A Review of Mechanical Fine-Pointing Actuators for Free-Space Optical Communication
Abstract
:1. Introduction
2. Importance of Fine Beam Steering in Free-Space Optical Communications
2.1. Key Design Criteria of Fine Steering Systems for Optical Communication
2.1.1. Size, Weight, and Power (SWaP)
2.1.2. Optical/Mechanical Steering Angles
2.1.3. Operational Bandwidth
2.1.4. Pointing Accuracy
2.1.5. Heat Dissipation from Actuators
2.1.6. Mirror Surface Quality
2.1.7. Optical Power Handling
2.1.8. Cost
3. Electrostatic MEMS Mirror
3.1. MEMS Fast Steering Mirrors
3.1.1. Bandwidth and Mechanical Angle
3.1.2. Thermal Handling
3.1.3. Space Environment
3.2. Flight Heritage of MEMS-Based Micro-Mirrors
3.2.1. CLICK Mission
3.2.2. CubeLCT
3.2.3. DeMi Mission
4. Lorentz-Force-Based Actuators
4.1. Voice Coil Fast Steering Mirror
4.2. Magnetic Reluctance Fast Steering Mirror
TNO FSM | Cedrat Technologies M-FSM | Technische Universität Wien by E. Csencsics | |
---|---|---|---|
Housing dimensions, diameter ± height, H in mm | Ø27 × H30 | Ø62 × H56 | Ø32 × H30 |
Mass, (g) | 61 | 400 | n.d. |
Power consumption (per actuator), (W) | 0.14 | 3.75 | 1.5 |
Total angle range (mechanical), (deg) | ±2.0 | ±2.0 | ±3.0 |
FSM accuracy, (arcsec) | n.d. | n.d. | 10.8–111.6 |
Optical pointing jitter, (arcsec) | <0.2 | n.d. | n.d. |
Open—(O) or closed—(C) Loop Bandwidth, (Hz) | (C) 1700 | (O) 250 | (C) 1500 |
Mirror WFE rms | λ/60 | n.d. | n.d. |
4.3. Electromagnetically Driven MEMS FSM
5. Piezo-Effect-Driven Fast Steering Actuators
5.1. Piezo-Stack Stage
5.2. Piezoelectric MEMS Fast Steering Mirrors
5.3. X-Y Piezo Stage
6. FSM Summary
7. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Muhire, D.; Stepanova, D.; Santra, S.; Baranwal, P.; Romero, M.; Amrutkar, R.; Bonnart, S.; Jha, D.; Zucherman, A. Optical communications for small satellites: A review of pointing strategies & requirements optimization. In Proceedings of the International Astronautical Congress, IAC, Online, 12–14 October 2020. [Google Scholar]
- Kaymak, Y.; Rojas-Cessa, R.; Feng, J.; Ansari, N.; Zhou, M.C.; Zhang, T. A Survey on Acquisition, Tracking, and Pointing Mechanisms for Mobile Free-Space Optical Communications. IEEE Commun. Surv. Tutorials 2018, 20, 1104–1123. [Google Scholar] [CrossRef]
- Heine, F.; Kämpfner, H.; Lange, R.; Czichy, R.; Meyer, R.; Lutzer, M. Optical inter-satellite communication operational. In Proceedings of the IEEE Military Communications Conference MILCOM, San Jose, CA, USA, 31 October–3 November 2010; pp. 1583–1587. [Google Scholar] [CrossRef]
- Liao, S.-K.; Cai, W.-Q.; Liu, W.-Y.; Zhang, L.; Li, Y.; Ren, J.-G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.-P.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, H.; Kaddoum, G. Optical Communication in Space: Challenges and Mitigation Techniques. IEEE Commun. Surv. Tutorials 2017, 19, 57–96. [Google Scholar] [CrossRef]
- Tian, J.; Tingbiao, G.; Nan, H.; Ji, D.; Qiangsheng, H.; Xiaojian, H.; Chao, F.; Yuan, W.; Tianyi, Z.; Junping, Z.; et al. Wide-Field-of-View Modulating Retro-Reflector System Based on a Telecentric Lens for High-Speed Free-Space Optical Communication. IEEE Photonics J. 2023, 15, 7303908. [Google Scholar] [CrossRef]
- Stockley, J.; Serati, S. Advances in liquid crystal beam steering. In Proceedings of the Free-Space Laser Communications IV, Denver, CO, USA, 2–4 August 2004; Volume 5550, p. 32. [Google Scholar] [CrossRef]
- Kackera, S.; Cahoy, K. Optical Performance of Commercial Liquid Lens Assemblies in Microgravity. TechRxiv 2023. [Google Scholar] [CrossRef]
- Goorjian, P.M. A new laser beam pointing method using laser arrays. In Proceedings of the Free-Space Laser Communications XXXI, San Francisco, CA, USA, 2–7 February 2019; Volume 10910. [Google Scholar] [CrossRef]
- Miller, S.A.; Chang, Y.-C.; Phare, C.T.; Shin, M.C.; Zadka, M.; Roberts, S.P.; Stern, B.; Ji, X.; Mohanty, A.; Gordillo, O.A.J.; et al. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica 2020, 7, 3–6. [Google Scholar] [CrossRef]
