC | M | 17,206 | 5 | 128 | 21.29 | 19.5 | 7.09 | (21.19, 21.4) | <0.001 | (19.47, 19.67) | <0.001 |
BDL | M | 7316 | 8 | 156.5 | 20.48 | 18.67 | 8.09 | (20.3, 20.67) | <0.001 | (18.5, 19) | <0.001 |
BUR | M | 10,176 | 7.5 | 103.33 | 19 | 17.5 | 6.63 | (18.87, 19.13) | <0.001 | (17.5, 17.75) | <0.001 |
CLE | M | 10,752 | 10 | 117 | 22.52 | 20.5 | 7.99 | (22.37, 22.67) | <0.001 | (20.33, 20.5) | <0.001 |
CVG | M | 14,650 | 11 | 180 | 21.62 | 20 | 6.75 | (21.51, 21.73) | <0.001 | (20, 20.2) | <0.001 |
DAL | M | 15,119 | 7.63 | 157 | 17.4 | 16.11 | 5.95 | (17.31, 17.5) | <0.001 | (16, 16.17) | <0.001 |
HNL | M | 16,733 | 10.75 | 96 | 24.69 | 24 | 5.2 | (24.61, 24.77) | <0.001 | (23.95, 24) | <0.001 |
HOU | M | 13,048 | 8.25 | 222 | 17.36 | 16.5 | 5.21 | (17.27, 17.45) | <0.001 | (16.33, 16.5) | <0.001 |
IND | M | 12,150 | 9.75 | 146 | 21.5 | 19.92 | 7.04 | (21.37, 21.62) | <0.001 | (19.75, 20) | <0.001 |
JAX | M | 9067 | 8 | 179.5 | 19.5 | 18 | 6.42 | (19.37, 19.63) | <0.001 | (18, 18.17) | <0.001 |
MCI | M | 11,342 | 5 | 158 | 18.65 | 17.2 | 6.52 | (18.53, 18.77) | <0.001 | (17, 17.33) | <0.001 |
MEM | M | 9728 | 5.25 | 270.6 | 22.98 | 21.5 | 9.7 | (22.78, 23.17) | <0.001 | (21.42, 21.62) | <0.001 |
MKE | M | 8402 | 7 | 133 | 19.72 | 17.5 | 8.66 | (19.54, 19.91) | <0.001 | (17.33, 17.5) | <0.001 |
MSY | M | 12,461 | 5.25 | 128.33 | 17.78 | 16.8 | 5.2 | (17.69, 17.87) | <0.001 | (16.67, 17) | <0.001 |
OAK | M | 13,367 | 10 | 105 | 18.91 | 18 | 4.87 | (18.83, 18.99) | <0.001 | (17.83, 18) | <0.001 |
OGG | M | 10,027 | 6 | 145 | 19.08 | 16.83 | 8.91 | (18.9, 19.25) | <0.001 | (16.5, 17) | <0.001 |
OMA | M | 7165 | 7.67 | 136 | 18.33 | 16.5 | 7.68 | (18.15, 18.51) | <0.001 | (16.13, 16.5) | <0.001 |
ONT | M | 9453 | 6 | 103 | 18.74 | 17.75 | 5.62 | (18.63, 18.86) | <0.001 | (17.6, 18) | <0.001 |
PBI | M | 10,759 | 9.33 | 150.5 | 20.82 | 19.2 | 6.87 | (20.69, 20.95) | <0.001 | (19, 19.33) | <0.001 |
PDX | M | 15,307 | 6.5 | 156.5 | 18.52 | 17.66 | 5.11 | (18.44, 18.6) | <0.001 | (17.5, 17.67) | <0.001 |
PIT | M | 11,536 | 8.33 | 100.43 | 19.92 | 18 | 7.18 | (19.79, 20.05) | <0.001 | (18, 18) | <0.001 |
RDU | M | 13,521 | 7 | 150 | 22.26 | 21 | 7.14 | (22.14, 22.38) | <0.001 | (20.8, 21) | <0.001 |
RSW | M | 9463 | 10 | 129 | 19.47 | 17.7 | 7.47 | (19.32, 19.62) | <0.001 | (17.67, 17.85) | <0.001 |
SAT | M | 10,820 | 7 | 161 | 17.6 | 16.57 | 5.6 | (17.5, 17.71) | <0.001 | (16.5, 16.67) | <0.001 |
SJC | M | 12,838 | 6 | 90.63 | 17.04 | 16.25 | 3.93 | (16.97, 17.11) | <0.001 | (16.2, 16.33) | <0.001 |
SJU | M | 12,957 | 5 | 121 | 19.29 | 18.95 | 5.09 | (19.21, 19.38) | <0.001 | (18.75, 19) | <0.001 |
