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Abstract: The ejection of the plasma plume produced by laser ablation is an important process for
inducing mechanical effects. Therefore, in this paper, the characteristics of the plasma plume are
investigated in order to analyze the impulse coupling mechanism with two laser spot diameters,
300 µm and 1100 µm, respectively. The impulse generated by laser irradiating the copper target was
measured by the torsion pendulum, and the plasma plume was investigated using fast photography
and optical emission spectroscopy. The experimental results show that the optimal laser intensity is in-
dependent of the beam spot size. However, when the laser intensity is greater than 2.8 × 109 W/cm2,
the impulse coupling coefficient with the small beam spot starts to gradually decrease, while that with
the large beam spot tends to saturate. Additionally, the stream-like structure and the semi-ellipsoid
structure of the plasma plume were observed, respectively. Furthermore, the electron number density
was estimated using the Stark broadening method, and the effect of the plasma plume on the impulse
coupling coefficient was discussed. The results provide a technical reference for several applications
including orbital debris removal with lasers, laser thrusters, and laser despinning.

Keywords: laser ablation propulsion; impulse coupling coefficient; plasma plume; fast photography;
optical emission spectroscopy; electron number densities

1. Introduction

Laser ablation propulsion (LAP) shows potential solutions for many fields of growing
importance, such as laser removal of orbital debris [1], laser thrusters of nano-satellites [2],
and the laser despinning of non-cooperative space objects remotely [3]. LAP utilizes the
recoil impulse generated by the interaction between laser and matter [4]. When an intense
pulsed laser light strikes the surface of the solid target, the process of heating, melting,
and vaporization occurs [5]. As the laser energy is further increased, the vapor plume is
ionized and the plasma is produced. The plasma further absorbs the energy of the incident
laser with near-infrared wavelength through inverse bremsstrahlung (IB) [6]. The energetic
plasma plume expands rapidly away from the target surface, causing the recoil impulse to
the solid target [7].

In recent years, the thrust properties generated by pulsed laser ablation of solid targets
have been extensively studied [8–11]. The thrust performance of LAP is usually evaluated
using the impulse coupling coefficient Cm, which is the ratio of the impulse generated
by laser ablation to the incident laser energy [4]. The impulse is usually measured using
the torsional pendulum [12] and the pendulum [7]. The effects of laser parameters [13],
laser incidence angle [4], and material [7] on impulse coupling characteristics have been
extensively investigated. As can be seen from the impulse generation process, the plasma
plume characteristics have an important influence on the impulse characteristics. However,
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in previous studies of laser ablation propulsion, the impulse characteristics, rather than the
plume characteristics, have been the main focus. Therefore, it is necessary to investigate
the plasma plume properties in combination with the impulse coupling properties. In
fundamental studies of pulsed laser ablation (PLA), the plasma plumes generated by laser
ablation can usually be studied using interferometry [14], a Faraday cup [15], a Langmuir
probe [16], shadowgraphy [17], self-emission imaging using fast photography [18], or
optical emission spectroscopy [19]. Each of the plasma plume diagnostic methods has its
own characteristics. The use of multiple diagnostic methods provides a different perspective
on laser-induced plasma plume characteristics and enhances the validity of the results [5].

In this study, the impulse with the laser spot diameters of 300 µm and 1100 µm was
measured using the torsion pendulum, and the expansion process of the plasma plume
was simultaneously visualized with fast photography and optical emission spectroscopy.
The influence of the plasma plume on the impulse coupling characteristics at high laser
intensity was discussed according to the plasma plume morphology. Furthermore, the
electron number density was calculated by the Stark broadening method to further analyze
the parameter characteristics of the plasma plume.

