Comparative Analysis on Modelling Approaches for the Simulation of Fatigue Disbonding with Cohesive Zone Models
Abstract
1. Introduction
2. Cohesive Zone Models (CZMs)
2.1. Numerical Implementation of Cohesive Zone Models for Quasi-Static Loading
2.2. Numerical Implementation of Cohesive Zone Models for Fatigue Loading
Cycle Jump Strategy
2.3. Adapting Numerical Model for Different Loading Modes
2.3.1. Mode I Loading
2.3.2. Mixed-Mode Loading
3. Methods
3.1. FEA Modelling
3.2. User-Defined Material Subroutine (UMAT) Implementation
3.3. Test Cases
3.3.1. Mode I—Double Cantilever Beam (DCB)
3.3.2. Mixed-Mode—Cracked Lap Shear (CLS)
4. Results
4.1. Mode I—Double-Cantilever Beam (DCB)
4.2. Mixed-Mode—Cracked Lap Shear (CLS)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
B-K criterion | Benzeggagh and Kenane criterion |
BTSL | Bi-linear Traction–Separation Law |
CFRP | Carbon Fibre-Reinforced Plastics |
CLS | Cracked Lap Shear |
CZM | Cohesive Zone Model |
Cyclic variation of the strain energy release rate | |
d | Damage |
R | Displacement/Load Ratio |
DCB | Double-Cantilever Beam |
Displacement jump | |
EASA | European Union Aviation Safety Agency |
FAA | Federal Aviation Administration |
FEA | Finite Element Analysis |
FEM | Finite Element Method |
FML | Fibre Metal Laminate |
Fracture toughness | |
HCF | High Cycle Fatigue |
Length of the cohesive zone | |
Maximum traction | |
Mixed-Mode ratio | |
NDI | Non-Destructive Inspection |
Onset displacement | |
Propagation displacement | |
K | Stiffness |
SERR and G | Strain Energy Release Rate |
SIF | Stress Intensity Factor |
XFEM | Extended Finite Element Method |
References
- Xu, J.; Yin, Y.; Paulo Davim, J.; Li, L.; Ji, M.; Geier, N.; Chen, M. A critical review addressing drilling-induced damage of CFRP composites. Compos. Struct. 2022, 294, 115594. [Google Scholar] [CrossRef]
- Crane, R.L.; Hart-Smith, J.; Newman, J. 8—Nondestructive inspection of adhesive bonded joints. In Adhesive Bonding, 2nd ed.; Adams, R.D., Ed.; Woodhead Publishing Series in Welding and Other Joining Technologies; Woodhead Publishing: Duxford, UK, 2021; pp. 215–256. [Google Scholar] [CrossRef]
- Malekinejad, H.; Carbas, R.J.C.; Akhavan-Safar, A.; Marques, E.A.S.; Castro Sousa, F.; da Silva, L.F.M. Enhancing Fatigue Life and Strength of Adhesively Bonded Composite Joints: A Comprehensive Review. Materials 2023, 16, 6468. [Google Scholar] [CrossRef] [PubMed]
- Jasiūnienė, E.; Yilmaz, B.; Smagulova, D.; Bhat, G.A.; Cicėnas, V.; Žukauskas, E.; Mažeika, L. Non-Destructive Evaluation of the Quality of Adhesive Joints Using Ultrasound, X-ray, and Feature-Based Data Fusion. Appl. Sci. 2022, 12, 12930. [Google Scholar] [CrossRef]
- Yılmaz, B.; Jasiūnienė, E. Advanced ultrasonic NDT for weak bond detection in composite-adhesive bonded structures. Int. J. Adhes. Adhes. 2020, 102, 102675. [Google Scholar] [CrossRef]
- Schroeder, J.A.; Ahmed, T.; Chaudhry, B.; Shepard, S. Non-destructive testing of structural composites and adhesively bonded composite joints: Pulsed thermography. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1511–1517. [Google Scholar] [CrossRef]
- Liniecki, A.; Hsu, T.; Li, W. Fatigue Strength of Adhesive Bonded Aluminum Joints. J. Test. Eval. 1995, 23, 453–468. [Google Scholar] [CrossRef]
