Bridging the Technology Gap: Strategies for Hybrid Rocket Engines †
Abstract
:1. Introduction and Historical Context
2. Perspectives and Applications of Hybrid Rocket Engines
- 1.
- Hybrids are likely to have lower development periods (6–10 months) as compared to the 4–5 years required for Solid Rocket Motors (SRMs) and Liquid Rocket Engines (LREs).
- 2.
- Costs are reduced by a factor of 1.5 to 2 compared to LREs because advances made for SRMs can translate to HREs.
- 3.
- Reduced launching cost due to lower material cost, two to three times shorter prelaunch procedure, 40–50% decreased operating expenses, and lower cost of fire and explosion safety system.
2.1. Hybrid Upper Stages
2.2. Large Boosters and Main Stages
2.3. Planetary and Lunar Lander or Ascent Vehicles
2.4. In-Space Propulsion
2.5. Concluding Remarks for Hybrid Perspectives
3. Problems Encountered in Hybrid Rocket Development
3.1. Scalability
- 1.
- Geometry (constant length-to-port-diameter ratio).
- 2.
- Transport phenomena (most importantly the Reynolds number).
- 3.
- Heating regime (constant ratio between the heat transfer to the wall and the overall heat addition to the flow from the fuel)
- 4.
- Chemistry aspects (most notably constant O/F).
- 5.
- Compressibility (constant Mach number).
- 6.
- Liquid phase and injector characteristics (droplet lifetime, spray penetration, and momentum).
3.2. Throttling
Thrust | Throttling Range | Ref. |
---|---|---|
800–12 N | 67:1 | [68] |
841.4–66.8 N | 12.6:1 | [76] |
max. thrust 5300 N | 10:1 | [67] |
1800–180 N | 10:1 | [78,81] |
500–50 N | 10:1 | [74] |
motor class 444 N | 10:1 | [75] |
950–107 N | 8.88:1 | [72] |
max. thrust 2300 N | 8:1 | [65,66] |
∼186–34 N | 5.5:1 | [77] |
10,000-2000 kN | 5:1 | [64] |
700–175 N | 4:1 | [71] |
∼56–18.4 N | 3:1 | [69,70] |
1200–722 N | 1.66:1 | [73] |
3.3. Repeatability and Active Control
3.4. Nozzle Erosion
3.5. Oxidizer-to-Fuel Ratio Shift
3.6. Estimation of the Regression Rate
3.7. Low Regression Rate
- 1.
- Adjustments to the solid fuel chemical properties such as liquefiable fuels and additives.
- 2.
- Advanced injection methods and concepts such as swirl injection and vortex engines.
- 3.
- Improving the combustion chamber design by using diaphragms or steps to increase mixing and heat transfer.
3.8. Instabilities
- 1.
- Low frequency (<200 Hz). Most common. Origin: feed system coupled or chuffing. Moreover, HREs have unique Intrinsic Low Frequency Instabilities (ILFI) caused by coupling of thermal transients in solid fuel, wall heat transfer blocking, transients of the boundary layer over the fuel surface, and vortex shedding in the aft chamber [148,149,150].
- 2.
- Medium frequency (200–2000 Hz). Coupled with the low frequency oscillations. Typically caused by the longitudinal acoustic modes of the chamber. Amplitudes are low. Additionally, hydrodynamic oscillations driven by vortex shedding in the aft chamber can be counted in this group or with the low frequency oscillations [148,149,150].
- 3.
- High frequency (>2000 Hz). Coupled to higher longitudinal or transverse acoustic modes. Usually negligible.
3.9. Numerical Simulations
3.10. Limited Experimental Database
3.11. Low Maturity
3.12. Discussion on Recent Milestones
4. Conclusions
“There is probably no other good idea in chemical rocket propulsion that has had as long a development as the idea of the hybrid rocket.” [52]
Author Contributions
Funding
Conflicts of Interest
Abbreviations
A-SOFT | Altering-intensity Swirling Oxidizer Flow Type |
AF | Advanced Fuel |
AIEB | Axial-Injection End-Burning |
ALTAIR | Air Launch Space Transportation Using an Automated Aircraft and an |
Innovative Rocket | |
AMROC | American Rocket Company |
AP | Ammonium Perchlorate |
ARRC | Advanced Rocket Research Center |
CAMUI | Cascaded Multistage Impinging-Jet |
DTI | Distributed Tube Injector |
GAP | Glycidyl Azide Polymer |
GEO | Geostationary Orbit |
GIRD | Group for the Study of Reactive Motion |
GTO | Geostationary Transfer Orbit |
GNC | Guidance, Navigation, and Control |
HDPE | High-Density Polyethylene |
HAST | High-Altitude Supersonic Target |
HPDP | Hybrid Propulsion Demonstration Program |
HRE | Hybrid Rocket Engine |
HTPB | Hydroxyl-Terminated Polybutadiene |
HUP | Hydrogen Peroxide Hybrid Upper-Stage Program |
HYPROGEO | Hybrid Propulsion Module for Transfer to GEO Orbit |
HyTOP | Hybrid Technology Option Project |
I | Specific Impulse |
ILFI | Intrinsic Low-Frequency Instabilities |
LEX | Lithergol Experimental |
LRE | Liquid Rocket Engine |
LOX | Liquid Oxygen |
MAV | Mars Ascent Vehicle |
MDO | Multidisciplinary Design Optimization |
MMH | Mono-Methyl Hydrazine |
MON | Mixed Oxides of Nitrogen |
NTO | Nitrogen Tetroxide |
O/F | Oxidizer-to-Fuel Ratio |
ORPHEE | Operational Research Project on Hybrid Engine in Europe |
PB | Polybutadiene |
PE | Polyethylene |
PWM | Pulse Width Modulation |
RP-1 | Rocket Propellant 1 |
SMILE | Small Innovative Launcher for Europe |
SSTO | Single-Stage-to-Orbit |
SPARTAN | Space Exploration Research for Throttleable Advanced Engine |
SRM | Solid Rocket Motor |
TEA-TEB | Triethylaluminum–Triethylborane |
TVC | Thrust Vector Control |
TRL | Technology Readiness Level |
UDMH | Unsymmetrical Dimethylhydrazine |
Appendix A
Use-Case | Propellants a | Description | Remarks | Ref. |
---|---|---|---|---|
Upper stage | LOX/paraffin | Replacing Orion 38 solid upper stage of Taurus/Pegasus launch vehicle | 40% higher payload and 15–18% lighter than Orion 38 solid upper stage | [4] |
Upper stage | LOX/wax | Replacing solid Zefiro 9 and liquid AVUM of Vega with single HRE | Increase in payload by 62% (turbo pump) and +79% (electric pump) | [11] |
Upper stage | HO/PE | Replacing solid Zefiro 9 and liquid AVUM of Vega with single HRE | Increase in payload by 38% from 1430 to 1971 kg | [11] |
Upper stage | HO/HTPB | Replacing solid Zefiro 9 and liquid AVUM of Vega with single HRE | Initial design competed or surpassed, 1.7 times pricier than a solid, 5 times cheaper than LRE | [12] |
Upper stage | LOX/AF b | Replacing solid Zefiro 9 and liquid AVUM of Vega with single HRE | +800 kg (+60%) increase in payload capacity | [9] |
Upper stage | HO/HTPB & PE | Replacing solid upper stage of VLM-1 microsatellite launch vehicle with HRE | HRE superior in thrust, mass, and energy efficiency. Cost increased by 1.5, but throttleable | [13] |
Kick stage | HO/HDPE | Post boost kick stage | Over 4000 m/s velocity change for a one-cubic meter, 916 kg HRE | [10] |
Main stage | LOX/AF b | Replacing LOX/RP-1 first stage of Falcon 1 | +100% payload capacity | [9] |
