Combustion Characteristics of HTPB-Based Hybrid Rocket Fuels: Using Nickel Oxide as the Polymer Matrix Pyrolysis Catalyst
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Fuel Preparation
2.3. Characterization Methods
2.4. Hybrid Propulsion Combustion System
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chiaverini, M.J. Hybrid Propulsion, Encyclopedia of Aerospace Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Chiaverini, M.J.; Kuo, K.K. Fundamentals of Hybrid Rocket Combustion and Propulsion; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007. [Google Scholar] [CrossRef]
- John, J.; Nandagopalan, P.; Baek, S.W.; Miglani, A. Rheology of solid-like ethanol fuel for hybrid rockets: Effect of type and concentration of gellants. Fuel 2017, 209, 96–108. [Google Scholar] [CrossRef]
- Jeong, J.; Bhosale, V.K.; Kwon, S. Ultrafast igniting, low toxicity hypergolic hybrid solid fuels and hydrogen peroxide oxidizer. Fuel 2021, 286, 119307. [Google Scholar] [CrossRef]
- Bhosale, V.K.; Jeong, J.; Kwon, S. Ignition of boron-based green hypergolic fuels with hydrogen peroxide. Fuel 2019, 255, 115729. [Google Scholar] [CrossRef]
- Mazzetti, A.; Merotto, L.; Pinarello, G. Paraffin-based hybrid rocket engines applications: A review and a market perspective. Acta Astronaut. 2016, 126, 286–297. [Google Scholar] [CrossRef]
- Merotto, L.; Galfetti, L.; Colombo, G.; DeLuca, L. Characterization of nAl powders for rocket propulsion. Prog. Propuls. Phys. (EUCASS) 2011, 2, 99–120. [Google Scholar] [CrossRef]
- Zhang, Q.; Shu, Y.; Liu, N.; Lu, X.; Shu, Y.; Wang, X.; Mo, H.; Xu, M. Hydroxyl terminated polybutadiene: Chemical modification and application of these modifiers in propellants and explosives. Cent. Eur. J. Energetic Mater. 2019, 16, 153–193. [Google Scholar] [CrossRef]
- Aoki, A.; Fukuchi, A.B. Development of low cost fuels for hybrid rocket engine. In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, USA, 25–28 July 2010; p. 6638. [Google Scholar] [CrossRef]
- Zhou, Q.; Jie, S.; Li, B.C. Preparation of hydroxyl-terminated polybutadiene with high cis-1,4 content. Ind. Eng. Chem. Res. 2014, 53, 17884–17893. [Google Scholar] [CrossRef]
- Dennis, C.; Bojko, B. On the combustion of heterogeneous AP/HTPB composite propellants: A review. Fuel 2019, 254, 115646. [Google Scholar] [CrossRef]
- Sun, X.; Tian, H.; Li, Y.; Yu, N.; Cai, G. Regression rate behaviors of HTPB-based propellant combinations for hybrid rocket motor. Acta Astronaut. 2016, 119, 137–146. [Google Scholar] [CrossRef]
- Sutton, G.P.; Biblarz, O. Rocket Propulsion Elements; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Deluca, L.T.; Shimada; Sinditskii, V.P.; Calabro, M. Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials; Springer Aerospace Technology: Berlin, Germany, 2016. [Google Scholar]
- Marothiya, G.; Kumar, R.; Ramakrishna, P.A. Enhancing the regression rate of hydroxyl-terminated-polybutadiene-based mixed hybrid rockets. J. Propuls. Power 2022, 38, 623–630. [Google Scholar] [CrossRef]
- Lee, D.; Lee, C. AP and Boron combustion characteristics in staged hybrid rocket engine. In Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar] [CrossRef]
- Hori, K.; Wada, Y.; Hasegawa, K.; Yagishita, T.; Kobayashi, K.; Iwasaki, S.; Sato, H.; Nishioka, M.; Kimura, M. Combustion characteristics of hybrid rocket motor using GAP as a solid fuel (II). In Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, CA, USA, 31 July–3 August 2011. [Google Scholar] [CrossRef]