2. Experimental Apparatus and Methods
2.1. Apparatus

The schematic diagram of the experimental system setup is given in Figure 1. The
experiment was carried out in an atmospheric environment. The experimental system was
capable of measuring laser ablation impulses and simultaneously recording high-speed
photographic images and emission spectra of the plasma plume. The neodymium: yttrium-
aluminum-garnet (Nd: YAG) laser (Nimma-900, Beamtech Optronics, Beijing, China) with
the wavelength of 1064 nm and pulse width of 8 ns was used to ablate the copper target.
The radiance profile of the focused laser spot had an approximately Gaussian distribution.
The pulsed laser was irradiated vertically onto the surface of the copper target through a
focusing lens with a focal length of 200 mm (GCL-010154C, Daheng Optics, Beijing, China).
The control of the laser spot size on the target surface was realized by changing the distance
from the focusing lens to the target surface. Two typical laser spot sizes, 300 µm and 1100
µm, were selected for the experiment. The laser energy was monitored in real time during
the experiment using the energy meter (FieldMax, Coherent, Santa Clara, CA, USA) to
ensure the accuracy of the energy measurement.
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The morphology and evolution of the plasma plume produced by laser irradiation of
the copper target were visualized and recorded by ICCD camera (TRC311-S-HQB, Intelli-
gent Scientific Systems, Beijing, China), which was positioned vertically in the direction of
the plume jet. The time resolution was realized by changing the time delay between the
signals in the digital delay pulse generator (DG645, Stanford Research Systems, Sunnyvale,
CA, USA) that trigger the laser and the ICCD. The emission spectrum of the copper plasma
was coupled into the fiber through a lens set placed at 45◦ normal to the target surface.
Then, it was recorded by a grating spectrometer with the gratings set at 1200 groves/mm
and the slit width at 20 µm. The operating timing between the laser, the ICCD camera, and
the spectrometer during the experiment was coordinately controlled using the DG645.

2.2. Method of Impulse Measurement

The impulse generated by single pulse laser ablation of the copper target was measured
using the torsion pendulum. After laser ablation of the copper target, the torsional motion
of the torsion pendulum beam rotated around the pivot at the center caused by the impact
of the impulse. The rotational angles of the torsion pendulum were measured indirectly by
the displacement sensor (sensor CSE2, MICRO-EPSILON Company, Bavaria, Germany).
According to the measurement principle of the torsion pendulum, the impulse I can be
expressed as [20]:

I =
Jωn

L f
exp

(
ζ√

1− ζ2
arctan

√
1− ζ2

ζ

)
θmax, (1)

where Lf represents the length of the force arm. J, ωn, and ζ denote the rotational inertia,
the intrinsic frequency, and the damping ratio of the torsion pendulum, respectively. Θmax
indicates the maximum rotational angle of the torsion pendulum after laser ablation of the
copper target. The detailed measurement principle of the torsional pendulum is described
in the references [20–22].

2.3. Calculation Method of Electron Number Density

Electron density is an important parameter in plasma research, which helps us under-
stand the characteristics of the plasma plume and the processes in the plasma plume. For
optical thin plasmas, Stark broadening of neutral atoms or univalent ions is usually used to
calculate the electron number density [23]:

∆λ1/2 = 2ω

(
Ne

1016

)
, (2)

where ω is the electron collision parameter and Ne is the electron number density. ∆λ1/2
is Stark half-height full width, which can be obtained by fitting the experimental spectral
data with the Lorentz function. Cu I lines, 510.6 nm (3d10(1S)4p→ 3d94s2) and 521.8 nm
(3d10(1S)4d→ 3d10(1S)4p) were selected to calculate the Ne.

3. Results and Discussion
3.1. Ablation Impulse

The typical rotational angle of the torsion pendulum as a function of time is shown
in Figure 2. According to the measurement principle of the torsion pendulum described
above, the ablation impulse can be calculated from the maximum torsional angle obtained
in Figure 2. The variation of the impulse generated by laser ablation of the copper target
with the laser intensity in two kinds of laser spots is given in Figure 3. In each test, the
target was irradiated on a single fresh location by a single pulse for impulse generation.
As shown in Figure 3, the impulse increased with the laser intensity for both kinds of spot
sizes. However, the influence of the spot size on the impulse was identifiable. The value of
the impulse with the big beam spot was larger when the laser intensity was constant. As the
laser intensity increased, the difference between the two kinds of laser beam spots became
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more obvious. This is because the larger the beam spot size, the higher the single pulse
laser energy with the same laser intensity. This means that more laser energy is deposited
on the target, resulting in the removal of more material and stronger plume expansion.
Consequently, a significantly higher ablation impulse will be generated [20].

Aerospace 2023, 10, x FOR PEER REVIEW 4 of 10 
 

 

As the laser intensity increased, the difference between the two kinds of laser beam spots 

became more obvious. This is because the larger the beam spot size, the higher the single 

pulse laser energy with the same laser intensity. This means that more laser energy is 

deposited on the target, resulting in the removal of more material and stronger plume 

expansion. Consequently, a significantly higher ablation impulse will be generated [20]. 

 

Figure 2. The typical rotational angle of the torsion pendulum as a function of time. 