- Serati, S.; Stockley, J. Advanced liquid crystal on silicon optical phased arrays. IEEE Aerosp. Conf. Proc. 2002, 3, 1395–1402. [Google Scholar] [CrossRef]
- Pan, G.; Xu, C.; Xie, Y.; Dong, Y.; Wang, Q.; Deng, J.; Sun, J.; Chen, H. Ultra-compact electrically controlled beam steering chip based on coherently coupled VCSEL array directly integrated with optical phased array. Opt. Express 2019, 27, 13910–13922. [Google Scholar] [CrossRef]
- Goorjian, P.M. Free-Space Optical Communication for CubeSats in Low Lunar Orbit (LLO). In Proceedings of the Free-Space Laser Communications XXXII, San Francisco, CA, USA, 1–6 February 2020; Volume 11272, pp. 2–6. [Google Scholar]
- Goorjian, P. Space Optical Communications Using Laser Beams. US Patent 9,774,395 B1, 26 September 2017. [Google Scholar]
- Rödiger, B.; Rüddenklau, R.; Schmidt, C.; Lehmann, M. Acquisition concept for optical inter-satellite communication terminals on cubesats. In Proceedings of the International Conference: Oberpfaffenhofen, Vilamoura, Portugal, 19 May 2022; no. 1. pp. 1–12. Available online: https://elib.dlr.de/187119/ (accessed on 6 August 2023).
- Gorev, V.N.; Prokopiev, V.Y.; Prokopiev, Y.M.; Sinitsina, L.D.; Sidorchuk, A.A. Calculating electric power generated by 3U CubeSat’s photoconverters depending on the orbit and orientation parameters. IOP Conf. Ser. Mater. Sci. Eng. 2019, 537, 022079. [Google Scholar] [CrossRef]
- Toyoshima, M. Recent Trends in Space Laser Communications for Small Satellites and Constellations. J. Light. Technol. 2020, 39, 693–699. [Google Scholar] [CrossRef]
- Baister, G.; Bacher, M.; Buchheim, K.; Francou, L.; Gregor, R. OPTEL-μ LEO to ground laser communications terminal: Flight design and status of the EQM development project. In Proceedings of the International Conference on Space Optics—ICSO 2016, Biarritz, France, 18–21 October 2016; Volume 10562. [Google Scholar] [CrossRef]
- Long, M.J.; Cahoy, K. Pointing Acquisition and Tracking Design and crosslinks. Master’s Thesis, MIT, Cambridge, MA, USA, 2018. [Google Scholar]
- Edward, L.; Ii, H. Control of a Fast Steering Mirror for Laser-Based Satellite Communication. Master’s Thesis, MIT, Cambridge, MA, USA, 2006. [Google Scholar]
- Coppoolse, W.; Kreienbuehl, M.; Moerschell, J.; Dommann, A.; Bertsch, D. Dual-axis single-mirror mechanism for beam steering and stabilization in optical inter-satellite links. In Proceedings of the 10th European Space Mechanisms and Tribology Symposium, San Sebastián, Spain, 24–26 September 2003; Volume 524, pp. 183–190. [Google Scholar]
- Pain, T.; Belmana, S.; Claeyssen, F.; Prevost, E.; Weickman, A.; Bourgain, F.; Sosnicki, O. Beam steering mechanism for earthcare atmospheric lidar instrument ATLID: An ultra-stable piezoelectric tip tilt mechanism. In Proceedings of the ICSO 2016 International Conference on Space Optics—ICSO 2016, Biarritz, France, 18–21 October 2016; Volume 10562, pp. 1–9. [Google Scholar] [CrossRef]
- Saathof, R.; Crowcombe, W.; Kuiper, S.; van der Valk, N.; Pettazzi, F.; de Lange, D.; Kerkhof, P.; van Riel, M.; de Man, H.; Truyens, N.; et al. Optical satellite communication space terminal technology at TNO. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; Volume 11180, p. 19. [Google Scholar] [CrossRef]
- Paikowsky, D. What Is New Space? The Changing Ecosystem of Global Space Activity. New Space 2017, 5, 84–88. [Google Scholar] [CrossRef]
- Yoo, B.-W.; Park, J.-H.; Park, I.H.; Lee, J.; Kim, M.; Jin, J.-Y.; Jeon, J.-A.; Kim, S.-W.; Kim, Y.-K. MEMS micromirror characterization in space environments. Opt. Express 2009, 17, 3370–3380. [Google Scholar] [CrossRef] [PubMed]
- Kutyrev, A.; Arendt, R.; Moseley, S.; Boucarut, R.; Hadjimichael, T.; Jhabvala, M.; King, T.; Li, M.; Loughlin, J.; Rapchun, D.; et al. Programmable Microshutter Arrays for the JWST NIRSpec: Optical Performance. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 652–661. [Google Scholar] [CrossRef]
- Mirrorcle. Mirrorcle Technologies MEMS Mirrors—Technical Overview. Mirrocle Technolonies Inc. 2016, pp. 1–7. Available online: http://www.mirrorcletech.com/support.html (accessed on 6 August 2023).