- Frederick, J.R.A.; Whitehead, J.J.; Knox, L.R.; Moser, M.D. Regression rates study of mixed hybrid propellants. J. Propuls. Power 2007, 23, 175–180. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Y.; Yu, H.; Bao, L.; Zhang, W.; DeLuca, L.T.; Shen, R.; Ye, Y. The rapid H2 release from AlH3 dehydrogenation forming porous layer in AlH3/hydroxyl-terminated polybutadiene (HTPB) fuels during combustion. J. Hazard. Mater. 2019, 371, 53–61. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Wang, Q.; Wang, N. Combustion characteristics of skeleton polymer reinforced paraffin-wax fuel grain for applications in hybrid rocket motors. Combust. Flame 2022, 241, 112055. [Google Scholar] [CrossRef]
- Armold, D.M. Formulation and Characterization of Paraffin-Based Solid Fuels Containing Swirl Inducing Grain Geometry and/or Energetic Additives; Statechurch; The Pennsylvania State University: State College, PA, USA, 2014. [Google Scholar]
- Zhang, S.; Hu, F.; Zhang, W. Numerical investigation on the regression rate of hybrid rocket motor with star swirl fuel grain. Acta Astronaut. 2016, 127, 384–393. [Google Scholar] [CrossRef]
- Thomas, J.C.; Stahl, J.M.; Tykol, A.J.; Rodriguez, F.A.; Peterson, E.L. Hybrid rocket studies using HTPB/paraffin fuel blends in gaseous oxygen flow. In Proceedings of the 7th European Conference for Aeronautics and Space Sciences (EUCASS), Milan, Italy, 3–6 July 2015. [Google Scholar] [CrossRef]
- Dunn, C.; Gustafson, G.; Edwards, J.; Dunbrack, T.; Johansen, C. Spatially and temporally resolved regression rate measurements for the combustion of paraffin wax for hybrid rocket motor applications. Aerosp. Sci. Technol. 2018, 72, 371–379. [Google Scholar] [CrossRef]
- Yu, H.; Shen, R.; Tang, Y.; Chen, S.; DeLuca, L.T.; Zhang, W.; Ye, Y.H. The verifications and demonstrations of self-disintegration fuel concept for hybrid propulsion. In Proceedings of the 8th European Conference For Aeronautics And Space Sciences, Madrid, Spain, 1–4 July 2019. [Google Scholar] [CrossRef]
- Yu, X.; Yu, H.; Zhang, W.; DeLuca, L.T.; Shen, R. Effect of Penetrative Combustion on Regression Rate of 3D Printed Hybrid Rocket Fuel. Aerospace 2022, 9, 696. [Google Scholar] [CrossRef]
- Varfolomeev, M.A.; Yuan, C.; Bolotov, A.V.; Minkhanov, I.F.; Mehrabi-Kalajahi, S.; Saifullin, E.R.; Marvanov, M.M.; Baygildin, E.R.; Sabiryanov, R.M.; Rojas, A.; et al. Effect of copper stearate as catalysts on the performance of in-situ combustion process for heavy oil recovery and upgrading. J. Pet. Sci. Eng. 2021, 207, 109125. [Google Scholar] [CrossRef]
- Moroi, G. Influence of ion species on the thermal degradation of polyurethane interaction products with transition metal ions. J. Anal. Appl. Pyrolysis 2004, 71, 485–500. [Google Scholar] [CrossRef]
- Pal, Y.; Mahottamananda, S.N.; S, S.; Palateerdham, S.K.; Ingenito, A. Thermal decomposition kinetics and combustion performance of paraffin-based fuel in the presence of CeO2 catalyst. Firephyschem 2023, 3, 217–226. [Google Scholar] [CrossRef]
- Cardoso, K.P.; Ferrão, L.F.A.; Kawachi, E.Y.; Gomes, J.S.; Nagamachi, M.Y. Ballistic Performance of Paraffin-Based Solid Fuels Enhanced by Catalytic Polymer Degradation. J. Propuls. Power 2019, 35, 115–124. [Google Scholar] [CrossRef]