Booster/main stage | LOX/HTPB | Adding two hybrid boosters to ATLAS 2AR launch vehicle | Payload capacity to GTO increases from 3900 kg to 4763 kg | [19] |
Booster | LOX/HTPB | Replacement of Ariane 5 solid booster | 20 tons lighter system weight of HRE | [20] |
Lunar lander | LOX/AF b | Lander inserted with Ariane 5 ME, lander mission starts from 100 km lunar orbit | Landing 2000 kg dry mass on the lunar surface, of which 280 kg engine inert mass | [9] |
Lunar sample return | LOX/paraffin | Ariane 5 inserts lander and return rocket (8800 kg) in lunar transfer orbit | With 95% combustion efficiency, the soil sample of HRE is 75 kg, comparable with 87 kg of LOX/methane liquid | [22] |
In-situ lunar | O/aluminium | Transport of 500 kg payload from the Moon to a 300 km lunar orbit. | 349 kg of the ascent rocket from earth and 1410 kg of lunar material (oxidizer, fuel, fairings, tanks) fulfil mission requirements | [26] |
Mars lander | HO/AF b | Based on NASA Phoenix lander mission | Able to land 350 kg dry mass on the Mars surface (75 kg engine inert mass) | [9] |
Mars ascent | MON-25/wax | 16 kg payload (sample return) | Single stage to orbit possible with hybrid | [49] |
Mars ascent | Nytrox/paraffin | 36 kg payload in 500 km Mars orbit | HRE system mass 30% lower than solid propellant alternative | [29,30] |
Mars sample return | LOX/wax | Return to 170 km Mars orbit | HRE capable of delivering around 86 kg, depending on configuration | [11,31] |
Mars manned return | LOX/wax | Return to 170 km Mars orbit | HRE capable of delivering around 13 tons, depending on configuration | [11,31] |
CubeSat | HO/PE | Replacement of mono propellant to HRE for 100 kg CubeSat, 15 kg payload | HRE can increase the payload by 3 to 4 kg | [35] |
CubeSat | GOX/HDPE | Mars orbit insertion of 25–100 kg weight | Payload mass compared to liquid mono propellant increases by 6% | [38] |
Outer planets | MON-3/PE wax | required for Europa flyby 1.52 km/s required for Uranus 1.96 km/s | HREs can fulfil mission requirements similar to hydrazine/NTO while being less toxic, simpler, and low cost | [42] |
References
- Altman, D.; Holzman, A. Overview and History of Hybrid Rocket Propulsion. In Fundamentals of Hybrid Rocket Combustion and Propulsion; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; pp. 1–36. [Google Scholar]
- Okninski, A.; Kopacz, W.; Kaniewski, D.; Sobczak, K. Hybrid Rocket Propulsion Technology For Space Transportation Revisited—Propellant Solutions and Challenges. FirePhysChem 2021, 1, 260–271. [Google Scholar] [CrossRef]
- Okninski, A. On use of hybrid rocket propulsion for suborbital vehicles. Acta Astronaut. 2018, 145, 1–10. [Google Scholar] [CrossRef]
- Karabeyoglu, A.; Stevens, J.; Geyzel, D.; Cantwell, B.; Micheletti, D. High Performance Hybrid Upper Stage Motor. In Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, CA, USA, 31 July–3 August 2011. [Google Scholar] [CrossRef]
- Glaser, C.; Hijlkema, J.; Anthoine, J. Evaluation of Regression Rate Enhancing Concepts and Techniques for Hybrid Rocket Engines. Aerotec. Missili Spaz. 2022, 101, 267–292. [Google Scholar] [CrossRef]
- Davydenko, N.; Gollender, R.; Gubertov, A.; Mironov, V.; Volkov, N. Hybrid rocket engines: The benefits and prospects. Aerosp. Sci. Technol. 2007, 11, 55–60. [Google Scholar] [CrossRef]
- Mazzetti, A.; Merotto, L.; Pinarello, G. Paraffin-based Hybrid Rocket Engines Applications: A Review and a Market Perspective. Acta Astronaut. 2016, 126, 286–297. [Google Scholar] [CrossRef]
- Orlandi, O.; Theil, D.; Saramago, J.; Amand, P.G.; Dauch, F.; Gautier, P. Various challenging aspects of hybrid propulsion. Prog. Propul. Phys. 2011, 2, 375–388. [Google Scholar] [CrossRef]
- Martin, F.; Chapelle, A.; Lemaire, F. Promising space transportation applications using hybrid propulsion. In Proceedings of the 4th European Conference for Aerospace Sciences (EUCASS), Saint Petersburg, Russia, 4–8 July 2011. [Google Scholar]
- Kamps, L.; Hirai, S.; Nagata, H. Hybrid Rockets as Post-Boost Stages and Kick Motors. Aerospace 2021, 8, 253. [Google Scholar] [CrossRef]
- Casalino, L.; Masseni, F.; Pastrone, D. Hybrid Rocket Engine Design Optimization at Politecnico di Torino: A Review. Aerospace 2021, 8, 226. [Google Scholar] [CrossRef]
- Božić, O.; Porrmann, D.; Lancelle, D.; Hartwig, A. Program AHRES and its Contribution to Assess Features and Current Limitations of Hybrid Rocket Propulsion. In Proceedings of the 63th Congress of International Astronautical Federation, IAC-12-C4, Naples, Italy, 1–5 October 2012. [Google Scholar]
- Božic, O.; Poppe, G.; Porrmann, D. An Advanced Hybrid Rocket Engine for an Alternative Upper Stage of the Brasilian VLM 1 LEO Launcher. In Proceedings of the International Astronautical Fedration, 65th International Astronautical Congress, Toronto, ON, Canada, 29 September–3 October 2014. [Google Scholar]
- da Cás, P.L.K.; Veras, C.A.G.; Shynkarenko, O.; Leonardi, R. A Brazilian Space Launch System for the Small Satellite Market. Aerospace 2019, 6, 123. [Google Scholar] [CrossRef]
- Martin, F.; Chapelle, A.; Orlandi, O.; Yvart, P. Hybrid Propulsion Systems for Future Space Applications. In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN, USA, 25–28 July 2010. [Google Scholar] [CrossRef]
- Whittighill, G.; McKinney, B. The Aquila launch service for small satellites. In Proceedings of the 28th Joint Propulsion Conference and Exhibit, Reston, Virginia, USA, 6–8 July 1992. [Google Scholar] [CrossRef]
- Flittie, K.; Estey, P.; Kniffen, J. The Aquila Launch Vehicle: A Hybrid Propulsion Space Booster. Acta Astronaut. 1992, 28, 99–110. [Google Scholar] [CrossRef]
- Story, G.; Arves, J. Large-Scale Hybrid Motor Testing. In Fundamentals of Hybrid Rocket Combustion and Propulsion; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; pp. 513–552. [Google Scholar] [CrossRef]
- Markopoulos, P.; Szedula, J.; Abel, T.; Markopoulos, P.; Szedula, J.; Abel, T. Application of hybrid rocket boosters to launch vehicle systems. In Proceedings of the 33rd Joint Propulsion Conference and Exhibit, Seattle, WA, USA, 6–9 July 1997. [Google Scholar] [CrossRef]
- Lengellé, G.; Simon, P.; Heslouin, A.; Seillier, S. Operating of hybrid propulsion for space applications. In Proceedings of the 3rd International Symposium on Space Propulsion, Beijing, China, 11–13 August 1997. [Google Scholar]
- Desai, P.; Prince, J.; Queen, E.; Grover, R.; Cruz, J. Entry, Descent, and Landing Performance of the Mars Phoenix Lander. J. Spacecr. Rocket. 2011, 48, 798–808. [Google Scholar] [CrossRef]