- Lu, Y.; Liu, K.; Wu, T. Dual-Axis MEMS Resonant Scanner Using 128∘Y Lithium Niobate Thin-Film. Acoustics 2022, 4, 313–328. [Google Scholar] [CrossRef]
- Ibarra-Villegas, F.J.; Ortega-Cisneros, S.; Moreno-Villalobos, P.; Sandoval-Ibarra, F.; Del Valle-Padilla, J.L.; Raygoza-Panduro, J.J. Analysis of MEMS structures to identify their frequency response oriented to acoustic applications. Superf. Vacio 2015, 28, 12–17. [Google Scholar]
- Gu-Stoppel, S.; Stenchly, V.; Kaden, D.; Quenzer, H.; Wagner, B.; Hofmann, U.; Dudde, R. New designs for MEMS-micromirrors and micromirror packaging with electrostatic and piezoelectric drive. Adv. Mater.-TechConnect Briefs 2016, 4, 87–90. [Google Scholar]
- Milanović, V.; Kasturi, A.; Yang, J.; Su, Y.R.; Hu, F. Novel packaging approaches for increased robustness and overall performance of gimbal-less MEMS mirrors. In Proceedings of the MOEMS Miniaturized Systems XVI, San Francisco, CA, USA, 30 January–1 February 2017; Volume 10116, p. 1011607. [Google Scholar] [CrossRef]
- Kasturi, A.; Milanović, V.; Hu, F.; Kim, H.; Ho, D.; Lowell, D. MEMS mirror module for programmable light system. In Proceedings of the MOEMS and Miniaturized Systems XVIII, San Francisco, CA, USA, 2–4 February 2019; Volume 10931. [Google Scholar] [CrossRef]
- Nguyen, T.; Riesing, K.; Kingsbury, R.; Cahoy, K. Development of a Pointing, Acquisition, and Tracking System for a Nanosatellite Optical Communications Module. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVII, San Francisco, CA, USA, 8–9 February 2015. [Google Scholar] [CrossRef]
- Senger, F.; Hofmann, U.; Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, P.; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; et al. Centimeter-scale MEMS scanning mirrors for high power laser application. In Proceedings of the SPIE—The International Society for Optical Engineering, San Francisco, CA, USA, 27 February 2015; Volume 9375. [Google Scholar] [CrossRef]
- Senger, F.; Albers, J.; Hofmann, U.; Piechotta, G.; Giese, T.; Heinrich, F.; von Wantoch, T.; Gu-Stoppel, S. A bi-axial vacuum-packaged piezoelectric MEMS mirror for smart headlights. In Proceedings of the MOEMS and Miniaturized Systems XIX, San Francisco, CA, USA, 1–3 February 2020; p. 4. [Google Scholar] [CrossRef]
- Pereira, V.; Hunwardsen, M.T.; Pereira, V.; Hunwardsen, M.T.; Cahoy, K. Characterization of laser thermal loading on microelectromechanical systems-based fast steering mirror in vacuum. Optics Express 2020, 28, 056109. [Google Scholar]