- Imanaka, M.; Iwata, T. Fatigue Failure Criterion of Adhesively-Bonded Joints Under Combined Stress Conditions. J. Adhes. 1996, 59, 111–126. [Google Scholar] [CrossRef]
- Ishii, K.; Imanaka, M.; Nakayama, H.; Kodama, H. Evaluation of the fatigue strength of adhesively bonded CFRP/metal single and single-step double-lap joints. Compos. Sci. Technol. 1999, 59, 1675–1683. [Google Scholar] [CrossRef]
- Paris, P.; Gomez, M.; Anderson, W. A rational analytic theory of fatigue. Trend Inf. Eng. 1961, 13, 9–14. [Google Scholar]
- Paris, P.; Erdogan, F. A Critical Analysis of Crack Propagation Laws. J. Basic Eng. 1963, 85, 528–533. [Google Scholar] [CrossRef]
- Paris, P.C. The fracture mechanics approach to fatigue. In Fatigue: An Interdisciplinary Approach: Proceedings of the 10th Sagamore Army Materials Research Conference, Sagamore Conference Center, Raquette Lake, NY, USA, 13–16 August 1963; Syracuse University Press: Syracuse, NY, USA, 1964. [Google Scholar]
- Belytschko, T.; Black, T. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 1999, 45, 601–620. [Google Scholar] [CrossRef]
- Duarte, C.A.; Oden, J.T. H-p clouds—An h-p meshless method. Numer. Methods Partial Differ. Equ. 1996, 12, 673–705. [Google Scholar] [CrossRef]
- Moës, N.; Belytschko, T. Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 2002, 69, 813–833. [Google Scholar] [CrossRef]
- Ling, D.; Yang, Q.; Cox, B. An augmented finite element method for modeling arbitrary discontinuities in composite materials. Int. J. Fract. 2009, 156, 53–73. [Google Scholar] [CrossRef]
- Khoramishad, H.; Crocombe, A.D.; Katnam, K.B.; Ashcroft, I.A. Predicting fatigue damage in adhesively bonded joints using a cohesive zone model. Int. J. Fatigue 2010, 32, 1146–1158. [Google Scholar] [CrossRef]
- Barenblatt, G.I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. In Advances in Applied Mechanics; Dryden, H.L., von Kármán, T., Kuerti, G., van den Dungen, F.H., Howarth, L., Eds.; Elsevier: Amsterdam, The Netherlands, 1962; Volume 7, pp. 55–129. [Google Scholar] [CrossRef]
- Dugdale, D.S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 1960, 8, 100–104. [Google Scholar] [CrossRef]
- Hillerborg, A.; Modéer, M.; Petersson, P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 1976, 6, 773–781. [Google Scholar] [CrossRef]
- Needleman, A. A Continuum Model for Void Nucleation by Inclusion Debonding. J. Appl. Mech. 1987, 54, 525–531. [Google Scholar] [CrossRef]
- Needleman, A. An analysis of decohesion along an imperfect interface. Int. J. Fract. 1990, 42, 21–40. [Google Scholar] [CrossRef]
- Chandra, N.; Li, H.; Shet, C.; Ghonem, H. Some issues in the application of cohesive zone models for metal–ceramic interfaces. Int. J. Solids Struct. 2002, 39, 2827–2855. [Google Scholar] [CrossRef]
- Robinson, P.; Galvanetto, U.; Tumino, D.; Bellucci, G.; Violeau, D. Numerical simulation of fatigue-driven delamination using interface elements. Int. J. Numer. Methods Eng. 2005, 63, 1824–1848. [Google Scholar] [CrossRef]
- Tumino, D.; Cappello, F. Simulation of Fatigue Delamination Growth in Composites with Different Mode Mixtures. J. Compos. Mater. 2007, 41, 2415–2441. [Google Scholar] [CrossRef]
- Maiti, S.; Geubelle, P.H. A cohesive model for fatigue failure of polymers. Eng. Fract. Mech. 2005, 72, 691–708. [Google Scholar] [CrossRef]