- Schmierer, C. Analysis of a Hybrid Propulsion Lunar Sample Return Mission. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2019. [Google Scholar] [CrossRef]
- Schmierer, C.; Kobald, M.; Steelant, J.; Schlechtriem, S. Hybrid Propulsion For A Moon Sample Return Mission. In Proceedings of the Space Propulsion Conference 2018, Seville, Spain, 14–18 May 2018. [Google Scholar]
- Zhu, H.; Tian, H.; Cai, G. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing. Chin. J. Aeronaut. 2017, 30, 719–725. [Google Scholar] [CrossRef]
- Cho, D.H.; Kim, D.; Leeghim, H. Optimal Lunar Landing Trajectory Design for Hybrid Engine. Math. Probl. Eng. 2015, 2015, e462072. [Google Scholar] [CrossRef]
- Stoll, E.; Härke, P.; Linke, S.; Heeg, F.; May, S. The regolith rocket—A hybrid rocket using lunar resources. Acta Astronaut. 2021, 179, 509–518. [Google Scholar] [CrossRef]
- Yelken, U.; Yalcintas, A.; Kara, O.; Baysal, M.; Karabeyoglu, M.A. Experimental study of lunar-based hybrid rocket engine; In Proceedings of the AIAA Propulsion and Energy Forum, American Institute of Aeronautics and Astronautics. Virtual, 9–11 August 2021. [Google Scholar] [CrossRef]
- Shotwell, R. History of Mars Ascent Vehicle development over the last 20 years. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–11. [Google Scholar] [CrossRef]
- Chandler, A.A.; Cantwell, B.J.; Scott Hubbard, G.; Karabeyoglu, A. Feasibility of a single port Hybrid Propulsion system for a Mars Ascent Vehicle. Acta Astronaut. 2011, 69, 1066–1072. [Google Scholar] [CrossRef]
- Chandler, A.; Cantwell, B.; Hubbard, G.S.; Karabeyoglu, A. A Two-Stage, Single Port Hybrid Propulsion System for a Mars Ascent Vehicle. In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, USA, 25–28 July 2010. [Google Scholar] [CrossRef]
- Casalino, L.; Pastrone, D. Optimization of Hybrid Propellant Mars Ascent Vehicle. In Proceedings of the 50th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar] [CrossRef]
- Kara, O.; Karakaş, H.; Karabeyoğlu, M.A. Hybrid rockets with mixed N2O/CO2 oxidizers for Mars Ascent Vehicles. Acta Astronaut. 2020, 175, 254–267. [Google Scholar] [CrossRef]
- Lestrade, J.Y.; Messineo, J.; Hijlkema, J.; Prevost, P.; Casalis, G.; Anthoine, J. Hybrid Chemical Engines: Recent Advances from Sounding Rocket Propulsion and Vision for Spacecraft Propulsion. Aerospacelab J. 2016, 11, 1–14. [Google Scholar] [CrossRef]
- Lestrade, J.Y.; Messineo, J.; Anthoine, J.; Musker, A.; Barato, F. Development and Test of an Innovative Hybrid Rocket Combustion Chamber. In Proceedings of the 7th European Conference for Aeronautics and Space Sciences, Milano, Italy, 3–6 July 2017. [Google Scholar] [CrossRef]
- Lengelle, G.; Foucaud, R.; Godon, J.; Heslouin, A.; Lecourt, R.; Maisonneuve, Y.; Pillet, N. Hybrid propulsion for small satellites analysis and tests. In Proceedings of the Joint Propulsion Conferences, Los Angeles, CA, USA, 20–24 June 1999. [Google Scholar] [CrossRef]
- Gibbon, D.; Haag, G. Investigation of an Alternative Geometry Hybrid Rocket for Small Spacecraft Orbit Transfer; University of Surrey: Surrey, UK, 2001; 49p. [Google Scholar]
- Jens, E.; Cantwell, B.; Hubbard, G.; Nakazono, B. Hybrid CubeSat Propulsion System with Application to a Mars Aerocapture Demonstration Mission. In Proceedings of the 65th International Astronautical Congress, International Astronautical Federation, Toronto, Canada, 29 September–3 October 2014. [Google Scholar]
- Jens, E.; Karp, A.C.; Nakazono, B.; Eldred, D.B.; DeVost, M.E.; Vaughan, D. Design of a Hybrid CubeSat Orbit Insertion Motor. In Proceedings of the AIAA Propulsion and Energy Forum, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar] [CrossRef]
- Ingenito, A.; Domingo, C.H.F.L. A Hybrid Propulsion Solution for a Microsatellite to Perform a Capture Maneuver in a Mars Orbit. In Proceedings of the AIAA Propulsion and Energy 2020 Forum. American Institute of Aeronautics and Astronautics, Virtual, 24–28 August 2020. [Google Scholar] [CrossRef]
- Bellomo, N. Analysis Of Variable Thrust Hybrid Propulsion For Formation Flight Satellites. Ph.D. Thesis, University of Padua, Padua, Italy, 2012. [Google Scholar]
- DeLuca, L.; Bernelli, F.; Maggi, F.; Tadini, P.; Pardini, C.; Anselmo, L.; Grassi, M.; Pavarin, D.; Francesconi, A.; Branz, F.; et al. Active space debris removal by a hybrid propulsion module. Acta Astronaut. 2013, 91, 20–33. [Google Scholar] [CrossRef]
- Jens, E.T.; Cantwell, B.J.; Hubbard, G.S. Hybrid rocket propulsion systems for outer planet exploration missions. Acta Astronaut. 2016, 128, 119–130. [Google Scholar] [CrossRef]
- Kuo, K.; Chiaverini, M. Challenges of Hybrid Rocket Propulsion in the 21st Century. In Fundamentals of Hybrid Rocket Combustion and Propulsion; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; pp. 593–638. [Google Scholar] [CrossRef]
- Story, G.; Arves, J. Flight Testing of Hybrid-Powered Vehicles. In Fundamentals of Hybrid Rocket Combustion and Propulsion; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; pp. 553–592. [Google Scholar] [CrossRef]
- Gany, A. Similarity and Scaling Effects in Hybrid Rocket Motors; Progress in Astronautics and Aeronautics Book Series; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; pp. 489–512. [Google Scholar] [CrossRef]
- Abel, T.; Harwell, R.; Abel, T.; Harwell, R. A status update for the Hybrid Propulsion Demonstration Program (HPDP). In Proceedings of the 33rd Joint Propulsion Conference and Exhibit, Seattle, WA, USA, 6–9 July 1997. [Google Scholar] [CrossRef]
- Boardman, T.; Abel, T.; Claflin, S.; Shaeffer, C.; Boardman, T.; Abel, T.; Claflin, S.; Shaeffer, C. Design and test planning for a 250-klbf-thrust hybrid rocket motor under the Hybrid Propulsion Demonstration Program. In Proceedings of the 33rd Joint Propulsion Conference and Exhibit, Seattle, WA, USA, 6–9 July 1997. [Google Scholar] [CrossRef]
- Story, G.; Abel, T.; Claflin, S.; Park, O.; Arves, J.; Kearney, D. Hybrid Propulsion Demonstration Program 250K Hybrid Motor. In Proceedings of the 39th Joint Propulsion Conference and Exhibit, Huntsville, AL, USA, 20–23 July 2003. [Google Scholar] [CrossRef]
- Story, G.T.; Karp, A.C.; Nakazono, B.; Zilliac, G.; Evans, B.J.; Whittinghill, G. Mars Ascent Vehicle Hybrid Propulsion Effort. In Proceedings of the AIAA Propulsion and Energy 2020 Forum. American Institute of Aeronautics and Astronautics, Virtual, 24–28 August 2020. [Google Scholar] [CrossRef]
- Karabeyoglu, M.A.; Cantwell, B.J.; Zilliac, G. Development of Scalable Space-Time Averaged Regression Rate Expressions for Hybrid Rockets. J. Propuls. Power 2007, 23, 737–747. [Google Scholar] [CrossRef]