- Hofmann, U.; Wantoch, T.; Eberhardt, G.; Kinski, I.; Moeser, M.; Senger, F.; Mallas, C. Dynamic shaping of the basic intensity profile of adaptive laser headlights based on resonant MEMS scanning mirrors. In Proceedings of the International Conference: VISION, Paris, France, 14–16 July 2016; pp. 1–6. [Google Scholar]
- Kasturi, A.; Milanovic, V.; Yang, J. 5-2: MEMS Mirror Based Dynamic Solid State Lighting Module. SID Symp. Dig. Tech. Pap. 2016, 47, 32–35. [Google Scholar] [CrossRef]
- Shea, H.R. Effects of radiation on MEMS. In Proceedings of the Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS and Nanodevices X, San Francisco, CA, USA, 24–25 January 2011; Volume 7928, p. 79280E, International Society for Optics and Photonics: Bellingham, WA, USA, 2011. [Google Scholar] [CrossRef]
- Kammerer, W.; Grenfell, P.; Harburg, J.; Belsten, N.; Tomio, H.; Serra, P.; Cahoy, K.; Brothers, T.; Person, M.; Clark, M.; et al. CLICK-A: Optical Communication Experiments from a CubeSat Downlink Terminal; Conference Paper in Small Sat Conference; Utah State University: Logan, UT, USA, 2023. [Google Scholar]
- Grenfell, P.; Serra, P.; Cierny, O.; Kammerer, W.; Gunnison, G.; Kusters, J.; Cahoy, K.; Clark, M.; Ritz, T.; Coogan, D.; et al. Design and Prototyping of a Nanosatellite Laser Communications Terminal for the Cubesat Laser Infrared CrosslinK (CLICK) B/C Mission; Massachusetts Institute of Technology: Cambridge, MA, USA, 2020; Available online: https://dspace.mit.edu/handle/1721.1/129197 (accessed on 18 December 2023).
- Grenfell, P.; Aguilar, A.; Cahoy, K.; Long, M. Pointing, Acquisition, and Tracking for Small Satellite Laser Communications. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–9 August 2018; pp. 1–7. [Google Scholar]
- Serra, P.; Cierny, O.; Diez, R.; Grenfell, P.; Gunnison, G.; Kammerer, W.; Kusters, J.; Payne, C.; Murphy, J.; Sevigny, T.; et al. Optical Communications Crosslink Payload Prototype Development for the Cubesat Laser Infrared CrosslinK (CLICK) Mission; Utah State University: Logan, UT, USA, 2019. [Google Scholar]
- Cierny, O. Precision Closed-Loop Laser Pointing System for the Nanosatellite Optical Downlink Experiment. Master’s Thesis, Luleå University of Technology Department of Computer Science, Electrical and Space Engineering, Luleå, Sweden, 2017. [Google Scholar]
- Cierny, O.; Serra, P.; Kammerer, W.; Grenfell, P.; Gunnison, G.; Kusters, J.; Payne, C.; do Vale Pereira, P.; Cahoy, K.; Ritz, T.; et al. Testing of the CubeSat Laser Infrared CrosslinK (CLICK-A) payload. In Proceedings of the 34th AIAA/USU Conference on Small Satellites, Logan, UT, USA, 1–6 August 2020; Available online: https://digitalcommons.usu.edu/smallsat/2020/all2020/15 (accessed on 15 August 2023).