 

Figure 3. Variation of the ablation impulse with laser intensity in two kinds of laser spot sizes. Each 

experimental point in the figure represents an average of five impulse measurements. The vertical 

and horizontal error bars show the standard deviations of five impulse measurements and five laser 

intensity measurements, respectively. The length of most error bars is small. Overall, good repeata-

bility of the experiments is demonstrated. 

For evaluation of the thrust performance, the impulse coupling coefficient Cm, which 

is a ratio of the impulse I to the incident laser energy E (Cm = I/E), is commonly used. The 

Cm versus the laser intensity in two kinds of spot sizes are given in Figure 4a and Figure 

4b, respectively. With the increase in laser intensity, the Cm with two kinds of spot sizes 

first increases rapidly. When the laser intensity is much lower than 2. 8 × 109 W/cm2, the 

ablation plume is dominated by the vaporization process with a lower ionization degree, 

resulting in poorer impulse coupling performance. As the laser intensity increases, the 

ablation efficiency and the ionization degree of the plume gradually increase, accompa-

nied by the gradual improvement of the coupling performance. Therefore, the Cm in-

creases with the increase in laser intensity and reaches the maximum value at the opti-

mum laser intensity of about 2.8 × 109 W/cm2. This shows that that the optimal laser inten-

sity is independent of the beam spot size. However, the Cm at the optimal laser intensity 

with the large beam spot is higher than that with the small beam spot. When the laser 

Figure 2. The typical rotational angle of the torsion pendulum as a function of time.

Aerospace 2023, 10, x FOR PEER REVIEW 4 of 10 
 

 

As the laser intensity increased, the difference between the two kinds of laser beam spots 

became more obvious. This is because the larger the beam spot size, the higher the single 

pulse laser energy with the same laser intensity. This means that more laser energy is 

deposited on the target, resulting in the removal of more material and stronger plume 

expansion. Consequently, a significantly higher ablation impulse will be generated [20]. 

 

Figure 2. The typical rotational angle of the torsion pendulum as a function of time. 

 

Figure 3. Variation of the ablation impulse with laser intensity in two kinds of laser spot sizes. Each 

experimental point in the figure represents an average of five impulse measurements. The vertical 

and horizontal error bars show the standard deviations of five impulse measurements and five laser 

intensity measurements, respectively. The length of most error bars is small. Overall, good repeata-

bility of the experiments is demonstrated. 

For evaluation of the thrust performance, the impulse coupling coefficient Cm, which 

is a ratio of the impulse I to the incident laser energy E (Cm = I/E), is commonly used. The 

Cm versus the laser intensity in two kinds of spot sizes are given in Figure 4a and Figure 

4b, respectively. With the increase in laser intensity, the Cm with two kinds of spot sizes 

first increases rapidly. When the laser intensity is much lower than 2. 8 × 109 W/cm2, the 

ablation plume is dominated by the vaporization process with a lower ionization degree, 

resulting in poorer impulse coupling performance. As the laser intensity increases, the 

ablation efficiency and the ionization degree of the plume gradually increase, accompa-

nied by the gradual improvement of the coupling performance. Therefore, the Cm in-

creases with the increase in laser intensity and reaches the maximum value at the opti-

mum laser intensity of about 2.8 × 109 W/cm2. This shows that that the optimal laser inten-

sity is independent of the beam spot size. However, the Cm at the optimal laser intensity 

with the large beam spot is higher than that with the small beam spot. When the laser 
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experimental point in the figure represents an average of five impulse measurements. The vertical
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laser intensity measurements, respectively. The length of most error bars is small. Overall, good
repeatability of the experiments is demonstrated.

For evaluation of the thrust performance, the impulse coupling coefficient Cm, which
is a ratio of the impulse I to the incident laser energy E (Cm = I/E), is commonly used.
The Cm versus the laser intensity in two kinds of spot sizes are given in Figure 4a and 4b,
respectively. With the increase in laser intensity, the Cm with two kinds of spot sizes first
increases rapidly. When the laser intensity is much lower than 2. 8 × 109 W/cm2, the
ablation plume is dominated by the vaporization process with a lower ionization degree,
resulting in poorer impulse coupling performance. As the laser intensity increases, the
ablation efficiency and the ionization degree of the plume gradually increase, accompanied
by the gradual improvement of the coupling performance. Therefore, the Cm increases
with the increase in laser intensity and reaches the maximum value at the optimum laser
intensity of about 2.8 × 109 W/cm2. This shows that that the optimal laser intensity is
independent of the beam spot size. However, the Cm at the optimal laser intensity with the
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large beam spot is higher than that with the small beam spot. When the laser intensity is
higher, the plasma plume formed after complete ionization of the ablation vapor absorbs
the incident laser energy by inverse bremsstrahlung (IB), known as the plasma shielding
effect [4]. Therefore, when the laser intensity is greater than 2.8 × 109 W/cm2, the increase
in the Cm, with the increase in the laser intensity, is hindered by the plasma shield effect.
Moreover, the Cm with the small beam spot starts to gradually decrease at the higher laser
intensity in Figure 4a, while the Cm with the large beam spot tends to saturate in Figure 4b.
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3.2. Comparison of the Plasma Plume Image and Impulse Coupling Coefficient