- Cai, G.; Zeng, P.; Li, X.; Tian, H.; Yu, N. Scale effect of fuel regression rate in hybrid rocket motor. Aerosp. Sci. Technol. 2013, 24, 141–146. [Google Scholar] [CrossRef]
- Cantwell, B.; Karabeyoglu, A.; Altman, D. Recent Advances In Hybrid Propulsion. Int. J. Energetic Mater. Chem. Propuls. 2010, 9, 305–326. [Google Scholar] [CrossRef]
- Karabeyoglu, A.; Zilliac, G.; Cantwell, B.J.; DeZilwa, S.; Castellucci, P. Scale-Up Tests of High Regression Rate Paraffin-Based Hybrid Rocket Fuels. J. Propuls. Power 2004, 20, 1037–1045. [Google Scholar] [CrossRef]
- Viscor, T.; Kamps, L.; Yonekura, K.; Isochi, H.; Nagata, H. Large-Scale CAMUI Type Hybrid Rocket Motor Scaling, Modeling, and Test Results. Aerospace 2022, 9, 1. [Google Scholar] [CrossRef]
- Yun, Y.; Huh, J.; Kim, Y.; Heo, S.; Kim, H.; Kwon, S. Scale-Up Validation of Hydrogen Peroxide/High-Density Polyethylene Hybrid Rocket with Multiport Solid Fuel. J. Spacecr. Rocket. 2021, 58, 552–565. [Google Scholar] [CrossRef]
- Veale, K.; Adali, S.; Pitot, J.; Brooks, M. A review of the performance and structural considerations of paraffin wax hybrid rocket fuels with additives. Acta Astronaut. 2017, 141, 196–208. [Google Scholar] [CrossRef]
- Bisin, R.; Paravan, C.; Alberti, S.; Galfetti, L. A new strategy for the reinforcement of paraffin-based fuels based on cellular structures: The armored grain—Mechanical characterization. Acta Astronaut. 2020, 176, 494–509. [Google Scholar] [CrossRef]
- Bisin, R.; Paravan, C. A new strategy for the reinforcement of paraffin-based fuels based on cellular structures: The armored grain—Ballistic characterization. Acta Astronaut. 2023, 206, 284–298. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Li, F.; Yu, X. Combustion Performance of a Novel Hybrid Rocket Fuel Grain With a Nested Helical Structure. Aerosp. Sci. Technol. 2020, 97, 105613. [Google Scholar] [CrossRef]
- Whitmore, S.A.; Peterson, Z.W.; Eilers, S.D. Closed-Loop Precision Throttling of a Hybrid Rocket Motor. J. Propuls. Power 2014, 30, 325–336. [Google Scholar] [CrossRef]
- Risha, G.; Evans, B.; Boyer, E.; Kuo, K. Metals, Energetic Additives, and Special Binders Used in Solid Fuels for Hybrid Rockets. In Fundamentals of Hybrid Rocket Combustion and Propulsion; Progress in Astronautics and Aeronautics Book Series; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; Volume 218, pp. 413–456. [Google Scholar] [CrossRef]
- Farbar, E.; Louwers, J.; Kaya, T. Investigation of Metallized and Nonmetallized Hydroxyl Terminated Polybutadiene/Hydrogen Peroxide Hybrid Rockets. J. Propuls. Power 2007, 23, 476–486. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Z.; Zhu, H.; Lu, Y.; Gao, J.; Cai, G. Effect of High-Mass Fraction of Aluminum on Catalytic Hybrid Rocket Motor. Appl. Sci. 2022, 12, 13023. [Google Scholar] [CrossRef]
- Duban, P. La fusée sonde LEX; Extrait de l’Aéronautique et l’Astronautique; ONERA: Chatillion, France; Paris, France, 1968. [Google Scholar]
- Mead, F.B.; Bornhorst, B.R. Certification Tests of a Hybrid Propulsion System for the Sandpiper Target Missile; Air Force Rocket Propulsion Laboratory Report AFRPL-TR-69-73; Defense Technical Information Center: Fort Belvoir, VA, USA, 1969. [Google Scholar]
- Jones, R.A. Hybrid Propulsion System for an Advanced Rocket-Powered Target Missile; Quarterly Technical Report, UTC 2220-QTR2; Defense Technical Information Center: Fort Belvoir, VA, USA, 1967. [Google Scholar]
- Penn, C.D.; Branigan, J.E. Preliminary Flight Rating Tests of the HAST Propulsion System; Air Force Rocket Propulsion Library TR-15-5, Edwards AFB, CA; Defense Technical Information Center: Fort Belvoir, VA, USA, 1975. [Google Scholar]
- Whitmore, S.A.; Peterson, Z.W.; Eilers, S.D. Deep Throttle of a Nitrous Oxide and Hydroxyl-Terminated Polybutadiene Hybrid Rocket Motor. J. Propuls. Power 2014, 30, 78–86. [Google Scholar] [CrossRef]
- Moon, K.H.; Han, S.; Kim, H.; Kim, K.; Kim, J.; Moon, H. Thrust Control of Hybrid Propulsion System for Lunar Exploration. J. Korean Soc. Propuls. Eng. 2014, 18, 34–41. [Google Scholar] [CrossRef]
- Lee, D.; Han, S.; Moon, H. Development of 200 N-class throttleable hybrid rocket motor for lunar module application. FirePhysChem 2021, 1, 251–259. [Google Scholar] [CrossRef]
- Ruffin, A. Study and Development of Throttleable Hybrid Rocket Motors. Ph.D. Thesis, University of Padua, Padua, Italy, 2018. [Google Scholar]
- Tian, H.; Meng, X.; Zhu, H.; Li, C.; Yu, R.; Zhang, Y.; Cai, G. Dynamic characteristics study of regression rate in variable thrust hybrid rocket motor. Acta Astronaut. 2022, 193, 221–229. [Google Scholar] [CrossRef]
- Wei, S.S.; Lee, M.C.; Huang, J.W.; Lu, Y.; Kang, C.H.; Kao, S.T.; Lu, S.J.; Huang, C.H.; Zhan, J.J.; Chen, Z.R.; et al. Demonstration of tethered hovering flight of HTTP-3AT hybrid rocket. Acta Astronaut. 2022, 191, 279–292. [Google Scholar] [CrossRef]
- Waidmann, W. Thrust modulation in hybrid rocket engines. J. Propuls. Power 1988, 4, 421–427. [Google Scholar] [CrossRef]
- Austin, B.; Heister, S.; Dambach, E.; Meyer, S.; Wernimont, E. Variable Thrust, Multiple Start Hybrid Motor Solutions for Missile and Space Applications. In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, USA, 25–28 July 2010. [Google Scholar] [CrossRef]
- Ruffin, A.; Paccagnella, E.; Santi, M.; Barato, F.; Pavarin, D. Real-Time Deep Throttling Tests of a Hydrogen Peroxide Hybrid Rocket Motor. J. Propuls. Power 2022, 38, 833–848. [Google Scholar] [CrossRef]
- Bhadran, A.; Manathara, J.G.; Ramakrishna, P.A. Thrust Control of Lab-Scale Hybrid Rocket Motor with Wax-Aluminum Fuel and Air as Oxidizer. Aerospace 2022, 9, 474. [Google Scholar] [CrossRef]
- Parissenti, G.; Pessana, M.; Gaia, E.; Zaccagnino, E.; Santilli, F.; Pavarin, D.; Bettella, A.; Ronningen, J.E.; Valle, T.; Put, P.; et al. Throttleable hybrid engine for planetary soft landing. In Proceedings of the 4th European Conference for Aerospace Sciences (EUCASS 2011), Saint Petersburg, Russia, 4–8 July 2011. [Google Scholar]
- D’Ambrogio, M.; Parissenti, G.; Santilli, F.; Pessana, M.; Gaia, E.; Pavarin, D.; Bettella, A.; Ronningen, J.; Valle, T.; Tijsterman, R.; et al. The FP7 Spartan Program Status and Achievements. In Proceedings of the 3rd International Conference on Space Propulsion, Bordeaux, France, 7–10 May 2012; pp. 1–7. [Google Scholar]
- Final Report Summary—SPARTAN (SPAce exploration Research for Throttleable Advanced eNgine). FP7. Available online: https://cordis.europa.eu/project/id/262837/reporting (accessed on 26 September 2023).
