# The Development of a 3D-Printed Compliant System for the Orientation of Payloads on Small Satellites: Material Characterization and Finite Element Analysis of 3D-Printed Polyetherketoneketone (PEKK)

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Material

#### 2.2. Process

#### 2.2.1. Mechanical Characterization

#### 2.2.2. Cross-Axis Flexural Pivots

#### 2.2.3. From CAD to Printing

#### 2.3. Methods and Test Equipment

## 3. Results and Discussion

#### 3.1. Thermal Properties

#### 3.2. Mechanical Properties

#### 3.2.1. Flexural Tests

#### 3.2.2. Tensile Tests

#### 3.2.3. Density Measurements

#### 3.3. Finite Element Analysis and Experiment Correlation

#### 3.4. Metrology Analysis

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

DOF | Degree of freedom |

CAFP | Cross-axis flexural pivot |

PEKK | Polyetherketoneketone |

PEEK | Polyetheretherketone |

PLA | Poly(lactic acid) |

FFF | Fused filament fabrication |

TGA | Thermogravimetric analysis |

DSC | Differential scanning calorimetry |

FTIR | Fourier transform infrared |

CAD | Computer-Aided Design |

## List of Symbols

$\chi $ | Degree of crystallinity [%] |

${\u2206H}_{m}$ | Experimental melting enthalpy [J/g] |

${\u2206H}_{m}^{0}$ | Melting enthalpy of a 100% crystalline material [J/g] |

${\u2206H}_{c}$ | Enthalpy of crystallization [J/g] |

Tg | Glass transition temperature [°C] |

Tc | Crystallization temperature [°C] |

Tm | Melting temperature [°C] |

## References

- Dearden, J.; Grames, C.; Jensen, B.D.; Magleby, S.P.; Howell, L.L. Inverted L-Arm Gripper Compliant Mechanism. J. Med. Devices
**2017**, 11, 034502. [Google Scholar] [CrossRef] - Merriam, E.G.; Jones, J.E.; Magleby, S.P.; Howell, L.L. Monolithic 2 DOF Fully Compliant Space Pointing Mechanism. Mech. Sci.
**2013**, 4, 381–390. [Google Scholar] [CrossRef] - Dang, M.P.; Le, H.G.; Van, M.N.; Chau, N.L.; Dao, T.-P. Modeling and Optimization for a New Compliant 2-Dof Stage for Locating Biomaterial Samples by an Efficient Approach of a Kinetostatic Analysis-Based Method and Neural Network Algorithm. Comput. Intell. Neurosci.
**2022**, 2022, 6709464. [Google Scholar] [CrossRef] [PubMed] - Hao, G.; Yu, J.; Li, H. A Brief Review on Nonlinear Modeling Methods and Applications of Compliant Mechanisms. Front. Mech. Eng.
**2016**, 11, 119–128. [Google Scholar] [CrossRef] - Jensen, B.D.; Howell, L.L. The Modeling of Cross-Axis Flexural Pivots. Mech. Mach. Theory
**2002**, 37, 461–476. [Google Scholar] [CrossRef] - Dearden, J.; Grames, C.; Orr, J.; Jensen, B.D.; Magleby, S.P.; Howell, L.L. Cylindrical Cross-Axis Flexural Pivots. Precis. Eng.
**2018**, 51, 604–613. [Google Scholar] [CrossRef] - Wu, J.; Cai, S.; Cui, J.; Tan, J. A Generalized Analytical Compliance Model for Cartwheel Flexure Hinges. Rev. Sci. Instrum.
**2015**, 86, 105003. [Google Scholar] [CrossRef] [PubMed] - Corapi, D.; Morettini, G.; Pascoletti, G.; Zitelli, C. Characterization of a Polylactic Acid (PLA) Produced by Fused Deposition Modeling (FDM) Technology. Procedia Struct. Integr.
**2019**, 24, 289–295. [Google Scholar] [CrossRef] - Wang, P.; Zou, B.; Ding, S.; Li, L.; Huang, C. Effects of FDM-3D Printing Parameters on Mechanical Properties and Microstructure of CF/PEEK and GF/PEEK. Chin. J. Aeronaut.
**2021**, 34, 236–246. [Google Scholar] [CrossRef] - Hanon, M.M.; Dobos, J.; Zsidai, L. The Influence of 3D Printing Process Parameters on the Mechanical Performance of PLA Polymer and Its Correlation with Hardness. Procedia Manuf.