SMF | M | 12,765 | 8 | 100.8 | 17.5 | 16.67 | 4.54 | (17.43, 17.58) | <0.001 | (16.67, 16.75) | <0.001 |
SNA | M | 11,962 | 7.4 | 99.67 | 20.28 | 18.8 | 6.63 | (20.16, 20.39) | <0.001 | (18.67, 19) | <0.001 |
STL | M | 13,880 | 7.33 | 141 | 18.39 | 17.5 | 5.19 | (18.3, 18.48) | <0.001 | (17.47, 17.5) | <0.001 |
ATL | L | 18,747 | 13 | 108.78 | 25.1 | 24.17 | 5.48 | (25.02, 25.18) | <0.001 | (24.08, 24.23) | <0.001 |
AUS | L | 15,304 | 6 | 161 | 22.45 | 21.18 | 6.38 | (22.35, 22.55) | <0.001 | (21.1, 21.27) | <0.001 |
BNA | L | 15,883 | 10.75 | 144 | 22.6 | 21.61 | 5.8 | (22.51, 22.69) | <0.001 | (21.5, 21.69) | <0.001 |
BOS | L | 18,036 | 11.83 | 127.57 | 28.49 | 26.4 | 8.94 | (28.35, 28.62) | <0.001 | (26.29, 26.5) | <0.001 |
BWI | L | 16,015 | 9.67 | 157.5 | 20.07 | 18.79 | 5.94 | (19.98, 20.16) | <0.001 | (18.71, 18.86) | <0.001 |
CLT | L | 15,694 | 8 | 115 | 31.44 | 30.66 | 7.44 | (31.33, 31.56) | <0.001 | (30.54, 30.76) | <0.001 |
DCA | L | 14,715 | 9.5 | 116.14 | 27.24 | 25.77 | 8.27 | (27.1, 27.37) | <0.001 | (25.62, 25.9) | <0.001 |
DEN | L | 18,093 | 7.2 | 132.14 | 26.81 | 24.31 | 9.05 | (26.67, 26.94) | <0.001 | (24.21, 24.4) | <0.001 |
DFW | L | 17,735 | 13 | 184.33 | 30.7 | 29.28 | 8.95 | (30.57, 30.83) | <0.001 | (29.18, 29.38) | <0.001 |
DTW | L | 15,814 | 11 | 121.4 | 25.88 | 23.9 | 8.1 | (25.76, 26.01) | 0.071 | (23.83, 24) | <0.001 |
EWR | L | 18,704 | 8 | 238 | 34.98 | 32.5 | 12.59 | (34.8, 35.16) | <0.001 | (32.36, 32.67) | <0.001 |
FLL | L | 17,468 | 10.4 | 163.29 | 25.19 | 23.17 | 8.52 | (25.06, 25.31) | <0.001 | (23.09, 23.25) | <0.001 |
IAD | L | 14,087 | 11.5 | 138 | 24.27 | 23 | 6.91 | (24.16, 24.38) | <0.001 | (22.97, 23) | <0.001 |
IAH | L | 16,363 | 12 | 151.58 | 26.78 | 25.18 | 7.73 | (26.66, 26.9) | <0.001 | (25.06, 25.31) | <0.005 |
JFK | L | 20,038 | 17.78 | 277 | 37.59 | 34.6 | 12.66 | (37.41, 37.76) | <0.001 | (34.47, 34.75) | <0.001 |
LAS | L | 18,280 | 12.67 | 96.71 | 25.72 | 24.25 | 6.64 | (25.63, 25.82) | <0.001 | (24.16, 24.33) | <0.001 |
LAX | L | 20,481 | 11 | 80.38 | 27.81 | 26.99 | 5.37 | (27.74, 27.89) | <0.001 | (26.89, 27.03) | <0.001 |
LGA | L | 15,019 | 13 | 249.7 | 31.32 | 28.83 | 10.95 | (31.15, 31.5) | <0.001 | (28.69, 28.97) | <0.001 |
MCO | L | 17,776 | 12 | 152 | 29.8 | 27.86 | 8.78 | (29.67, 29.93) | <0.001 | (27.77, 27.95) | <0.001 |
MDW | L | 14,775 | 8 | 180.33 | 19.84 | 18 | 7.24 | (19.72, 19.95) | <0.001 | (18, 18.14) | <0.001 |
MIA | L | 20,054 | 10 | 132.9 | 28.64 | 26.54 | 8.77 | (28.52, 28.76) | <0.001 | (26.47, 26.67) | <0.001 |
MSP | L | 16,614 | 10 | 176.5 | 24.81 | 21.8 | 10.03 | (24.66, 24.96) | <0.001 | (21.7, 21.88) | <0.001 |