- Faenza, M.; Moretto, F.; Barato, F.; Bettella, A.; Pavarin, D. Numerical and experimental activities in support of the development of hybrid-rocket engines for soft-landing applications. In Proceedings of the 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich, Germany, 1–5 July 2013. [Google Scholar]
- Barato, F.; Toson, E.; Pavarin, D. Variations and Control of Thrust and Mixture Ratio in Hybrid Rocket Motors. Adv. Astronaut. Sci. Technol. 2021, 4, 55–76. [Google Scholar] [CrossRef]
- Velthuysen, T.; Brooks, M.; Pitot, J. Closed Loop Throttle Control of a Liquefying Fuel Hybrid Rocket Motor. J. Aerosp. Technol. Manag. 2021, 13, e2421. [Google Scholar] [CrossRef]
- Anthoine, J.; Lestrade, J.Y.; Messineo, J.; Casu, S. Performances of a Multi-Pulsed Hybrid Rocket Engine Operating with Highly Concentrated Hydrogen Peroxide. In Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, USA, 10–12 July 2017. [Google Scholar] [CrossRef]
- Karabeyoglu, A.; Cantwell, B.; Zilwa, S.; Zilliac, G. Modeling of Hybrid Rocket Low Frequency Instabilities. J. Propuls. Power 2005, 21, 1107–1116. [Google Scholar] [CrossRef]
- Paccagnella, E. Development and Testing of a Small Hybrid Rocket Motor for Space Applications. Ph.D. Thesis, University of Padua, Padua, Italy, 2019. [Google Scholar]
- Messineo, J.; Shimada, T. Theoretical Investigation on Feedback Control of Hybrid Rocket Engines. Aerospace 2019, 6, 65. [Google Scholar] [CrossRef]
- Guang, T.; Hui, T.; Xianzhu, J.; Ruikai, C.; Yudong, L.; Yuanjun, Z. Experimental study on precise thrust control of hydrogen peroxide and polyethylene hybrid rocket motors. Acta Astronaut. 2022, 196, 303–313. [Google Scholar] [CrossRef]
- Tan, G.; Tian, H.; Wang, Z.; Guo, Z.; Gao, J.; Zhang, Y.; Cai, G. Experimental Investigation into Closed-Loop Control for HTPB-Based Hybrid Rocket Motors. Aerospace 2023, 10, 421. [Google Scholar] [CrossRef]
- Chae, D.; Chae, H.; Lee, C. Controlling plant dynamics change characteristics in thrust response of hybrid rocket engine. J. Mech. Sci. Technol. 2022, 36, 1537–1545. [Google Scholar] [CrossRef]
- Ozawa, K.; Shimada, T. Performance of Mixture-Ratio-Controlled Hybrid Rockets for Nominal Fuel Regression. J. Propuls. Power 2020, 36, 400–414. [Google Scholar] [CrossRef]
- Bianchi, D.; Nasuti, F. Numerical Analysis of Nozzle Material Thermochemical Erosion in Hybrid Rocket Engines. J. Propuls. Power 2013, 29, 547–558. [Google Scholar] [CrossRef]
- Karakas, H.; Kara, O.; Kahraman, B.; Eren, B.N.; Ozkol, I.; Karabeyoglu, A. Influence of Micro-Aluminum Addition to Paraffin-Based Fuels on Graphite Nozzle Erosion Rate. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, Virtual, 24–28 August 2020. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Wang, R.; Lu, C.; Yu, R.; Tian, H. Numerical simulation of chemical ablation and mechanical erosion in hybrid rocket nozzle. Acta Astronaut. 2022, 192, 82–96. [Google Scholar] [CrossRef]
- Migliorino, M.T.; Gubernari, G.; Bianchi, D.; Nasuti, F.; Cardillo, D.; Battista, F.; Pizzurro, S.; Pizzarelli, M.; Pellegrini, R.C.; Cavallini, E. Numerical and Experimental Analysis of a Paraffin-based 1000 N Thrust Class Hybrid Rocket including Nozzle Erosion. In Proceedings of the AIAA SciTech Forum, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar] [CrossRef]
- Kamps, L.; Hirai, S.; Sakurai, K.; Viscor, T.; Saito, Y.; Guan, R.; Isochi, H.; Adachi, N.; Itoh, M.; Nagata, H. Investigation of Graphite Nozzle Erosion in Hybrid Rockets Using Oxygen/High-Density Polyethylene. J. Propuls. Power 2020, 36, 423–434. [Google Scholar] [CrossRef]
- Kamps, L.; Saito, Y.; Kawabata, R.; Wakita, M.; Totani, T.; Takahashi, Y.; Nagata, H. Method for Determining Nozzle-Throat-Erosion History in Hybrid Rockets. J. Propuls. Power 2017, 33, 1369–1377. [Google Scholar] [CrossRef]
- Chandler, A.; Cantwell, B.; Hubbard, G. Hybrid Propulsion for Solar System Exploration. In Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, CA, USA, 31 July – 3 August 2011. [Google Scholar] [CrossRef]
- D’Elia, R.; Bernhart, G.; Hijlkema, J.; Cutard, T. Experimental analysis of SiC-based refractory concrete in hybrid rocket nozzles. Acta Astronaut. 2016, 126, 168–177. [Google Scholar] [CrossRef]
- Whitmore, S.A.; Babb, R.; Stephens, J.C.; Horlacher, J.D. Further Development of Low-Erosion Nozzle Materials for Long-Duration Hybrid Rocket Burns. In Proceedings of the AIAA Propulsion and Energy Forum, American Institute of Aeronautics and Astronautics, Virtual, 9–11 August 2021. [Google Scholar] [CrossRef]
- Narsai, P. Nozzle Erosion in Hybrid Rocket Motors. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2016. [Google Scholar]
- Ito, S.; Kamps, L.T.; Yoshimal, S.; Nagata, H. Evaluation of the Thermal Onset of Graphite Nozzle Erosion. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, Virtual, 9–11 August 2020. [Google Scholar] [CrossRef]
- Kojima, H.; Kamps, L.T.; Nobuhara, Y.; Nagata, H.; Valembois, T.; Cottenot, C. Progress Towards Graphite Nozzle Cooling for Throat Erosion Suppression. In Proceedings of the AIAA AVIATION Forum, Chicago, IL, USA, 27 June–1 July 2022. [Google Scholar] [CrossRef]
- Kojima, H.; Kamps, L.T.; Nobuhara, Y.; Gallo, G.; Nagata, H. Regenerative Cooling of Graphite Nozzles for Throat Erosion Suppression. In Proceedings of the AIAA SciTech Forum, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar] [CrossRef]
- Karabeyoglu, A.M.; Evans, B.J. Effect of “O/F Shift” on Combustion Efficiency. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar] [CrossRef]
- Marxman, G.; Gilbert, M. Turbulent boundary layer combustion in the hybrid rocket. Symp. (Int.) Combust. 1963, 9, 371–383. [Google Scholar] [CrossRef]
- Culver, D. Comparison of forward and aft injected hybrid rocket boosters. In Proceedings of the 27th Joint Propulsion Conference, Sacramento, CA, USA, 24 June–26 June 1991. [Google Scholar] [CrossRef]
- Ozawa, K.; Shimada, T. A theoretical study on throttle ranges of O/F controllable hybrid rocket propulsion systems. J. Fluid Sci. Technol. 2018, 13, JFST003. [Google Scholar] [CrossRef]
- Glaser, C.; Gelain, R.; Bertoldi, A.E.M.; Levard, Q.; Hijlkema, J.; Lestrade, J.Y.; Hendrick, P.; Anthoine, J. Experimental Regression Rate Profiles of Stepped Fuel Grains in Hybrid Rocket Engines. Acta Astronaut. 2023, 204, 186–198. [Google Scholar] [CrossRef]
- Glaser, C.; Hijlkema, J.; Lestrade, J.Y.; Anthoine, J. The Stepped Helix Hybrid Rocket Engine. In Proceedings of the AIAA AVIATION 2023 Forum, San Diego, CA, USA, 12–16 June 2023. [Google Scholar] [CrossRef]