- Nguyen, O.; Repetto, E.; Ortiz, M.; Radovitzky, R. A cohesive model of fatigue crack growth. Int. J. Fract. 2001, 110, 351–369. [Google Scholar] [CrossRef]
- Roe, K.L.; Siegmund, T. An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 2003, 70, 209–232. [Google Scholar] [CrossRef]
- Siegmund, T. A numerical study of transient fatigue crack growth by use of an irreversible cohesive zone model. Int. J. Fatigue 2004, 26, 929–939. [Google Scholar] [CrossRef]
- Turon, A.; Costa, J.; Camanho, P.P.; Dávila, C.G. Simulation of delamination in composites under high-cycle fatigue. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2270–2282. [Google Scholar] [CrossRef]
- Ural, A.; Krishnan, V.R.; Papoulia, K.D. A cohesive zone model for fatigue crack growth allowing for crack retardation. Int. J. Solids Struct. 2009, 46, 2453–2462. [Google Scholar] [CrossRef]
- Azari, S.; Papini, M.; Spelt, J.K. Effect of adhesive thickness on fatigue and fracture of toughened epoxy joints—Part I: Experiments. Eng. Fract. Mech. 2011, 78, 153–162. [Google Scholar] [CrossRef]
- Azari, S.; Papini, M.; Spelt, J.K. Effect of adhesive thickness on fatigue and fracture of toughened epoxy joints—Part II: Analysis and finite element modeling. Eng. Fract. Mech. 2011, 78, 138–152. [Google Scholar] [CrossRef]
- Kin Loch, A.J.; Shaw, S.J. The Fracture Resistance of a Toughened Epoxy Adhesive. J. Adhes. 1981, 12, 59–77. [Google Scholar] [CrossRef]
- Wang, S.S.; Mandell, J.F.; McGarry, F.J. An analysis of the crack tip stress field in DCB adhesive fracture specimens. Int. J. Fract. 1978, 14, 39–58. [Google Scholar] [CrossRef]
- Chai, H. On the correlation between the mode I failure of adhesive joints and laminated composites. Eng. Fract. Mech. 1986, 24, 413–431. [Google Scholar] [CrossRef]
- Azari, S.; Ameli, A.; Papini, M.; Spelt, J. Analysis and design of adhesively bonded joints for fatigue and fracture loading: A fracture-mechanics approach. J. Adhes. Sci. Technol. 2013, 27, 1681–1711. [Google Scholar] [CrossRef]
- Chiu, W.K.; Jones, R. A numerical study of adhesively bonded lap joints. Int. J. Adhes. Adhes. 1992, 12, 219–225. [Google Scholar] [CrossRef]
- Gleich, D.M.; Van Tooren, M.J.L.; Beukers, A. Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures. J. Adhes. Sci. Technol. 2001, 15, 1091–1101. [Google Scholar] [CrossRef]
- Pascoe, J.A.; Zavatta, N.; Troiani, E.; Alderliesten, R.C. The effect of bond-line thickness on fatigue crack growth rate in adhesively bonded joints. Eng. Fract. Mech. 2020, 229, 106959. [Google Scholar] [CrossRef]
- Zavatta, N. Crack Growth in Adhesively Bonded Joints Under Quasi-Static and Fatigue Loading. Ph.D. Thesis, Alma Mater Studiorum-Università di Bologna, Bologna, Italy, 2020. [Google Scholar] [CrossRef]
- van Teeseling, I. Towards the Certification of Bonded Primary Fiber Metal Laminate Structures by Bolted Disbond Arrest Features. Master’s Thesis, TU Delft, Delft, The Netherlands, 2019. [Google Scholar]
- Camanho, P.P.; Davila, C.G.; de Moura, M.F. Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials. J. Compos. Mater. 2003, 37, 1415–1438. [Google Scholar] [CrossRef]
- Turon, A.; Costa, J.; Camanho, P.P.; Davila, C.G. Simulation of Delamination Propagation in Composites Under High-Cycle Fatigue by Means of Cohesive-Zone Models; Technical Report L-19304; NASA Langley Research Center: Hampton, VA, USA, 2006.