- Serra, P.; Cierny, O.; Kammerer, W.; Douglas, E.; Kim, D.; Ashcraft, J.; Smith, G.; Guthery, C.; Vergoossen, T.; Lohrmann, A.; et al. Optical front-end for a quantum key distribution cubesat. In Proceedings of the International Conference on Space Optics, Virtual, 30 March–2 April 2021. [Google Scholar]
- Rödiger, B.; Menninger, C.; Fuchs, C.; Grillmayer, L.; Arnold, S.; Rochow, C.; Wertz, P.; Schmidt, C. High data-rate optical communication payload for CubeSats. In Proceedings of the Laser Communication and Propagation through the Atmosphere and Oceans IX, Online, 24 August–4 September 2020; p. 1150604. [Google Scholar] [CrossRef]
- Pimentel, P.M.; Rödiger, B.; Schmidt, C.; Fuchs, C.; Rochow, C.; Hiemstra, T.; Zager, A.; Wertz, P.; Knopp, M.; Lehmann, M.; et al. Cube laser communication terminal (CubeLCT) state of the art. Acta Astronaut. 2023, 211, 326–332. [Google Scholar] [CrossRef]
- Tyson, R.K.; Frazier, B.W. Adaptive Optics, 2nd ed.; SPIE Press: Bellingham, WA, USA, 1991. [Google Scholar]
- Vlahakis, S.K. On-Orbit Characterization of a Microelectromechanical Systems (MEMS) Deformable Mirror (DM) on the Deformable Mirror Demonstration Mission (DeMi) CubeSat. Dm. In Proceedings of the 36th AIAA/USU Conference on Small Satellites, Logan, UT, USA, 6–11 August 2022. [Google Scholar]
- Shinshi, T.; Shimizu, D.; Kodeki, K.; Fukushima, K. A Fast Steering Mirror Using a Compact Magnetic Suspension and Voice Coil Motors for Observation Satellites. Electronics 2020, 9, 1997. [Google Scholar] [CrossRef]
- Kluk, D.J.; Boulet, M.T.; Trumper, D.L. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator. Mechatronics 2012, 22, 257–270. [Google Scholar] [CrossRef]
- Langenbach, H. EADS Astrium GmbH. In Fast Steering Mirror for Laser Communication, Proceedings of the 11th European Space Mechanisms and Tribology Symposium, ESMATS 2005, Lucerne, Switzerland, 21–23 September 2005; Warmbein, B., Ed.; ESA SP-591; ESA Publications Division: Noordwijk, The Netherlands, 2005; pp. 27–33. ISBN 92-9092-902-2. [Google Scholar]
- Heine, F.; Martin-Pimentel, P.; Kaempfner, H.; Muehlnikel, G.; Troendle, D.; Zech, H.; Rochow, C.; Dallmann, D.; Reinhardt, M.; Gregory, M.; et al. Alphasat and sentinel 1A, the first 100 links. In Proceedings of the 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), New Orleans, LA, USA, 26–28 October 2015; pp. 5–8. [Google Scholar] [CrossRef]
- Sodnik, Z.; Miklusis, D.; Smit, H.; Hauschildt, H.; Xilouris, E.M.; Hantzios, P.; Alikakos, J.; Gourzelas, A.; Maroussis, A.; Basilakos, S.; et al. Greek Chelmos Observatory readies for Optical and Quantum Communication. In Proceedings of the 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Kyoto City, Japan, 29–31 March 2022; pp. 128–133. [Google Scholar] [CrossRef]
- Jacka, N.; Walker, W.; Roybal, M.; McNally, J. Design and qualification of a small customizable fast steering mirror (FSM) for FSOC stabilization and scanning applications. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, CA, USA, 29–30 January 2018; p. 1052407. [Google Scholar] [CrossRef]
- Kuiper, S.; Crowcombe, W.; Human, J.; Dekker, B.; Nieuwkoop, E.; Meskers, A.; Witvoet, G.; Kramer, L.; Lemmen, M.; Lagemaat, H.; et al. High-bandwidth and compact fine steering mirror development. In Proceedings of the 17th European Space Mechanisms and Tribology Symposium, Hatfield, UK, 20–22 September 2017; pp. 20–22. [Google Scholar]
- Csencsics, E.; Schlarp, J.; Schitter, G. Bandwidth extension of hybrid-reluctance-force-based tip/tilt system by reduction of eddy currents. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 1167–1172. [Google Scholar] [CrossRef]
- Witvoet, G.; Kuiper, S.; Meskers, A. Performance validation of a high-bandwidth fine steering mirror for optical communications. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; p. 216. [Google Scholar] [CrossRef]
- Dresscher, M.; Human, J.D.; Witvoet, G.; van der Heiden, N.; Breeje, R.D.; Kuiper, S.; Fritz, E.C.; Korevaar, C.W.; van der Valk, N.C.J.; de Lange, T.J.; et al. Key challenges and results in the design of CubeSat laser terminals, optical heads and coarse pointing assemblies. In Proceedings of the 2019 IEEE International Conference on Space Optical Systems and Applications, ICSOS 2019, Portland, OR, USA, 14–16 October 2019; pp. 6–11. [Google Scholar] [CrossRef]
- TNO Webpage. SmallCAT Laser Communication System Delivered for Integration to Norwegian NORSAT-TD Spacecraft. Available online: https://www.tno.nl/en/newsroom/2022/09/smallcat-laser-communication-system/ (accessed on 15 August 2023).
