Experimental Research on Characteristics of Impulse Coupling and Plasma Plume Generated by Laser Irradiating Copper Target with Nanosecond Pulsed Laser Propulsion
Abstract
:1. Introduction
2. Experimental Apparatus and Methods
2.1. Apparatus
2.2. Method of Impulse Measurement
2.3. Calculation Method of Electron Number Density
3. Results and Discussion
3.1. Ablation Impulse
3.2. Comparison of the Plasma Plume Image and Impulse Coupling Coefficient
3.3. Optical Emission Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Phipps, C.R. L’ADROIT—A Spaceborne Ultraviolet Laser System for Space Debris Clearing. Acta Astronaut. 2014, 104, 243–255. [Google Scholar] [CrossRef]
- Phipps, C.R.; Luke, J.R.; Lippert, T.; Hauer, M.; Wokaun, A. Micropropulsion Using Laser Ablation. Appl. Phys. A 2004, 79, 1385–1389. [Google Scholar] [CrossRef]
- Kumar, R.; Sedwick, R.J. Despinning Orbital Debris Before Docking Using Laser Ablation. J. Spacecr. Rockets 2015, 52, 1129–1134. [Google Scholar] [CrossRef]
- Wang, B. Laser Ablation Impulse Generated by Irradiating Aluminum Target with Nanosecond Laser Pulses at Normal and Oblique Incidence. Appl. Phys. Lett. 2017, 110, 014101. [Google Scholar] [CrossRef]
- Hussein, A.E.; Diwakar, P.K.; Harilal, S.S.; Hassanein, A. The Role of Laser Wavelength on Plasma Generation and Expansion of Ablation Plumes in Air. J. Appl. Phys. 2013, 113, 143305. [Google Scholar] [CrossRef]
- Breitling, D.; Schittenhelm, H.; Berger, P.; Dausinger, F.; Hügel, H. Shadowgraphic and Interferometric Investigations on Nd:YAG Laser-Induced Vapor/Plasma Plumes for Different Processing Wavelengths. Appl. Phys. A Mater. Sci. Process. 1999, 69, S505–S508. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, F.; Han, B.; Ni, X. The Influence of Laser Ablation Plume at Different Laser Incidence Angle on the Impulse Coupling Coefficient with Metal Target. J. Appl. Phys. 2016, 120, 213103. [Google Scholar] [CrossRef] [Green Version]
- Sinko, J.E.; Phipps, C.R. Modeling CO2 Laser Ablation Impulse of Polymers in Vapor and Plasma Regimes. Appl. Phys. Lett. 2009, 95, 131105. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.; Yogo, A.; Nishimura, H.; Mori, K. Impulse and Mass Removal Rate of Aluminum Target by Nanosecond Laser Ablation in a Wide Range of Ambient Pressure. J. Appl. Phys. 2017, 122, 233304. [Google Scholar] [CrossRef]
- Phipps, C.; Birkan, M.; Bohn, W.; Eckel, H.-A.; Horisawa, H.; Lippert, T.; Michaelis, M.; Rezunkov, Y.; Sasoh, A.; Schall, W.; et al. Review: Laser-Ablation Propulsion. J. Propuls. Power 2010, 26, 609–637. [Google Scholar] [CrossRef]
- Yu, C.; Ye, J.; Zhou, W.; Chang, H.; Guo, W. Micro-Impulse and Plasma Plume Produced by Irradiating Aluminum Target with Nanosecond Laser Pulses in Double-Pulse Scheme. Plasma Sci. Technol. 2022, 24, 074009. [Google Scholar] [CrossRef]
- Tsuruta, H.; Wang, B.; Wang, Z.; Yokota, S.; Sasoh, A. Repetitive Pulse Performance of One-Micrometer Laser-Ablation Propulsion onto Aluminum. J. Propuls. Power 2014, 30, 1485–1489. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, W.; Zhu, X.; Liu, J.; Xu, K.; Huang, P.; Zhao, J.; Li, R.; Wang, M. Investigation of Ultrashort Pulse Laser Ablation of Solid Targets by Measuring the Ablation-Generated Momentum Using a Torsion Pendulum. Opt. Express 2011, 19, 8870–8878. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Li, X.; Wu, J.; Yang, Z.; Jia, S.; Qiu, A. Interferometric and Schlieren Characterization of the Plasmas and Shock Wave Dynamics during Laser-Triggered Discharge in Atmospheric Air. Phys. Plasmas 2014, 21, 083112. [Google Scholar] [CrossRef]
- Sankar, P.; Shashikala, H.D.; Philip, R. Effect of Laser Beam Size on the Dynamics of Ultrashort Laser-Produced Aluminum Plasma in Vacuum. Phys. Plasmas 2019, 26, 013302. [Google Scholar] [CrossRef]
- Anoop, K.K.; Polek, M.P.; Bruzzese, R.; Amoruso, S.; Harilal, S.S. Multidiagnostic Analysis of Ion Dynamics in Ultrafast Laser Ablation of Metals over a Large Fluence Range. J. Appl. Phys. 2015, 117, 083108. [Google Scholar] [CrossRef]
- Mori, K.; Maruyama, R.; Shimamura, K. Energy Conversion and Momentum Coupling of the Sub-KJ Laser Ablation of Aluminum in Air Atmosphere. J. Appl. Phys. 2015, 118, 073304. [Google Scholar] [CrossRef]