- Pirondi, A.; Moroni, F. A Progressive Damage Model for the Prediction of Fatigue Crack Growth in Bonded Joints. J. Adhes. 2010, 86, 501–521. [Google Scholar] [CrossRef]
- Harper, P.W.; Hallett, S.R. A fatigue degradation law for cohesive interface elements—Development and application to composite materials. Int. J. Fatigue 2010, 32, 1774–1787. [Google Scholar] [CrossRef]
- Kawashita, L.F.; Hallett, S.R. A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials. Int. J. Solids Struct. 2012, 49, 2898–2913. [Google Scholar] [CrossRef]
- Bak, B.L.V.; Turon, A.; Lindgaard, E.; Lund, E. A simulation method for high-cycle fatigue-driven delamination using a cohesive zone model. Int. J. Numer. Methods Eng. 2016, 106, 163–191. [Google Scholar] [CrossRef]
- Carreras, L.; Bak, B.L.V.; Turon, A.; Renart, J.; Lindgaard, E. Point-wise evaluation of the growth driving direction for arbitrarily shaped delamination fronts using cohesive elements. Eur. J. Mech.-A/Solids 2018, 72, 464–482. [Google Scholar] [CrossRef]
- Dávila, C.G.; Joosten, M.W. A cohesive fatigue model for composite delamination based on a new material characterization procedure for the Paris law. Eng. Fract. Mech. 2023, 284, 109232. [Google Scholar] [CrossRef]
- Raimondo, A.; Dávila, C.G.; Bisagni, C. Cohesive analysis of a 3D benchmark for delamination growth under quasi-static and fatigue loading conditions. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 1942–1952. [Google Scholar] [CrossRef]
- Leciñana, I.; Carreras, L.; Renart, J.; Zurbitu, J.; Tijs, B.H.A.H.; Turon, A. A simulation strategy for fatigue modeling of delamination in composite structures under multiple loading conditions considering loading history and R-curve effects. Compos. Part A Appl. Sci. Manuf. 2024, 186, 108402. [Google Scholar] [CrossRef]
- Abdel Wahab, M.M. 11—Simulating mode I fatigue crack propagation in adhesively-bonded composite joints. In Fatigue and Fracture of Adhesively-Bonded Composite Joints; Vassilopoulos, A.P., Ed.; Woodhead Publishing: Duxford, UK, 2015; pp. 323–344. [Google Scholar] [CrossRef]
- Pirondi, A.; Moroni, F. Improvement of a Cohesive Zone Model for Fatigue Delamination Rate Simulation. Materials 2019, 12, 181. [Google Scholar] [CrossRef]
- Harper, P.W.; Hallett, S.R. Cohesive zone length in numerical simulations of composite delamination. Eng. Fract. Mech. 2008, 75, 4774–4792. [Google Scholar] [CrossRef]
- Yang, Q.; Cox, B. Cohesive models for damage evolution in laminated composites. Int. J. Fract. 2005, 133, 107–137. [Google Scholar] [CrossRef]
- Yang, Q.D.; Cox, B.N.; Nalla, R.K.; Ritchie, R.O. Fracture length scales in human cortical bone: The necessity of nonlinear fracture models. Biomaterials 2006, 27, 2095–2113. [Google Scholar] [CrossRef] [PubMed]
- Turon, A.; Dávila, C.G.; Camanho, P.P.; Costa, J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 2007, 74, 1665–1682. [Google Scholar] [CrossRef]