**2021**, 54, 244–249. [Google Scholar] [CrossRef] - Forés-Garriga, A.; Pérez, M.A.; Gómez-Gras, G.; Reyes-Pozo, G. Role of Infill Parameters on the Mechanical Performance and Weight Reduction of PEI Ultem Processed by FFF. Mater. Des.
**2020**, 193, 108810. [Google Scholar] [CrossRef] - Abeykoon, C.; Sri-Amphorn, P.; Fernando, A. Optimization of Fused Deposition Modeling Parameters for Improved PLA and ABS 3D Printed Structures. Int. J. Lightweight Mater. Manuf.
**2020**, 3, 284–297. [Google Scholar] [CrossRef] - Zhen, H.; Zhao, B.; Quan, L.; Fu, J. Effect of 3D Printing Process Parameters and Heat Treatment Conditions on the Mechanical Properties and Microstructure of PEEK Parts. Polymers
**2023**, 15, 2209. [Google Scholar] [CrossRef] [PubMed] - Battes, K.; Day, C.; Hauer, V. Outgassing Behavior of Different High-Temperature Resistant Polymers. J. Vac. Sci. Technol. A Vac. Surf. Film.
**2018**, 36, 021602. [Google Scholar] [CrossRef] - Lafont, U.; Munck, M.; Wessing, J.; Terol-Sanchez, M.; Rampini, R. 3D Printing of Multifunctional Polymer for Space Application. In Proceedings of the 9th European Conference for Aeronautics and Space Sciences (EUCASS), Lille, France, 27 June–1 July 2022; p. 13. [Google Scholar] [CrossRef]
- Rinaldi, M.; Cecchini, F.; Pigliaru, L.; Ghidini, T.; Lumaca, F.; Nanni, F. Additive Manufacturing of Polyether Ether Ketone (PEEK) for Space Applications: A Nanosat Polymeric Structure. Polymers
**2020**, 13, 11. [Google Scholar] [CrossRef] [PubMed] - Pérez-Martín, H.; Mackenzie, P.; Baidak, A.; Ó Brádaigh, C.M.; Ray, D. Crystallinity Studies of PEKK and Carbon Fibre/PEKK Composites: A Review. Compos. Part B Eng.
**2021**, 223, 109127. [Google Scholar] [CrossRef] - Pedoto, G. Characterization and Modelling of the Thermomechanical and Ageing Behavior of PEKK and C/PEKK Composites for Aircraft Applications at High Temperatures (Above the Glass Transition Temperature); ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique: Poitiers, France, 2020. [Google Scholar]
- Alqurashi, H.; Khurshid, Z.; Syed, A.U.Y.; Rashid Habib, S.; Rokaya, D.; Zafar, M.S. Polyetherketoneketone (PEKK): An Emerging Biomaterial for Oral Implants and Dental Prostheses. J. Adv. Res.
**2021**, 28, 87–95. [Google Scholar] [CrossRef] [PubMed] - Cheng, K.; Shi, Z.; Wang, R.; Jiang, X.; Xiao, F.; Liu, Y. 3D Printed PEKK Bone Analogs with Internal Porosity and Surface Modification for Mandibular Reconstruction: An in Vivo Rabbit Model Study. Biomater. Adv.
**2023**, 151, 213455. [Google Scholar] [CrossRef] [PubMed] - International Organization for Standardization ISO 527-1:2012; Plasics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012.
- International Organisation for Standardization ISO 178; Plastics—Determination of Flexural Properties. ISO: Geneva, Switzerland, 2006.
- International Organisation for Standardization ISO 1183-1; Plastics—Methods for Determining the Density of Non-Cellular Plastics—Part 1: Immersion Method, Liquid Pycnometer Method and Titration Method. ISO: Geneva, Switzerland, 2019.
- International Organisation for Standardization ISO 11357-1:2016(En); Plastics—Differential Scanning Calorimetry (DSC)—Part 1: General Principles. ISO: Geneva, Switzerland, 2016.
- Yahiaoui, M.; Chabert, F.; Paris, J.-Y.; Nassiet, V.; Denape, J. Friction, Acoustic Emission, and Wear Mechanisms of a PEKK Polymer. Tribol. Int.