- Evans, B.; Favorito, N.; Risha, G.; Boyer, E.; Wehrman, R.; Kuo, K. Characterization of Nano-Sized Energetic Particle Enhancement of Solid-Fuel Burning Rates in an X-Ray Transparent Hybrid Rocket Engine. In Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, FL, USA, 11–14 July 2004. [Google Scholar] [CrossRef]
- Chiaverini, M.J.; Harting, G.C.; Lu, Y.C.; Kuo, K.K.; Peretz, A.; Jones, H.S.; Wygle, B.S.; Arves, J.P. Pyrolysis Behavior of Hybrid-Rocket Solid Fuels Under Rapid Heating Conditions. J. Propuls. Power 1999, 15, 888–895. [Google Scholar] [CrossRef]
- Wei, T.; Cai, G.; Tian, H.; Jiang, X. Experiment and Numerical Research on Regression Rate of Hybrid Rocket Motor With Single-port Wagon Wheel Fuel Grain. Acta Astronaut. 2023, 207, 265–282. [Google Scholar] [CrossRef]
- Lestrade, J.Y.; Anthoine, J.; Lavergne, G. Liquefying fuel regression rate modeling in hybrid propulsion. Aerosp. Sci. Technol. 2015, 42, 80–87. [Google Scholar] [CrossRef]
- Messineo, J.; Kitagawa, K.; Carmicino, C.; Shimada, T.; Paravan, C. Reconstructed Ballistic Data Versus Wax Regression-Rate Intrusive Measurement in a Hybrid Rocket. J. Spacecr. Rocket. 2020, 57, 1295–1308. [Google Scholar] [CrossRef]
- Osmon, R.V. An Experimental Investigation of a Lithium Aluminum Hydride- Hydrogen Peroxide Hybrid Rocket (Combustion and Performance Characteristics of Lithium Aluminum Hydride/Hydrogen Peroxide Hybrid Rocket). In Chemical Engineering Progress, Symposium Series; number 61; American Institute of Chemical Engineers: New York, NY, USA, 1966; pp. 92–102. [Google Scholar]
- Barato, F.; Grosse, M.; Bettella, A. Hybrid rocket fuel residuals—An overlooked topic. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar] [CrossRef]
- Pastrone, D. Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines. Int. J. Aerosp. Eng. 2012, 2012, 649753. [Google Scholar] [CrossRef]
- Hitt, M.A.; Frederick, R.A. Regression Rate Model Predictions of an Axial-Injection End-Burning Hybrid Motor. J. Propuls. Power 2018, 34, 1116–1123. [Google Scholar] [CrossRef]
- Knuth, W.; Chiaverini, M.; Gramer, D.; Sauer, J. Solid-Fuel Regression Rate Behavior of Vortex Hybrid Rocket Engines. J. Propuls. Power 2002, 18, 600–609. [Google Scholar] [CrossRef]
- Frederick, R.A.; Whitehead, J.J.; Knox, L.R.; Moser, M.D. Regression Rates Study of Mixed Hybrid Propellants. J. Propuls. Power 2007, 23, 175–180. [Google Scholar] [CrossRef]
- Whitmore, S.A.; Walker, S.D.; Merkley, D.P.; Sobbi, M. High Regression Rate Hybrid Rocket Fuel Grains with Helical Port Structures. J. Propuls. Power 2015, 31, 1727–1738. [Google Scholar] [CrossRef]
- Kumar, R.; Ramakrishna, P.A. Enhancement of Hybrid Fuel Regression Rate Using a Bluff Body. J. Propuls. Power 2014, 30, 909–916. [Google Scholar] [CrossRef]
- Karabeyoglu, M.A.; Altman, D.; Cantwell, B.J. Combustion of Liquefying Hybrid Propellants: Part 1, General Theory. J. Propuls. Power 2002, 18, 610–620. [Google Scholar] [CrossRef]
- Kahraman, M.; Ozkol, I.; Karabeyoglu, A. Regression Rate Enhancement of Hybrid Rockets by Introducing Novel Distributed Tube Injector. J. Propuls. Power 2021, 38, 200–211. [Google Scholar] [CrossRef]
- Wada, Y.; Hori, K.; Hasegawa, K.; Yagishita, T.; Kobayashi, K.; Iwasaki, S.; Satoh, H.; Nishioka, M.; Kimura, M. Glycidyl azide polymer and polyethylene glycol as hybrid rocket fuel. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2012, 10, Po_1_1–Po_1_6. [Google Scholar] [CrossRef]
- Araki, K.; Hirata, Y.; Oyama, S.; Ohe, K.; Aso, S.; Tani, Y.; Shimada, T. A Study on Performance Improvement of Paraffin Fueled Hybrid Rocket Engines with Multi-Section Swirl Injection Method. In Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, USA, 14–17 July 2013. [Google Scholar] [CrossRef]
- Elanjickal, S.; Gany, A. Enhancement of the Fuel Regression Rate in Hybrid Propulsion by Expandable Graphite Additive. Combust. Sci. Technol. 2020, 192, 1253–1273. [Google Scholar] [CrossRef]
- DeLuca, L.; Rossettini, L.; Kappenstein, C.; Weiser, V. Ballistic Characterization of ALH3-Based Propellants for Solid and Hybrid Rocket Propulsion. In Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, CO, USA, 2–5 August 2009. [Google Scholar] [CrossRef]
- Quadros, F.D.A.; Lacava, P.T. Swirl Injection of Gaseous Oxygen in a Lab-Scale Paraffin Hybrid Rocket Motor. J. Propuls. Power 2019, 35, 896–905. [Google Scholar] [CrossRef]
- Nobuhara, Y.; Kamps, L.T.; Nagata, H. Fuel Regression Characteristics of CAMUI type Hybrid Rocket Using Nitrous Oxide. In Proceedings of the AIAA Propulsion and Energy 2021 Forum, Virtual, 9–11 August 2021. [Google Scholar] [CrossRef]
- Pons, A.; Yu, N.; Zhao, B. Testing and Evaluation of a Double-Tube Hybrid Rocket Motor. In Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, 27–29 July 2015. [Google Scholar] [CrossRef]
- Vignesh, B.; Kumar, R. Effect of multi-location swirl injection on the performance of hybrid rocket motor. Acta Astronaut. 2020, 176, 111–123. [Google Scholar] [CrossRef]
- Sakashi, H.; Saburo, Y.; Kousuke, H.; Takashi, S. Effectiveness of Concave-convex Surface Grain for Hybrid Rocket Combustion. In Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Atlanta, Georgia, 30 July–1 August 2012. [Google Scholar] [CrossRef]
- Grosse, M. Effect of a Diaphragm on Performance and Fuel Regression of a Laboratory Scale Hybrid Rocket Motor Using Nitrous Oxide and Paraffin. In Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, CO, USA, 2–5 August 2009. [Google Scholar] [CrossRef]
- Qin, Z.; Paravan, C.; Colombo, G.; Zhao, F.; Shen, R.; Yi, J.h.; DeLuca, L. Ignition and Combustion of HTPB-based Solid Fuels Loaded with Innovative Micron-sized Metals. Int. J. Energetic Mater. Chem. Propuls. 2018, 16, 139–150. [Google Scholar] [CrossRef]
- Kumar, M.; Joshi, P. Regression Rate Study of Cylindrical Stepped Fuel Grain of Hybrid Rocket. Mater. Today Proc. 2017, 4, 8208–8218. [Google Scholar] [CrossRef]
- Bellomo, N.; Barato, F.; Faenza, M.; Lazzarin, M.; Bettella, A.; Pavarin, D. Numerical and Experimental Investigation of Unidirectional Vortex Injection in Hybrid Rocket Engines. J. Propuls. Power 2013, 29, 1097–1113. [Google Scholar] [CrossRef]
- Lee, J.; Rhee, S.; Kim, J.; Moon, H. An Analysis and Reduction Design of Combustion Instability Generated in Hybrid Rocket Motor. J. Korean Soc. Propuls. Eng. 2014, 18, 18–25. [Google Scholar] [CrossRef]