- Yu, H.; Chen, S.; Yu, X.; Zhang, W.; Paravan, C.; DeLuca, L.T.; Shen, R. Nickel acetylacetonate as decomposition catalyst for HTPB-based fuels: Regression rate enhancement effects. Fuel 2021, 305, 121539. [Google Scholar] [CrossRef]
- Yu, H.; Yu, X.; Chen, S.; Zhang, W.; DeLuca, L.T.; Shen, R. The catalysis effects of acetylacetone complexes on polymer matrix of HTPB-based fuels. Firephyschem 2021, 1, 205–211. [Google Scholar] [CrossRef]
- Paravan, C. Nano-sized and mechanically activated composites: Perspectives for enhanced mass burning rate in aluminized solid fuels for hybrid rocket propulsion. Aerospace 2019, 6, 127. [Google Scholar] [CrossRef]
- Ye, Y.; Shu, L.; Shen, R. Effect of phenolic resin on laser ablation of B/KNO3. Chin. J. Energetic Mater. 2007, 19, 68–77. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Y.; Yu, H.; Guan, X.; DeLuca, L.T.; Zhang, W.; Shen, R.; Ye, Y. Combustion enhancement of hydroxyl-terminated polybutadiene by doping multiwall carbon nanotubes. Carbon 2019, 144, 472–480. [Google Scholar] [CrossRef]
Formulation | HTPB, wt% | DOA, wt% | IPDI, wt% | TIN, wt% | NiO, wt% |
---|---|---|---|---|---|
Pure HTPB | 79.29 | 13.04 | 7.24 | 0.43 | 0 |
1.25% NiO | 78.30 | 12.88 | 7.15 | 0.42 | 1.25 |
2.50% NiO | 77.31 | 12.71 | 7.06 | 0.42 | 2.50 |
5.00% NiO | 75.33 | 12.39 | 6.88 | 0.41 | 5.00 |
7.50% NiO | 73.34 | 12.06 | 6.70 | 0.40 | 7.50 |
10.0% NiO | 71.36 | 11.74 | 6.52 | 0.38 | 10.00 |
(mm/s) | (%) | R2 | |||||
---|---|---|---|---|---|---|---|
Gox (kg/m2s) | 50 | 150 | 50 | 150 | |||
HTPB | 0.309 | 0.619 | - | - | 0.027 ± 0.001 | 0.609 ± 0.001 | 0.985 |
1.25% NiO | 0.353 | 0.601 | 14.2 | −2.91 | 0.056 ± 0.001 | 0.465 ± 0.001 | 0.985 |
2.50% NiO | 0.373 | 0.640 | 20.7 | 3.40 | 0.057 ± 0.001 | 0.472 ± 0.001 | 0.985 |
5.00% NiO | 0.369 | 0.704 | 19.4 | 13.7 | 0.038 ± 0.001 | 0.568 ± 0.001 | 0.985 |
7.50% NiO | 0.366 | 0.709 | 18.4 | 14.5 | 0.036 ± 0.001 | 0.580 ± 0.001 | 0.985 |
10.0% NiO | 0.373 | 0.711 | 20.7 | 14.9 | 0.039 ± 0.001 | 0.567 ± 0.001 | 0.985 |
× 104 (mm/s) | (%) | |||
---|---|---|---|---|
Gox (kg/m2s) | 50 | 150 | 50 | 150 |
HTPB | 2.37 | 2.74 | - | - |
1.25% NiO | 2.74 | 2.69 | 15.6 | −1.83 |
2.50% NiO | 2.92 | 2.89 | 23.2 | 5.47 |
5.00% NiO | 2.95 | 3.25 | 24.5 | 18.6 |
7.50% NiO | 3.00 | 3.35 | 26.6 | 22.3 |
10.0% NiO | 3.12 | 3.44 | 31.6 | 25.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Yu, X.; Gao, H.; DeLuca, L.T.; Zhang, W.; Shen, R. Combustion Characteristics of HTPB-Based Hybrid Rocket Fuels: Using Nickel Oxide as the Polymer Matrix Pyrolysis Catalyst. Aerospace 2023, 10, 800. https://doi.org/10.3390/aerospace10090800
Yu H, Yu X, Gao H, DeLuca LT, Zhang W, Shen R. Combustion Characteristics of HTPB-Based Hybrid Rocket Fuels: Using Nickel Oxide as the Polymer Matrix Pyrolysis Catalyst. Aerospace. 2023; 10(9):800. https://doi.org/10.3390/aerospace10090800
Chicago/Turabian StyleYu, Hongsheng, Xiaodong Yu, Hongwei Gao, Luigi T. DeLuca, Wei Zhang, and Ruiqi Shen. 2023. "Combustion Characteristics of HTPB-Based Hybrid Rocket Fuels: Using Nickel Oxide as the Polymer Matrix Pyrolysis Catalyst" Aerospace 10, no. 9: 800. https://doi.org/10.3390/aerospace10090800
APA StyleYu, H., Yu, X., Gao, H., DeLuca, L. T., Zhang, W., & Shen, R. (2023). Combustion Characteristics of HTPB-Based Hybrid Rocket Fuels: Using Nickel Oxide as the Polymer Matrix Pyrolysis Catalyst. Aerospace, 10(9), 800. https://doi.org/10.3390/aerospace10090800