**2019**, 132, 154–164. [Google Scholar] [CrossRef] - Vasconcelos, G.d.C.; Mazur, R.L.; Botelho, E.C.; Rezende, M.C.; Costa, M.L. Evaluation of Crystallization Kinetics of Polymer of Poly (Ether-Ketone-Ketone) and Poly (Ether-Ether-Ketone) by DSC. JATM
**2010**, 2, 155–162. [Google Scholar] [CrossRef] - Alexandre, M. Optimisation du Comportement Mécanique de Composites Structuraux PEKK/Fibres de Carbone par Ensimage Oligomères de PEKK; Université Toulouse 3 Paul Sabatier: Toulouse, France, 2017. [Google Scholar]
- Corbalan, N. Mechanical Performances of PEKK Thermoplastic Composites Linked to Their Processing Parameters; École Nationale Supérieure d’Arts et Métiers: Paris, France, 2017. [Google Scholar]
- Mngomezulu, M.E.; Luyt, A.S.; John, M.J. Morphology, Thermal and Dynamic Mechanical Properties of Poly(Lactic Acid)/Expandable Graphite (PLA/EG) Flame Retardant Composites. J. Thermoplast. Compos. Mater.
**2019**, 32, 89–107. [Google Scholar] [CrossRef] - Xu, C.; Cheng, K.; Liu, Y.; Wang, R.; Xu, X. Effect of Processing Parameters on Flexural Properties of 3D-Printed Polyetherketoneketone Using Fused Deposition Modeling. Polym. Eng. Sci.
**2021**, 61, 465–476. [Google Scholar] [CrossRef] - Nassir, N.A.; Birch, R.S.; Cantwell, W.J.; Wang, Q.Y.; Liu, L.Q.; Guan, Z.W. The Perforation Resistance of Glass Fibre Reinforced PEKK Composites. Polym. Test.
**2018**, 72, 423–431. [Google Scholar] [CrossRef] - Lee, A.; Wynn, M.; Quigley, L.; Salviato, M.; Zobeiry, N. Effect of Temperature History during Additive Manufacturing on Crystalline Morphology of PEEK. Adv. Ind. Manuf. Eng.
**2022**, 4, 100085. [Google Scholar] [CrossRef] - Antony Samy, A.; Golbang, A.; Harkin-Jones, E.; Archer, E.; McIlhagger, A. Prediction of Part Distortion in Fused Deposition Modelling (FDM) of Semi-Crystalline Polymers via COMSOL: Effect of Printing Conditions. CIRP J. Manuf. Sci. Technol.
**2021**, 33, 443–453. [Google Scholar] [CrossRef] - Choupin, T.; Debertrand, L.; Fayolle, B.; Régnier, G.; Paris, C.; Cinquin, J.; Brulé, B. Influence of Thermal History on the Mechanical Properties of Poly(Ether Ketone Ketone) Copolymers. Polym. Cryst.
**2019**, 2, e10086. [Google Scholar] [CrossRef] - Gan, D.; Lu, S.; Song, C.; Wang, Z. Morphologies, Mechanical Properties and Wear of Poly(Ether Ketone Ketone) (PEKK) and Its Composites Reinforced with Mica. Macromol. Mater. Eng.
**2001**, 286, 296–301. [Google Scholar] [CrossRef] - Podsiadły, B.; Skalski, A.; Rozpiórski, W.; Słoma, M. Are We Able to Print Components as Strong as Injection Molded?—Comparing the Properties of 3D Printed and Injection Molded Components Made from ABS Thermoplastic. Appl. Sci.
**2021**, 11, 6946. [Google Scholar] [CrossRef] - Lay, M.; Thajudin, N.L.N.; Hamid, Z.A.A.; Rusli, A.; Abdullah, M.K.; Shuib, R.K. Comparison of Physical and Mechanical Properties of PLA, ABS and Nylon 6 Fabricated Using Fused Deposition Modeling and Injection Molding. Compos. Part B Eng.
**2019**, 176, 107341. [Google Scholar] [CrossRef] - Ding, S.; Zou, B.; Wang, P.; Ding, H. Effects of Nozzle Temperature and Building Orientation on Mechanical Properties and Microstructure of PEEK and PEI Printed by 3D-FDM. Polym. Test.
**2019**, 78, 105948. [Google Scholar] [CrossRef] - Villefort, R.F.; Diamantino, P.J.S.; von Zeidler, S.L.V.; Borges, A.L.S.; Silva-Concílio, L.R.; Saavedra, G.; de Siqueira, F.A.; Tribst, J.P.M. Mechanical Response of PEKK and PEEK As Frameworks for Implant-Supported Full-Arch Fixed Dental Prosthesis: 3D Finite Element Analysis. Eur. J. Dent.
**2021**, 16, 115–121. [Google Scholar] [CrossRef]