- Claeyssen, F.; Aigouy, G.; Betsch, E.; Barillot, F.; Maillard, T.; Pages, A. Fast & fine Steering Mirrors based on piezoelectric & magnetic actuator technologies for Air & Space. In Proceedings of the ACTUATOR 2022; International Conference and Exhibition on New Actuator Systems and Applications, Mannheim, Germany, 29–30 June 2022; pp. 132–137. [Google Scholar]
- Claeyssen, F.; Benoit, K.; Aigouy, G.; Maillard, T.; Fournier, M.; Sosnicki, O. Large-stroke fast steering mirror for space free-space optical communication. In Proceedings of the International Conference on Space Optics—ICSO 2020, Online, 30 March–2 April 2021. [Google Scholar]
- Aigouy, G.; Guignabert, A.; Betsch, E.; Cote, C.; Rebufa, J.; De Lepine, X.; Fournier, M.; Duc, S.; Sosnicki, O.; Personnat, P.; et al. Large stroke fast steering mirror for free-space optical communication. In Proceedings of the International Conference on Space Optics—ICSO 2021, Online, 30 March–2 April 2021; p. 203. [Google Scholar] [CrossRef]
- Csencsics, E.; Schlarp, J.; Schopf, T.; Schitter, G. Compact high performance hybrid reluctance actuated fast steering mirror system. Mechatronics 2019, 62, 102251. [Google Scholar] [CrossRef]
- Lei, H.; Wen, Q.; Yu, F.; Zhou, Y.; Wen, Z. FR4-Based Electromagnetic Scanning Micromirror Integrated with Angle Sensor. Micromachines 2018, 9, 214. [Google Scholar] [CrossRef] [PubMed]
- Arends, H.; Gavira, J.; Romstedt, J.; Butler, B.; Torkar, K.; Fremuth, G.; Jeszenszky, H.; Coe, G.; Yorck, M. The MIDAS experiment for the Rosetta mission. In Proceedings of the 9th European Space Mechanisms and Tribology Symposium, Liège, Belgium, 19–21 September 2001. [Google Scholar]
- Di Gesu, F.; Brunschvig, A. Silex mechanisms: Which lessons after qualification? In Proceedings of the 6th European Space Mechanisms and Tribology Symposium, Zürich, Switzerland, 4–6 October 1995. [Google Scholar]
- Straume, A.G.; Elfving, A.; Wernham, D.; De Bruin, F.; Kanitz, T.; Schuettemeyer, D.; Bismarck, J.; Von Buscaglione, F.; Lecrenier, O.; McGoldrick, P. ESA’s spaceborne lidar mission ADM-Aeolus; Project status and preparations for launch. EPJ Web Conf. 2018, 176, 04007. [Google Scholar] [CrossRef]
- Allegranza, C.; Gaillard, L.; Le Letty, R.; Patti, S.; Scolamiero, L.; Toso, M. Actuators for Space Applications: State of the Art and New Technologies. In Proceedings of the 14th International Conference on New Actuators, Bremen, Germany, 23–25 June 2014. [Google Scholar]
- Kingsbury, R.W.; Nguyen, T.; Riesing, K.; Cahoy, K. Fast-steering solutions for cubesat-scale optical communications. In Proceedings of the International Conference on Space Optics—ICSO 2014, Tenerife, Spain, 6–10 October 2014; p. 169. [Google Scholar] [CrossRef]
- Laurentiu, A.; The, I. Mechanical amplification system for displacements produced by piezoelectric actuators. Univ. Politeh. Buchar. Sci. Bull. Ser. D Mech. Eng. 2011, 73, 239–248. [Google Scholar]
- Zheng, H.; Lu, S.; Zhai, Q.; Huang, B.; Long, Y.; Zhao, Y.; Qi, J. Simulation and experiment of a diamond-type micro-displacement amplifier driven by piezoelectric actuator. J. Eng. 2020, 2020, 141–147. [Google Scholar] [CrossRef]
- Ouyang, P.R.; Zhang, W.J.; Gupta, M.M. Design of a New Compliant Mechanical Amplifier. In Proceedings of the 29th Mechanisms and Robotics Conference, Long Beach, CA, USA, 24–28 September 2005; Volume 1, pp. 1–10. [Google Scholar]
- Bourgain, F.; Sosnicki, O.; Barillot, F.; Claeyssen, F. Beam Steering Mechanism for Earthcare Atmospheric Lidar Instrument—An Improved Piezoelectric Tip-Tilt Mechanism. In Proceedings of the 15th European Space Mechanisms & Tribology Symposium—ESMATS 2013, Noordwijk, The Netherlands, 25–27 September 2013; pp. 1–9. [Google Scholar]