- Van Paepegem, W.; Degrieck, J. Fatigue degradation modelling of plain woven glass/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1433–1441. [Google Scholar] [CrossRef]
- Falk, M.L.; Needleman, A.; Rice, J.R. A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture. J. Phys. IV France 2001, 11, Pr5-43–Pr5-50. [Google Scholar] [CrossRef]
- Turon, A.; González, E.V.; Sarrado, C.; Guillamet, G.; Maimí, P. Accurate simulation of delamination under mixed-mode loading using a cohesive model with a mode-dependent penalty stiffness. Compos. Struct. 2018, 184, 506–511. [Google Scholar] [CrossRef]
- Turon, A.; Costa, J.; Camanho, P.P.; Maimí, P. Analytical and Numerical Investigation of the Length of the Cohesive Zone in Delaminated Composite Materials. In Proceedings of the Mechanical Response of Composites; Camanho, P.P., Dávila, C.G., Pinho, S.T., Remmers, J.J.C., Eds.; Computational Methods in Applied Sciences; Springer: Dordrecht, The Netherlands, 2008; pp. 77–97. [Google Scholar] [CrossRef]
- Benzeggagh, M.L.; Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Ramkumar, R.L.; Whitcomb, J.D. Characterization of Mode I and Mixed-Mode Delamination Growth in T300/5208 Graphite/Epoxy; NASA Langley Research Center: Hampton, VA, USA, 1985.
- Gustafson, C.G.; Hojo, M. Delamination Fatigue Crack Growth in Unidirectional Graphite/Epoxy Laminates. J. Reinf. Plast. Compos. 1987, 6, 36–52. [Google Scholar] [CrossRef]
- Russell, A.; Street, K. Predicting Interlaminar Fatigue Crack Growth Rates in Compressively Loaded Laminates. In Composite Materials: Fatigue and Fracture, Second Volume; Lagace, P., Ed.; ASTM International: West Conshohocken, PA, USA, 1989; Volume STP1012-EB, pp. 162–178. [Google Scholar] [CrossRef]
- Kenane, M.; Benzeggagh, M.L. Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading. Compos. Sci. Technol. 1997, 57, 597–605. [Google Scholar] [CrossRef]
- Allegri, G.; Wisnom, M.R.; Hallett, S.R. A new semi-empirical law for variable stress-ratio and mixed-mode fatigue delamination growth. Compos. Part A Appl. Sci. Manuf. 2013, 48, 192–200. [Google Scholar] [CrossRef]
- Bürger, D.B. Mixed-Mode Fatigue Disbond on Metallic Bonded Joints. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 2015. [Google Scholar]
- Naik, S.H.; Javagal, S. Analytical Study of the Effects of Delamination in Glare Fiber-Metal Laminate using Modified Virtual Crack Closure Technique (MVCCT). Procedia Struct. Integr. 2019, 14, 900–906. [Google Scholar] [CrossRef]
- Lai, Y.H.; Dwayne Rakestraw, M.; Dillard, D.A. The cracked lap shear specimen revisited—A closed form solution. Int. J. Solids Struct. 1996, 33, 1725–1743. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Sato, C. Effect of Bond-Line Thickness on Fatigue Crack Growth of Structural Acrylic Adhesive Joints. Materials 2021, 14, 1723. [Google Scholar] [CrossRef] [PubMed]
Properties | Symbol | Value | Units |
---|---|---|---|
Young’s Modulus 1 | E | 3000 | MPa |
Shear Modulus | G | 1100 | MPa |
Poisson’s Ratio | |||
Normal Stiffness | |||