**Figure 3.**Dimensions of tensile specimens (ISO 527 test standard) (

**a**), flexural specimens (ISO 178 test standard), (

**b**) and the specimens used for density measurements (

**c**).

**Figure 6.**Dimensions of the experiment provided by ISO 178 test standard [22].

**Figure 12.**Experimental set-up of CAFP1 (

**a**) and CAFP2 (

**b**) with the locations of points A, B and C where the displacements are measured.

**Figure 13.**CAFP1: comparison between the finite element analysis model (

**a**) and one of the tests analyzed on GOM CORRELATE (

**b**).

**Figure 14.**CAFP2: comparison between the finite element analysis model (

**a**) and one of the tests analyzed on GOM CORRELATE (

**b**).

**Figure 15.**Deviation between CAD and 3D-printed CAFPs: (

**a**) top facing view of CAFP1, (

**b**) bottom facing view of CAFP1, (

**c**) top facing view of CAFP2, (

**d**) bottom facing view of CAFP2.

**Figure 16.**Studied surfaces (1 to 8) for the deviation study: (

**a**) view of the surface facing towards the printing bed and (

**b**) view of the top surface.

Diameter [mm] | 1.75 |

$\mathrm{Density}\text{}[{\mathrm{g}/\mathrm{c}\mathrm{m}}^{3}$] | 1.291 |

Tg [°C] | 159 |

Tm [°C] | 308 |

Layer thickness [mm] | 0.2 | Support height [mm] | 0.8 |

Printing temperature [°C] | 345 | Support infill density [%] | 70 |

Bed temperature [°C] | 145 | Support Z distance [mm] | 0.1 |

Printing speed [mm/s] | 25 | Support type | triangular |

Layer width [mm] | 0.4 | Support horizontal expansion [mm] | 0.5 |

Flexural, Tensile, and Density Specimens | CAFPs | |
---|---|---|

Walls | 0 | 4 |

Top/bottom layers | 0 | 5 |

Infill type | ZigZag | Grid |

Infill rate | 100% | 70% |

Specimen | Flexural Modulus [MPa] | Flexural Strength [MPa] | Conventional Deflection (3.5% Strain) [mm] | Flexural Stress at Conventional Deflection [MPa] |
---|---|---|---|---|

F1 | 2200 | 94 | 5.5 | 72 |

F2 | 2279 | 95 | 5.6 | 76 |

F3 | 2289 | 97 | 5.6 | 76 |

F4 | 2239 | 95 | 5.6 | 75 |

F5 | 2276 | 99 | 5.5 | 76 |

Mean value | 2266 | 96 | 5.6 | 75 |

Standard deviation | 40 | 2.3 | 0.04 | 1.8 |

Specimen | Flexural Modulus [MPa] | Flexural Strength [MPa] | Conventional Deflection (3.5% Strain) [mm] | Flexural Stress at Conventional Deflection [MPa] |
---|---|---|---|---|