- Moon, K.H.; Kim, H.C.; Lee, S.J.; Choi, W.J.; Lee, J.P.; Moon, H.J.; Sung, H.G.; Kim, J.K. A Study on Combustion Characteristic of the Hybrid Combustor using Non-combustible Diaphragm. In Proceedings of the Korean Society of Propulsion Engineers Conference, San Francisco, CA, USA, 28–29 April 2011; pp. 258–262. [Google Scholar]
- Chen, S.; Tang, Y.; Yu, H.; Guan, X.; DeLuca, L.T.; Zhang, W.; Shen, R.; Ye, Y. Combustion enhancement of hydroxyl-terminated polybutadiene by doping multiwall carbon nanotubes. Carbon 2019, 144, 472–480. [Google Scholar] [CrossRef]
- Carmicino, C.; Scaramuzzino, F.; Russo Sorge, A. Trade-off between paraffin-based and aluminium-loaded HTPB fuels to improve performance of hybrid rocket fed with N2O. Aerosp. Sci. Technol. 2014, 37, 81–92. [Google Scholar] [CrossRef]
- Yu, H.; Chen, S.; Yu, X.; Zhang, W.; Paravan, C.; DeLuca, L.T.; Shen, R. Nickel acetylacetonate as decomposition catalyst for HTPB-based fuels: Regression rate enhancement effects. Fuel 2021, 305, 121539. [Google Scholar] [CrossRef]
- Tian, H.; Sun, X.; Guo, Y.; Wang, P. Combustion Characteristics of Hybrid Rocket Motor With Segmented Grain. Aerosp. Sci. Technol. 2015, 46, 537–547. [Google Scholar] [CrossRef]
- Bouziane, M.; Bertoldi, A.; Milova, P.; Hendrick, P.; Lefebvre, M. Performance comparison of oxidizer injectors in a 1-kN paraffin-fueled hybrid rocket motor. Aerosp. Sci. Technol. 2019, 89, 392–406. [Google Scholar] [CrossRef]
- Chiaverini, M. Review of Solid-Fuel Regression Rate Behavior in Classical and Nonclassical Hybrid Rocket Motors. In Fundamentals of Hybrid Rocket Combustion and Propulsion; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; pp. 37–126. [Google Scholar] [CrossRef]
- Karabeyoglu, A. Combustion Instability and Transient Behavior in Hybrid Rocket Motors. In Fundamentals of Hybrid Rocket Combustion and Propulsion; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; pp. 351–412. [Google Scholar] [CrossRef]
- Carmicino, C. Acoustics, vortex shedding, and low-frequency dynamics interaction in an unstable hybrid rocket. J. Propuls. Power 2009, 25, 1322–1335. [Google Scholar] [CrossRef]
- Messineo, J.; Lestrade, J.Y.; Hijlkema, J.; Anthoine, J. Hydrodynamic Instabilities Modeling in Hybrid Rocket Engines. J. Spacecr. Rocket. 2019, 56, 1371–1382. [Google Scholar] [CrossRef]
- Messineo, J.; Lestrade, J.Y.; Hijlkema, J.; Anthoine, J. Vortex Shedding Influence on Hybrid Rocket Pressure Oscillations and Combustion Efficiency. J. Propuls. Power 2016, 32, 1386–1394. [Google Scholar] [CrossRef]
- Chae, H.; Lee, C. Controlling Low-Frequency Instability with Fuel Inserts in Hybrid Rocket Combustion. J. Propuls. Power 2021, 37, 13–19. [Google Scholar] [CrossRef]
- Paccagnella, E.; Barato, F.; Pavarin, D.; Karabeyoğlu, A. Scaling Parameters of Swirling Oxidizer Injection in Hybrid Rocket Motors. J. Propuls. Power 2017, 33, 1378–1394. [Google Scholar] [CrossRef]
- Migliorino, M.T.; Fabiani, M.; Paravan, C.; Bianchi, D.; Nasuti, F.; Galfetti, L.; Pellegrini, R.C.; Cavallini, E. Numerical and experimental analysis of fuel regression rate in a lab-scale hybrid rocket engine with swirl injection. Aerosp. Sci. Technol. 2023, 140, 108467. [Google Scholar] [CrossRef]
- Fabiani, M.; Gubernari, G.; Migliorino, M.T.; Bianchi, D.; Nasuti, F. Numerical Simulations of Fuel Shape Change and Swirling Flows in Paraffin/Oxygen Hybrid Rocket Engines. Aerotec. Missili Spaz. 2023, 102, 91–102. [Google Scholar] [CrossRef]
- Meng, X.; Tian, H.; Yu, R.; Lu, Y.; Gu, X.; Tan, G.; Cai, G. Three-dimensional numerical simulation of hybrid rocket motor based on dynamic mesh technology. Aerosp. Sci. Technol. 2023, 141, 108573. [Google Scholar] [CrossRef]
- Meng, X.; Tian, H.; Chen, X.; Jiang, X.; Wang, P.; Wei, T.; Guobiao, C. Numerical simulation of combustion surface regression based on Butterworth filter in hybrid rocket motor. Acta Astronaut. 2022, 202, 400–410. [Google Scholar] [CrossRef]
- Migliorino, M.T.; Gubernari, G.; Bianchi, D.; Nasuti, F.; Cardillo, D.; Battista, F. Numerical Simulations of Fuel Shape Change in Paraffin—Oxygen Hybrid Rocket Engines. J. Propuls. Power 2023, 15. in advance. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, F.; Zhang, W. Numerical Investigation on the Regression Rate of Hybrid Rocket Motor with Star Swirl Fuel Grain. Acta Astronaut. 2016, 127, 384–393. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, X.; Wang, Z.; Wu, K.; Luo, J.; Fang, S.; Zhang, C.; Li, F.; Yu, X. Effects of Swirl Injection on the Combustion of a Novel Composite Hybrid Rocket Fuel Grain. Acta Astronaut. 2022, 199, 174–182. [Google Scholar] [CrossRef]
- Tian, H.; Li, Y.; Li, C.; Sun, X. Regression Rate Characteristics of Hybrid Rocket Motor With Helical Grain. Aerosp. Sci. Technol. 2017, 68, 90–103. [Google Scholar] [CrossRef]
- Tian, H.; Jiang, X.; Lu, Y.; Liang, Y.; Zhu, H.; Cai, G. Numerical Investigation on Hybrid Rocket Motors with Star-Segmented Rotation Grain. Aerospace 2022, 9, 585. [Google Scholar] [CrossRef]
- Tian, H.; Li, Y.; Zeng, P. Transient simulation of regression rate on thrust regulation process in hybrid rocket motor. Chin. J. Aeronaut. 2014, 27, 1343–1351. [Google Scholar] [CrossRef]
- Bianchi, D.; Migliorino, M.T.; Rotondi, M.; Kamps, L.; Nagata, H. Numerical Analysis of Nozzle Erosion in Hybrid Rockets and Comparison with Experiments. J. Propuls. Power 2021, 38, 389–409. [Google Scholar] [CrossRef]
- Glaser, C.; Hijlkema, J.; Lestrade, J.Y.; Anthoine, J. Influences of Steps in Hybrid Rocket Engines: Simulation and Validation on Simplified Geometries. Acta Astronaut. 2023, 208, 1–14. [Google Scholar] [CrossRef]
- Schmierer, C.; Kobald, M.; Fischer, U.; Tomilin, K.; Petrarolo, A.; Hertel, F. Advancing Europes Hybrid Rocket Engine Technology with Paraffin and LOX. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences, Madrid, Spain, 1–4 July 2019. [Google Scholar] [CrossRef]
- Rotondi, M.; Concio, P.; D’Alessandro, S.; Lucas, F.; Bianchi, D.; Nasuti, F.; Steelant, J. DEVELOPMENT AND VALIDATION OF NOZZLE EROSION MODELS FOR SOLID AND HYBRID ROCKETS IN THE ESPSS LIBRARIES. 2022. Available online: https://www.researchgate.net/profile/Johan-Steelant/publication/360588271_DEVELOPMENT_AND_VALIDATION_OF_NOZZLE_EROSION_MODELS_FOR_SOLID_AND_HYBRID_ROCKETS_IN_THE_ESPSS_LIBRARIES/links/627f4d66107cae2919a41feb/DEVELOPMENT-AND-VALIDATION-OF-NOZZLE-EROSION-MODELS-FOR-SOLID-AND-HYBRID-ROCKETS-IN-THE-ESPSS-LIBRARIES.pdf (accessed on 29 September 2023).