The expansion of the plasma plume is the key reason for the formation of the recoil
impulse on the target. Therefore, the study of the plasma plume characteristics using
fast photography is conducive to revealing the impulse coupling mechanism. The fast
photography can obtain two-dimensional images of the self-luminous plasma plume. The
images of the plasma plume at the typical laser intensity with the spot size of 300 µm and
1100 µm are given in Figure 5a and 5b, respectively. Since the evolution of the plasma
plume was around 500 ns, the gate time of the ICCD camera was set to 500 ns. As shown in
Figure 5a, the morphology of the plasma plume was close to the stream-like structure with
a high-radiation-intensity core and relatively dark periphery. At a laser intensity of about
10 GW/cm2, similar stream-like structures were visualized via shadowgraph techniques by
Gravel and via fast photography by Li, respectively [18,24]. Furthermore, two radiation
peaks could be observed in the plasma plume image with the small spot size, which is
called “plume splitting” into fast and background-slowed components [25]. The splitting
plume was characterized by strong interpenetration and collision of the plasma species and
background gas during plume expansion [26]. The phenomenon was greatly influenced
by the presence of ionization and laser absorption in the plume. The photoionization
absorption mechanism was more dominant in the region close to the target surface, but
the electron–ion inverse bremsstrahlung process became more important further away
from the surface [27]. As shown in Figure 5b, the plume morphology was significantly
different from that with the small beam spot and was close to a semi-ellipsoidal shape. As
shown in Figure 5a,b, the region of intense radiation in the plasma plume could be more
obviously observed, when the laser intensity was greater than about 2.8 × 109 W/cm2.
This part consisted of a large number of ions and electrons, which absorbed a large amount
of incident laser energy [28].
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To better analyze the plasma shielding effect, time-resolved images of the plasma
plume with two spot sizes at typical laser intensity were recorded in Figure 6a,b. The gate
time of the ICCD camera was set to 10 ns. The time delay between the ICCD and the laser
was controlled by DG645 to obtain the expansion process of the plasma plume at different
times. The plasma plume emerged above the target fairly soon after the onset of the laser
beam, and it could be recorded by the camera at around 10 ns before the laser reached
its peak power, which was recorded as 0 ns. As shown in Figure 6a, the plasma plume
expanded along the laser incidence direction and remained a stream-like structure all the
time. The difference in the plume structure corresponding to the two spot sizes may be
due to the enhanced plasma shielding effect caused by multi-photo ionization processes
and inverse bremsstrahlung absorption [18]. In addition, the pre-ionized air channel may
have provided another mechanism for the formation of the stream-like structure [29]. For
the small spot size in Figure 6a, the high-energy plasma generated by laser irradiating
the copper target produced particles with faster longitudinal velocities via absorbing
more laser energy. In Figure 6a, the plasma plume lasted about 300 ns. In the first 10 ns,
the plasma plume expanded rapidly and basically reached the maximum plume size at
about 10 ns. The front expansion velocity could be dramatically accelerated by dynamic
source and partial ionization effects in the direction perpendicular to the target surface at
early times [30]. The interaction of accelerated and stationary ions through multi-encounter
Coulomb scattering may have contributed to the phenomenon of accelerated expansion [31].
Since the expansion of the plasma plume was accelerated mainly in the perpendicular
direction, it became more nonsymmetric and forward peaked [30]. In addition, the highest
radiation intensity region was mainly distributed along the laser incidence direction, rather
than the target surface, which is evidence of the enhanced plasma shielding effects. The
distributions of the plasma for the small laser spot might have increased the optical path
length of the laser in plasma and altered the energy absorption structure. Most of the
laser energy would have been absorbed by the plasma plume, other than that which
was delivered to the surface of copper target. Therefore, when the laser intensity was
greater than 2.8 × 109 W/cm2, the LAP thrust performance for the small spot was reduced,
accompanied by the reduced Cm due to the enhanced plasma shielding effect. Furthermore,
it can be seen that the plasma plume front at 10 ns to 140 ns basically remained unchanged
with the high radiation intensity. After 200 ns, the radiation intensity of the plasma plume
gradually diminished due to the collision with air molecules and to radiative cooling.
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As shown in Figure 6b, for the first 10 ns, the plasma plume expanded rapidly. The
plume expanded in the direction of laser incidence and parallel to the target surface
simultaneously. For the large spot size of 1100 µm, the high density of electrons and ions
in the plasma plume were mainly distributed along the direction parallel and close to
the target surface. The distance of the incident laser passing through the high-density
plasma region was relatively shorter compared to the small spot size. Therefore, when
the laser intensity was greater than 2.8 × 109 W/cm2, the large spot reduced the plasma
shielding effect and improved thrust performance. The difference between the plasma
distribution in the plume with the two spot sizes had an important influence on the impulse
coupling characteristics. Furthermore, the plume size reached its maximum at about 80 ns.
After 140 ns, the plume size decreased along the laser incidence direction, but remained
unchanged along the parallel direction of the target surface. This was caused by the fact that
the plasma expanded faster along the laser incident direction, while the plasma expanded
slower along the parallel direction of the target surface. After 190 ns, the radiation intensity
of the plasma plume decreased rapidly with the increase in time.