F6 | 2526 | 108 | 5.2 | 80 |

F7 | 2544 | 109 | 5.2 | 85 |

F8 | 2610 | 112 | 5.2 | 86 |

F9 | 2670 | 115 | 5.4 | 89 |

F10 | 2657 | 115 | 5.4 | 88 |

Mean value | 2601 | 112 | 5.2 | 86 |

Standard deviation | 65 | 3.4 | 0.10 | 3.3 |

Specimen | Young’s Modulus [MPa] | Tensile Strength [MPa] | Elongation at Break [%] |
---|---|---|---|

T1 | 2218 | 53 | 2.8 |

T2 | 2795 | 50 | 2.5 |

T3 | 2506 | 51 | 3.4 |

T4 | 2950 | 48 | 2.2 |

T5 | 2991 | 52 | 3.6 |

Mean value | 2692 | 51 | 2.9 |

Standard deviation | 326 | 1.7 | 0.6 |

Specimen | Young’s Modulus [MPa] | Tensile Strength [MPa] | Elongation at Break [%] |
---|---|---|---|

T6 | 2892 | 69 | 4.1 |

T7 | 2474 | 74 | 4.4 |

T8 | 3420 | 68 | 4.0 |

T9 | 3027 | 69 | 3.9 |

T10 | 2351 | 71 | 4.5 |

Mean value | 2833 | 70 | 4.2 |

Standard deviation | 432 | 2.3 | 0.3 |

AY | AZ | BY | BZ | CY | CZ | |
---|---|---|---|---|---|---|

Displacement test [mm] | −4.21 | −3.71 | −3.73 | 0.23 | −3.42 | 3.97 |

Standard deviation [mm] | 0.27 | 0.27 | 0.29 | 0.06 | 0.19 | 0.20 |

Displacement model [mm] | −4.55 | −3.99 | −3.93 | 0.19 | −3.31 | 4.36 |

Difference | −8% | −7% | −5% | 17% | 3% | −10% |

AY | AZ | BY | BZ | CY | CZ | |
---|---|---|---|---|---|---|

Mean distance test [mm] | −2.34 | −5.14 | −5.68 | 0.76 | −1.00 | 5.43 |

Standard deviation [mm] | 0.09 | 0.31 | 0.10 | 0.29 | 0.06 | 0.31 |

Distance model [mm] | −1.88 | −4.54 | −4.79 | 0.413 | −1.03 | 4.596 |

Difference | 20% | 12% | 16% | 46% | −3% | 15% |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Domerg, M.; Ostré, B.; Joliff, Y.; Grunevald, Y.-H.; Garcia, A.D.
The Development of a 3D-Printed Compliant System for the Orientation of Payloads on Small Satellites: Material Characterization and Finite Element Analysis of 3D-Printed Polyetherketoneketone (PEKK). *Aerospace* **2024**, *11*, 294.
https://doi.org/10.3390/aerospace11040294

**AMA Style**

Domerg M, Ostré B, Joliff Y, Grunevald Y-H, Garcia AD.
The Development of a 3D-Printed Compliant System for the Orientation of Payloads on Small Satellites: Material Characterization and Finite Element Analysis of 3D-Printed Polyetherketoneketone (PEKK). *Aerospace*. 2024; 11(4):294.
https://doi.org/10.3390/aerospace11040294

**Chicago/Turabian Style**

Domerg, Morgane, Benjamin Ostré, Yoann Joliff, Yves-Henri Grunevald, and Antoine Dubois Garcia.
2024. "The Development of a 3D-Printed Compliant System for the Orientation of Payloads on Small Satellites: Material Characterization and Finite Element Analysis of 3D-Printed Polyetherketoneketone (PEKK)" *Aerospace* 11, no. 4: 294.
https://doi.org/10.3390/aerospace11040294