- Li, X.; Wei, W.; Wu, J.; Jia, S.; Qiu, A. The Influence of Spot Size on the Expansion Dynamics of Nanosecond-Laser-Produced Copper Plasmas in Atmosphere. J. Appl. Phys. 2013, 113, 243304. [Google Scholar] [CrossRef]
- Smijesh, N.; Rao, K.H.; Chetty, D.; Litvinyuk, I.V.; Sang, R.T. Plasma Plumes Produced by Laser Ablation of Al with Single and Double Pulse Schemes. Opt. Lett. 2018, 43, 6081–6084. [Google Scholar] [CrossRef]
- Zhou, W.; Chang, H.; Ye, J.; Li, N. Impulse of Planar and Sphere Target by Nanosecond Laser Ablation in a Large Beam Spot. Laser Phys. 2020, 30, 066002. [Google Scholar] [CrossRef]
- Zhou, W.-J.; Hong, Y.-J.; Chang, H. A MicroNewton Thrust Stand for Average Thrust Measurement of Pulsed Microthruster. Rev. Sci. Instrum. 2013, 84, 125115. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhou, W.; Chang, H.; Chen, Y. Experimental Research on Impulse Coupling Characteristics and Plasma Plume Dynamics of a Nanosecond Pulsed Laser Irradiated Aluminum Target. IEEE Access 2020, 8, 205272–205281. [Google Scholar] [CrossRef]
- Haq, S.U.; Ahmat, L.; Mumtaz, M.; Shakeel, H.; Mahmood, S.; Nadeem, A. Spectroscopic Studies of Magnesium Plasma Produced by Fundamental and Second Harmonics of Nd:YAG Laser. Phys. Plasmas 2015, 22, 083504. [Google Scholar] [CrossRef]
- Gravel, J.-F.Y.; Boudreau, D. Study by Focused Shadowgraphy of the Effect of Laser Irradiance on Laser-Induced Plasma Formation and Ablation Rate in Various Gases. Spectrochim. Acta Part B At. Spectrosc. 2009, 64, 56–66. [Google Scholar] [CrossRef]
- Wood, R.F.; Chen, K.R.; Leboeuf, J.N.; Puretzky, A.A.; Geohegan, D.B. Dynamics of Plume Propagation and Splitting during Pulsed-Laser Ablation. Phys. Rev. Lett. 1997, 79, 1571–1574. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Gong, Y.; Zhou, J.; Yin, C.; Song, F.; Muto, N.; Takiya, T.; Iwata, Y. Plume Dynamics during Film and Nanoparticles Deposition by Pulsed Laser Ablation. Phys. Lett. A 2002, 302, 182–189. [Google Scholar] [CrossRef]
- Chen, Z.; Bogaerts, A. Laser Ablation of Cu and Plume Expansion into 1atm Ambient Gas. J. Appl. Phys. 2005, 97, 063305. [Google Scholar] [CrossRef] [Green Version]
- Marla, D.; Bhandarkar, U.V.; Joshi, S.S. Critical Assessment of the Issues in the Modeling of Ablation and Plasma Expansion Processes in the Pulsed Laser Deposition of Metals. J. Appl. Phys. 2011, 109, 021101. [Google Scholar] [CrossRef]
- Panchenko, A.N.; Shulepov, M.A.; Tel’minov, A.E.; Zakharov, L.A.; Paletsky, A.A.; Bulgakova, N.M. Pulsed IR Laser Ablation of Organic Polymers in Air: Shielding Effects and Plasma Pipe Formation. J. Phys. Appl. Phys. 2011, 44, 385201. [Google Scholar] [CrossRef]
- Chen, K.R.; Leboeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Liu, C.L.; Puretzky, A.A. Accelerated Expansion of Laser-Ablated Materials near a Solid Surface. Phys. Rev. Lett. 1995, 75, 4706–4709. [Google Scholar] [CrossRef] [Green Version]
- Koopman, D.W. Momentum Transfer Interaction of a Laser-Produced Plasma with a Low-Pressure Background. Phys. Fluids 1972, 15, 1959–1969. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Ye, J.; Chang, H.; Zhou, W.; Han, X.; Li, M.; Gao, H. Experimental Research on Characteristics of Impulse Coupling and Plasma Plume Generated by Laser Irradiating Copper Target with Nanosecond Pulsed Laser Propulsion. Aerospace 2023, 10, 544. https://doi.org/10.3390/aerospace10060544
Yu C, Ye J, Chang H, Zhou W, Han X, Li M, Gao H. Experimental Research on Characteristics of Impulse Coupling and Plasma Plume Generated by Laser Irradiating Copper Target with Nanosecond Pulsed Laser Propulsion. Aerospace. 2023; 10(6):544. https://doi.org/10.3390/aerospace10060544
Chicago/Turabian StyleYu, Chenghao, Jifei Ye, Hao Chang, Weijing Zhou, Xiao Han, Mingyu Li, and Heyan Gao. 2023. "Experimental Research on Characteristics of Impulse Coupling and Plasma Plume Generated by Laser Irradiating Copper Target with Nanosecond Pulsed Laser Propulsion" Aerospace 10, no. 6: 544. https://doi.org/10.3390/aerospace10060544
APA StyleYu, C., Ye, J., Chang, H., Zhou, W., Han, X., Li, M., & Gao, H. (2023). Experimental Research on Characteristics of Impulse Coupling and Plasma Plume Generated by Laser Irradiating Copper Target with Nanosecond Pulsed Laser Propulsion. Aerospace, 10(6), 544. https://doi.org/10.3390/aerospace10060544