ORD | L | 19,044 | 10.5 | 149 | 33.68 | 32.11 | 9.85 | (33.54, 33.82) | <0.001 | (32, 32.26) | <0.001 |
PHL | L | 15,905 | 4.5 | 155.86 | 25.17 | 23.43 | 8.84 | (25.03, 25.31) | <0.001 | (23.33, 23.5) | <0.001 |
PHX | L | 17,700 | 8 | 74 | 21.53 | 20.7 | 4.7 | (21.47, 21.6) | <0.001 | (20.63, 20.77) | <0.001 |
SAN | L | 15,048 | 10.5 | 92.94 | 22.98 | 21.5 | 7.26 | (22.87, 23.1) | <0.001 | (21.4, 21.6) | <0.001 |
SEA | L | 18,771 | 12 | 203.67 | 29.48 | 28.42 | 7.54 | (29.38, 29.59) | <0.001 | (28.33, 28.5) | <0.001 |
SFO | L | 18,171 | 10 | 129.03 | 26.86 | 25.75 | 6.64 | (26.77, 26.96) | <0.001 | (25.67, 25.89) | <0.001 |
SLC | L | 15,568 | 9.33 | 128 | 25.22 | 23 | 8.44 | (25.08, 25.35) | <0.001 | (22.9, 23.05) | <0.001 |
TPA | L | 15,989 | 8.5 | 105 | 19.91 | 18.7 | 5.9 | (19.82, 20) | <0.001 | (18.66, 18.75) | <0.001 |
Descriptive Statistics (in Minutes) | Inferential Statistics (in Minutes) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
= Average Quarter-Hour Taxi-Out Time | ≠ 26 min | ≠ 26 min | |||||||||
Hub | N 1 | Min 2 | Max 2 | Mean 2 | Median 2 | Std. Dev. 2 | 95% Confidence Interval for Mean | p-Value t-Test | 95% Confidence Achieved for Median | p-Value Wilcoxon | |
RQ 2a | - | 916,681 | 4.00 | 498.00 | 23.78 | 22.00 | 9.10 | (23.76, 23.80) | <0.001 | (22.00, 22.00) | <0.001 |
RQ 2b | S | 53,417 | 4.00 | 498.00 | 19.82 | 18.00 | 7.91 | (19.75, 19.89) | <0.001 | (18.00, 18.00) | <0.001 |
M | 351,373 | 5.00 | 270.60 | 19.72 | 18.25 | 6.76 | (19.69, 19.74) | <0.001 | (18.25, 18.29) | <0.001 | |
L | 511,891 | 4.50 | 277.00 | 26.98 | 25.08 | 9.34 | (26.95, 27.00) | <0.001 | (25.05, 25.10) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Gupta, S.; Johnson, M.E. Reassessing the ICAO’s Standard Taxi/Ground Idle Time: A Statistical Analysis of Taxi Times at 71 U.S. Hub Airports. Aerospace 2025, 12, 220. https://doi.org/10.3390/aerospace12030220
Wang J, Gupta S, Johnson ME. Reassessing the ICAO’s Standard Taxi/Ground Idle Time: A Statistical Analysis of Taxi Times at 71 U.S. Hub Airports. Aerospace. 2025; 12(3):220. https://doi.org/10.3390/aerospace12030220
Chicago/Turabian StyleWang, Jiansen, Shantanu Gupta, and Mary E. Johnson. 2025. "Reassessing the ICAO’s Standard Taxi/Ground Idle Time: A Statistical Analysis of Taxi Times at 71 U.S. Hub Airports" Aerospace 12, no. 3: 220. https://doi.org/10.3390/aerospace12030220
APA StyleWang, J., Gupta, S., & Johnson, M. E. (2025). Reassessing the ICAO’s Standard Taxi/Ground Idle Time: A Statistical Analysis of Taxi Times at 71 U.S. Hub Airports. Aerospace, 12(3), 220. https://doi.org/10.3390/aerospace12030220