- Gieras, M.; Gorgeri, A. Numerical modelling of the hybrid rocket engine performance. Propuls. Power Res. 2021, 10, 15–22. [Google Scholar] [CrossRef]
- Chelaru, T.V.; Mingireanu, F. Hybrid rocket engine, theoretical model and experiment. Acta Astronaut. 2011, 68, 1891–1902. [Google Scholar] [CrossRef]
- Genevieve, B.; Pitot, J.; Brooks, M. A Computational Tool for Predicting Hybrid Rocket Motor Performance. R D J. 2017, 33, 56–65. [Google Scholar]
- Zolla, P.M.; Migliorino, M.T.; Bianchi, D.; Nasuti, F.; Pellegrini, R.C.; Cavallini, E. A Computational Tool for the Design of Hybrid Rockets. Aerotec. Missili Spaz. 2021, 100, 253–262. [Google Scholar] [CrossRef]
- Serin, N.; Gogus, Y. A Fast Computer Code for Hybrid Motor Design, Eulec, and Results Obtained for HTPB/O2 Combination. In Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, USA, 20–23 July 2003. [Google Scholar] [CrossRef]
- Simon, P. Modeling and Simulation of the Hybrid Combustion Mechanisms in a Space Propulsion System–Modélisation et simulation des mécanismes de la combustion hybride dans un système propulsif. Ph.D. Thesis, University of Poitiers, Poitiers, France, 1996. [Google Scholar]
- Lestrade, J.Y. Modélisation de la régression des combustibles liquéfiables dans un moteur hybride. Ph.D. Thesis, University of Toulouse, Toulouse, France, 2012. [Google Scholar]
- Quero Granado, E.; Hijlkema, J.; Lestrade, J.Y.; Anthoine, J. Pseudo-Two-Dimensional Modeling and Validation of a Hybrid Rocket Combustion Chamber. J. Propuls. Power 2022, 38, 957–972. [Google Scholar] [CrossRef]
- Karabeyoglu, M.A.; Cantwell, B.J. Combustion of Liquefying Hybrid Propellants: Part 2, Stability of Liquid Films. J. Propuls. Power 2002, 18, 621–630. [Google Scholar] [CrossRef]
- Sutton, G. Rocket Propulsion Elements; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Prince, A.; Carpenter, R.; Boardman, T.; Abel, T.; Claflin, S. Design and testing of an upper stage hybrid propulsion system using hydrogen peroxide oxidizer. In Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, NV, USA, 24–28 July 2000. [Google Scholar] [CrossRef]
- Markopoulos, P.; Abel, T. Development and testing of a peroxide hybrid upper stage propulsion system. In Proceedings of the 37th Joint Propulsion Conference and Exhibit, Salt Lake City, UT, USA, 8–11 July 2001. [Google Scholar] [CrossRef]
- Lund, G.; Starrett, W.; Jensen, K. Development and lab-scale testing of a gas generator hybrid fuel in support of the Hydrogen Peroxide Hybrid Upper Stage Program. In Proceedings of the 37th Joint Propulsion Conference and Exhibit, Salt Lake City, UT, USA, 8–11 July 2001. [Google Scholar] [CrossRef]
- Estey, P. Hybrid Technology Option Project—A cooperative effort for tomorrow’s space transportation. In Space Programs and Technologies Conference and Exhibit; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1994. [Google Scholar] [CrossRef]
- Dyer, J.; Doran, E.; Dunn, Z.; Lohner, K.; Bayart, C.; Sadhwani, A.; Zilliac, G.; Cantwel, B.; Karabeyoglu, A. Design and Development of a 100km Nitrous Oxide/Paraffin Hybrid Rocket Vehicle. In Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, 8–11 July 2007. [Google Scholar] [CrossRef]
- Dyer, J.; Doran, E.; Zilliac, G.; Lohner, K.; Cantwell, B.; Karabeyoglu, A.; Marzona, M.; Karlik, E. Status Update for the Peregrine 100km Sounding Rocket Project. In Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, USA, 21–23 July 2008. [Google Scholar] [CrossRef]
- Zilliac, G.; Waxman, B.S.; Karabeyoglu, A.M.; Cantwell, B.; Evans, B.J. Peregrine Hybrid Rocket Motor Development. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar] [CrossRef]
- Lécossais, A.; Odic, K.; Fiot, D.; Lestrade, J.Y.; Verberne, O.; Fernando, P.; Christ, P.; Searle, T. HYPROGEO Hybrid Propulsion: Latest project achievements. In Proceedings of the Space Propulsion Conference 2018, Seville, Spain, 14–18 May 2018. [Google Scholar]
- Lestrade, J.Y.; Anthoine, J.; Musker, A.J.; Lecossais, A. Experimental demonstration of an end-burning swirling flow hybrid rocket engine. Aerosp. Sci. Technol. 2019, 92, 1–8. [Google Scholar] [CrossRef]
- Oving, B.; Haemmerli, B.; Kuhn, M.; Petrozzi, M. Small Innovative Launcher for Europe: Achievement of the H2020 project SMILE. In Proceedings of the 7th European Conference for Aeronautics and Space Sciences (EUCASS), Milan, Italy, 3–6 July 2017. [Google Scholar] [CrossRef]
- Berend, N.; Gauvrit-Ledogar, J.; Perrel, F.; Oswald, K.; Diez, E.; Dupont, C.; Karl, C.; Romano, D.G.; Haemmerli, B.; Searle, T. ALTAIR Semi-Reusable Air-Launch System—Current Design and Status of Flight Experiments. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July 2019. [Google Scholar] [CrossRef]
- Virgin Galactic. Available online: https://www.virgingalactic.com/virgin-galactic-astronauts (accessed on 27 September 2023).
- Faenza, M.; Boiron, A.J.; Haemmerli, B.; Verberne, C.J. The Nammo Nucleus Launch: Norwegian Hybrid Sounding Rocket over 100 km. In Proceedings of the AIAA Propulsion and Energy Forum, Indianapolis, IN, USA, 19–22 August 2019. [Google Scholar] [CrossRef]
- HyEnd. First Results of the N2ORTH Post Flight Analysis. Available online: https://hyend.de/index.php/2023/07/18/first-results-of-the-N_2Orth-post-flight-analysis/ (accessed on 10 September 2023).
- South Korea’s Innospace Succeeds in Test Launch. Available online: https://spacenews.com/south-koreas-innospace-succeeds-in-test-launch/ (accessed on 11 September 2023).
- HTTP-31 S2 - Hybrid Rocket with Active GNC Successfully Launched. Available online: https://arrc.tw/news/7/ (accessed on 26 September 2023).
- HyImpulse and SaxaVord Fired up for Sub-Orbital Launch. Available online: https://www.hyimpulse.de/en/news (accessed on 11 September 2023).
- Gilmour Space Completes Final Qualification Test of Sirius Hybrid Rocket Engine. Available online: https://www.gspace.com/post/gilmour-space-completes-final-qualification-test-of-sirius-rocket-engine (accessed on 26 September 2023).
- VayaSpace. Vaya Space Completes First Suborbital Test Flight. Available online: https://www.vayaspace.com/post/vaya-space-completes-first-suborbital-test-flight (accessed on 10 September 2023).
- SpaceForest. First Flight of Perun Rocket from Ustka. Available online: https://spaceforest.pl/first-flight-of-perun-rocket-from-ustka/ (accessed on 10 September 2023).
- Bombelli, V.; Simon, D.; Moerel, J.L.; Marée, T. Economic Benefits of the Use of Non-Toxic Mono-Propellants for Spacecraft Applications. In Proceedings of the Joint Propulsion Conferences, Huntsville, AL, USA, 20–23 July 2003. [Google Scholar] [CrossRef]
- Haeseler, D.; Bombelli, V.; Vuillermoz, P.; Lo, R.; Marée, T.; Caramelli, F. Green Propellant Propulsion Concepts for Space Transportation and Technology Development Needs. In Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion (ESA SP-557), Cagliari, Italy, 7–8 June 2004; Volume 557, p. 4. [Google Scholar]
Advantages | Disadvantages |
---|---|
Simplicity | Low regression rate |
Fuel inertness | Low volumetric loading |
Sustainability 1 | Low combustion efficiency |
Robustness of grain | Slower transient |
Throttleable | O/F shift during operation |
Re-ignition possible | Regression rate estimation 2 |
Propellant versatility | Residual fuel mass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glaser, C.; Hijlkema, J.; Anthoine, J. Bridging the Technology Gap: Strategies for Hybrid Rocket Engines. Aerospace 2023, 10, 901. https://doi.org/10.3390/aerospace10100901
Glaser C, Hijlkema J, Anthoine J. Bridging the Technology Gap: Strategies for Hybrid Rocket Engines. Aerospace. 2023; 10(10):901. https://doi.org/10.3390/aerospace10100901
Chicago/Turabian StyleGlaser, Christopher, Jouke Hijlkema, and Jérôme Anthoine. 2023. "Bridging the Technology Gap: Strategies for Hybrid Rocket Engines" Aerospace 10, no. 10: 901. https://doi.org/10.3390/aerospace10100901
APA StyleGlaser, C., Hijlkema, J., & Anthoine, J. (2023). Bridging the Technology Gap: Strategies for Hybrid Rocket Engines. Aerospace, 10(10), 901. https://doi.org/10.3390/aerospace10100901