- Rijnveld, N.; Pijnenburg, J.A.C.M. Picometer stable scan mechanism for gravitational wave Picometer stable scan mechanism for gravitational wave detection in space: LISA PAAM. In Proceedings of the International Conference on Space Optics—ICSO 2010, Rhodes Island, Greece, 4–8 October 2010; Volume 10565, pp. 1–7. [Google Scholar] [CrossRef]
- Hugi, S.; Maillard, T.; Baillus, A.; Aigouy, G.; Sosnicki, O.; Barillot, F. Fine steering mirror based on piezo actuators: A point ahead mechanism (PAM30) for deep space optical communication module of the psyche mission. In Proceedings of the International Conference on Space Optics—ICSO 2020, Online, 30 March–2 April 2021. [Google Scholar] [CrossRef]
- Antonello, R.; Branz, F.; Sansone, F.; Cenedese, A.; Francesconi, A. High-Precision Dual-Stage Pointing Mechanism for Miniature Satellite Laser Communication Terminals. IEEE Trans. Ind. Electron. 2020, 68, 776–785. [Google Scholar] [CrossRef]
- Guentchev, G.N.; Bayer, M.M.; Li, X.; Boyraz, O. Mechanical design and thermal analysis of a 12U CubeSat MTCW lidar based optical measurement system for littoral ocean dynamics. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 1–5 August 2021. [Google Scholar] [CrossRef]
- Sansone, F.; Francesconi, A.; Corvaja, R.; Vallone, G.; Antonello, R.; Branz, F.; Villoresi, P. LaserCube optical communication terminal for nano and micro satellites. Acta Astronaut. 2020, 173, 310–319. [Google Scholar] [CrossRef]
- Francesco, S.; Francesco, B.; Andrea, V.; Edoardo, B.; Gian, P.G.; Riccardo, A.; Alessandro, F. Calibration and Verification of Pointing and Tracking System for Optical Communication Terminal. AIAA J. 2023, 61, 510–517. [Google Scholar]
- Sun, C.; Liu, Y.; Li, B.; Su, W.; Luo, M.; Du, G.; Wu, Y. Modeling and Optimization of a Novel ScAlN-Based MEMS Scanning Mirror with Large Static and Dynamic Two-Axis Tilting Angles. Sensors 2021, 21, 5513. [Google Scholar] [CrossRef]
- Tani, M.; Akamatsu, M.; Yasuda, Y.; Toshiyoshi, H. A Two-Axis Piezoelectric Tilting Micromirror with a Newly Developed PZT-Meandering Actuator. J. Microelectromech. Syst. 2007, 16, 699–702. [Google Scholar]
- Boni, N.; Carminati, R.; Mendicino, G.; Merli, M. Quasi-static PZT actuated MEMS mirror with 4 × 3 mm2 reflective area and high robustness. In Proceedings of the MOEMS and Miniaturized Systems XX, Online, 6–12 March 2021. [Google Scholar] [CrossRef]
- Gu-Stoppel, S.; Funck, N.; Claus, M.; Lisec, T.; Schröder, S.; Wagner, B.; Lofink, F. A triple-wafer-bonded AlScN driven quasi-static MEMS mirror with high linearity and large tilt angles. In Proceedings of the MOEMS and Miniaturized Systems XIX, San Francisco, CA, USA, 1–3 February 2020; p. 1129304. [Google Scholar] [CrossRef]
- Meinel, K.; Stoeckel, C.; Melzer, M.; Zimmermann, S.; Forke, R.; Hiller, K.; Otto, T. Piezoelectric Scanning Micromirror with Large Scan Angle Based on Thin Film Aluminum Nitride. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 1518–1521. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, L.; Xie, H. A Fast, Large-Stroke Electrothermal MEMS Mirror Based on Cu/W Bimorph. Micromachines 2015, 6, 1876–1889. [Google Scholar] [CrossRef]
- Gu-Stoppel, S.; Senger, F.; Wen, L.; Yarar, E.; Wille, G.; Albers, J. A design and manufacturing platform for AlScN based highly linear quasi-static MEMS mirrors with large optical apertures. In Proceedings of the MOEMS and Miniaturized Systems XX, Online, 6–11 March 2021. [Google Scholar] [CrossRef]
- Laske, N.; Gu-Stoppel, S.; Albers, J.; Wen, L. Rapid Control Prototyping for Al (Sc)N based highly linear quasi-static MEMS mirrors with large optical apertures. In Proceedings of the MOEMS and Miniaturized Systems XXI, San Francisco, CA, USA, 22–27 January 2022. [Google Scholar]