3.3. Optical Emission Spectroscopy

The study of electron number density in plasma plumes is helpful to analyze the
coupling mechanism of pulsed laser ablation impulses. The spectrometer was started from
the moment of pulse laser light output, and the gate width was set to 1 µs. Figure 7 shows
the change of emission spectra of copper plasma with time for two spot sizes. As shown
in Figure 7a, the spectral line width with the small spot did not decrease pronouncedly
from 500 ns to 2000 ns. However, in Figure 7b, the spectral line width with the large
spot clearly decreased from 500 ns to 2000 ns, indicating that the electron number density
obviously decreased. Furthermore, the emission spectrum intensity with the large spot did
not decrease significantly during this period, which was the result of complex interactions
among the excited plasma components [18].
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According to the Stark broadening method, the electron number density Ne could
be estimated from the emission spectral lines obtained experimentally. The trend of the
Ne over time for the two spot sizes is shown in Figure 8. It can be seen that the Ne with
the large laser spot is always higher than that with the small laser spot. When the laser
intensity was constant, the single pulse energy with the large spot was higher than that
with the small spot, resulting in more laser energy coupled with the copper target. The
larger laser energy vaporized and ionized more target materials initially. Therefore, the
Ne of the plasma plume was higher with the large spot. This resulted in the stronger
jet of the plasma plume and the larger ablation impulse corresponding to the large spot.
Furthermore, the Ne of the two kinds of laser spots decreased with the increase in time. The
difference was that the Ne with the small beam spot decreased more slowly with time. The
long-lasting high-density plasma absorbed the subsequent laser energy, preventing it from
reaching the surface of the copper target. Therefore, the impulse coupling performance of
the small beam spot decreased at higher laser intensity. This provides further evidence of
the enhanced plasma shielding effect.
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4. Conclusions

In this paper, the impulse generated by ablating the copper target with different
laser intensities for two different spot sizes was measured using the torsion pendulum.
Simultaneously, the plasma plume was investigated using fast photography and emission
spectroscopy. When the laser intensity was constant, the ablation impulse of the large
laser spot was greater than that of the small spot, resulting from more energy deposition.
As the laser intensity increased, the difference in impulse between the two spot sizes
became more obvious. At high laser intensity, the Cm with the small beam spot started to
gradually decrease, while the Cm with the large beam spot tended to saturate. In addition,
the difference in the plasma distribution in the plume with the two spot sizes had an
important influence on the impulse coupling characteristics. The morphology of the plasma
plume with the small beam spot was close to the stream-like structure, while that with
the large beam spot was close to the semi-ellipsoidal shape. For the small laser spot, the
distribution of the plasma increased the optical path length of the laser in plasma and
altered the energy absorption structure, which greatly suppressed the subsequent laser
ablation of the copper target via an enhanced shielding effect. Furthermore, the electron
number density estimated by the Stark broadening of the lines was larger in the case of
large spot sizes, consistent with the greater impulse measured by the torsion pendulum. To
sum up, the role played by the laser beam size in determining the characteristics of impulse
coupling and plasma plume will be of importance in several applications, including orbital
debris removal with lasers, laser thrusters, and laser despinning.
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