Tangential Stiffness | |||
Maximum Traction (Mode I) | 50 | MPa | |
Maximum Traction (Mode II) | 30 | MPa | |
Fracture Toughness (Mode I) | |||
Fracture Toughness (Mode I) | |||
B-K Criterion Constant [70] |
Model Type | Cohesive Zone Modelling | Element Type | Mesh Size (mm) | Mesh Refinement on Adherent |
---|---|---|---|---|
2D | Adhesive Replaced with Cohesive | CPE4 (Adherent), COH2D4 (Cohesive) | 1.00 (Adherent), 0.10 (Cohesive) | No |
Cohesive in the Mid-Plane of Adhesive | CPE4 (Adherent and Adhesive), COH2D4 (Cohesive) | 1.00 (Adherent), 0.10 (Cohesive and Adhesive) | Yes | |
3D | Adhesive Replaced with Cohesive | SC8R (Adherent), COH3D8 (Adhesive) | 1.00 (Adherent), 0.10 (Cohesive) | Yes |
Cohesive in the Mid-Plane of Adhesive | C3D8I (Adherent and Adhesive), COH3D8 (Cohesive) | 1.00 (Adherent), 0.10 (Cohesive and Adhesive) | Yes |
Specimen | Adhesive Thickness [mm] | Displacement Ratio (R) | C | m | Maximum Displacement [mm] |
---|---|---|---|---|---|
G-002-II | 0.275 | 0.29 | 1.4775 | 6.3322 | 4.083 |
G-010-II | 0.285 | 0.036 | 0.58133 | 4.9545 | 2.893 |
H-002-II | 0.195 | 0.036 | 0.4185 | 5.1144 | 6.27 |
H-003-II | 0.135 | 0.29 | 2.4102 | 6.8236 | 5.13 |
H-004-I | 0.245 | 0.61 | 72.4202 | 10.3649 | 2.3275 |
[kN] | [kN] | |||
---|---|---|---|---|
28.0 | 26.5 |
Specimen | 2D Model | 2D Model with Adhesive | 3D Model | 3D Model with Adhesive |
---|---|---|---|---|
H-004-I () | 6.45% | 8.64% | 8.73% | 9.59% |
H-002-II () | 9.10% | 3.83% | 2.28% | 0.20% |
H-003-II () | 0.03% | 2.47% | 4.00% | 4.77% |
G-002-II () | 2.48% | 2.50% | 2.27% | 4.71% |
G-010-II () | 5.87% | 3.19% | 1.18% | 6.21% |
Average Error | ||||
Average Error (excl. H-004-I) |
Cohesive Zone Modelling | |||
---|---|---|---|
2D | 54.27 | 0.9985 | |
2D with adhesive | 59.59 | 0.9877 | |
3D | 52.71 | 0.9901 | |
3D with adhesive | 58.15 | 0.9697 |
2D Model | 2D Model with Adhesive | 3D Model | 3D Model with Adhesive |
---|---|---|---|
1.95% | 2.65% | 3.72% | 2.30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birnie, J.; Falaschetti, M.P.; Troiani, E. Comparative Analysis on Modelling Approaches for the Simulation of Fatigue Disbonding with Cohesive Zone Models. Aerospace 2025, 12, 139. https://doi.org/10.3390/aerospace12020139
Birnie J, Falaschetti MP, Troiani E. Comparative Analysis on Modelling Approaches for the Simulation of Fatigue Disbonding with Cohesive Zone Models. Aerospace. 2025; 12(2):139. https://doi.org/10.3390/aerospace12020139
Chicago/Turabian StyleBirnie, Johan, Maria Pia Falaschetti, and Enrico Troiani. 2025. "Comparative Analysis on Modelling Approaches for the Simulation of Fatigue Disbonding with Cohesive Zone Models" Aerospace 12, no. 2: 139. https://doi.org/10.3390/aerospace12020139
APA StyleBirnie, J., Falaschetti, M. P., & Troiani, E. (2025). Comparative Analysis on Modelling Approaches for the Simulation of Fatigue Disbonding with Cohesive Zone Models. Aerospace, 12(2), 139. https://doi.org/10.3390/aerospace12020139