- Meinel, K.; Melzer, M.; Stoeckel, C.; Shaporin, A.; Forke, R.; Zimmermann, S.; Hiller, K.; Otto, T.; Kuhn, H. 2D Scanning Micromirror with Large Scan Angle and Monolithically Integrated Angle Sensors Based On Piezoelectric Thin Film Aluminum Nitride. Sensors 2020, 20, 6599. [Google Scholar] [CrossRef]
- Nowak, M.; Lacour, S.; Lapeyrère, V.; David, L.; Crouzier, A.; Dufoing, C.; Faiz, H.; Lemoult, T.; Trébuchet, P. Reaching sub-milimag photometric precision on Beta Pictoris with a nanosat: The PicSat mission. In Proceedings of the Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Edinburgh, UK, 24 June–1 July 2016; Volume 9904, p. 99044L. [Google Scholar] [CrossRef]
- Pong, C.M. 2018 On-Orbit Performance & Operation of the Attitude & Pointing Control Subsystems on ASTERIA. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites SSC18-PI_34, Logan, UT, USA, 4–9 August 2018. [Google Scholar]
Mirrorcle Technologies Inc. A8L2.2-4600 | Boston Micromachines Hex-111 (3.6 mm) | Precisely Microtechnology Ø3.5 mm | |
---|---|---|---|
Optical Power Handling non-vacuum, (mW) | <2000 | n.d. | <500 |
Total angle range, (deg) | ±5 | ±0.46 | ±2.5 |
FSM repeatability rms, (arcsec) | 2.5 | n.d. | n.d. |
Step response time, (ms) | 8 | <0.04 | 1 |
Mirror’s surface quality RoC—radius of curvature | RoC > 5 m | n.d. | RoC [0.8–5] m |
TESAT, LCT FSM | CSAG, FSM | ATA, FSM | |
---|---|---|---|
Mass, (g) | 300 | 290 | no data |
Total (mechanical) angle range, (deg) | ±2.1 | ±0.4 | ±0.6 |
FSM accuracy (mechanical), arcsec | ±1 | ±0.1 | ±1 |
Closed loop Bandwidth, (Hz) | ≥1000 | 1000 | ≥2500 |
Mirror WFE rms, (nm) | 15 | 31 | <15 |
Hamamatsu (S13124-01) | Sercalo (MM160110-2-15) | Texas Instruments (TALP1000B) | |
---|---|---|---|
Mirror diameter, (mm) | 1.97 | 18 × 12 | 3.2 × 3.6 |
Power consumption, (W) * with electronics | *3 | 0.6 | 0.7 |
Total (mechanical) angle range, (deg) | ±5.0 | ±1.5 | ±5.0 |
Resonant frequency, (Hz) | 480 | 180 | 130 |
Mirror RoC, (m) | n.d. | >100 | 5 |
Mirror coating | Aluminium | Gold or Aluminium | Gold |
Electrostatic MEMS FSM | Electromagnetic MEMS FSM | Piezoelectric MEMS FSM | Voice Coil FSM | Magnetic Reluctance FSM | Piezo-Stack FSM | X-Y Piezo Stage FSM | |
---|---|---|---|---|---|---|---|
Size and weight | Low | Low | Low | Moderate | Moderate | High | High |
Power consumption | Low | Moderate | Moderate | High | Moderate | High | High |
Deflection angles | Moderate | Moderate | Moderate | High | High | Low | Low |
Mirror size | Moderate | Moderate | Moderate | High | High | High | N/A |
Resolution | Moderate | No data | Low | Low | Moderate | High | High |
Driver controlling complexity | Low | High | Low | High | High | Low | Low |
Withstands launch loads | Moderate | High | Moderate | High | High | Low | Low |
Operational bandwidth | Moderate | Low | Moderate | High | High | High | High |
Optical power handling | Low | Low | Low | High | High | High | High |
Flight heritage | Yes | No | No | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milaševičius, M.; Mačiulis, L. A Review of Mechanical Fine-Pointing Actuators for Free-Space Optical Communication. Aerospace 2024, 11, 5. https://doi.org/10.3390/aerospace11010005
Milaševičius M, Mačiulis L. A Review of Mechanical Fine-Pointing Actuators for Free-Space Optical Communication. Aerospace. 2024; 11(1):5. https://doi.org/10.3390/aerospace11010005
Chicago/Turabian StyleMilaševičius, Martynas, and Laurynas Mačiulis. 2024. "A Review of Mechanical Fine-Pointing Actuators for Free-Space Optical Communication" Aerospace 11, no. 1: 5. https://doi.org/10.3390/aerospace11010005