Experimental Investigation into Closed-Loop Control for HTPB-Based Hybrid Rocket Motors
Abstract
:1. Introduction
2. Control System
2.1. Incremental PID Control Algorithm
2.2. Segmented PID Algorithm
2.3. Quasi-Steady-State Assumptions
- The first half of the control cycle of the motor is dynamic and the flow rate is variable. The displacement of the pintle valve is fixed in the second half of the control cycle and the flow rate is constant.
- The dynamic characteristics of the motor during the first half of the control cycle are neglected.
- The motor reaches a quasi-steady state before the end of the second half of the control cycle.
- A quasi-steady state means that the motor reaches a steady state at the end of the control cycle, and its performance-related parameters satisfy the characteristic static equations.
2.4. Components of the Control System
2.5. Flow Control Valve
2.6. Static Characteristics of Hybrid Rocket Motors
2.7. Solving for the Control Parameters
3. Experimental Setup
3.1. Throttleable Hybrid Rocket Motor
3.2. Oxidizer Feeding System
3.3. Measurement and Control System
4. Experimental Results and Discussion
4.1. Time Sequence of Test
4.2. Closed-Loop Throttle Test
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Variables | QH2O | mass flow rate of ultrapure water, g/s | |
Isp | specific impulse, m/s | ||
u(k) | controller output of kth control cycle | F | thrust, N |
u(k − 1) | controller output of (k − 1)th control cycle | mass flow rate of oxidizer, kg/s | |
error(k) | deviation in the control signal of kth control cycle | mass flow rate of fuel, kg/s | |
kp, ki, and kd | PID control parameters | Iox | specific impulse of oxidizer, m/s |
yd(k) | set value | regression rate, mm/s | |
y(k) | measured value | Gox | mass flux of oxidizer, kg·s−1·m2 |
Δu(k) | increment in controller output | AP | cross-sectional area of flow of oxidizer, m2 |
ε | threshold value | d | inner diameter of tube grain, m |
kp0, ki0, and kd0 | large PID control parameters | ρf | fuel density, kg/m3 |
kp1, ki1, and kd1 | small PID control parameters | Ab | combustion area, m2 |
Q | mass flow rate, kg/s | L | length of tube grain, m |
Cd | flow coefficient | eburned | web thickness of burned grain, mm |
A | throttling area, m2 | Pc | pressure of combustion chamber, MPa |
ρ | liquid density, kg/m3 | c* | characteristic velocity, m/s |
p1 | total inlet pressure of the variable-area cavitating venturi, MPa | At | throttling area of the nozzle throat, m2 |
ps | saturated vapor pressure of the fluid at a given temperature, MPa | Fd(k) | set thrust value, N |
x | pintle stroke, mm | F(k) | actual output thrust value, N |
a, b | constant coefficients | ΔF(k) | error in thrust value, N |
References
- Okninski, A.; Kopacz, W.; Kaniewski, D.; Sobczak, K. Hybrid Rocket Propulsion Technology for Space Transportation Revisited–Propellant Solutions and Challenges. FirePhysChem 2021, 1, 260–271. [Google Scholar] [CrossRef]
- Casalino, L.; Masseni, F.; Pastrone, D. Hybrid Rocket Engine Design Optimization at Politecnico di Torino: A Review. Aerospace 2021, 8, 226. [Google Scholar] [CrossRef]
- Mazzetti, A.; Merotto, L.; Pinarello, G. Paraffin-Based Hybrid Rocket Engines Applications: A Review and a Market Perspective. Acta Astronaut. 2016, 126, 286–297. [Google Scholar] [CrossRef]
- Austin, B.; Heister, S.; Dambach, E.; Meyer, S.; Wernimont, E. Variable Thrust, Multiple Start Hybrid Motor Solutions for Missile and Space Applications. In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, USA, 25–28 July 2010. [Google Scholar]
- Lee, D.; Han, S.; Moon, H. Development of 200 N-class Throttleable Hybrid Rocket Motor for Lunar Module Application. FirePhysChem 2021, 1, 251–259. [Google Scholar] [CrossRef]
- Stoll, E.; Härke, P.; Linke, S.; Heeg, F.; May, S. The Regolith Rocket—A Hybrid Rocket Using Lunar Resources. Acta Astronaut. 2021, 179, 509–518. [Google Scholar] [CrossRef]
- Casalino, L.; Masseni, F.; Pastrone, D. Optimal Design of Electrically Fed Hybrid Mars Ascent Vehicle. Aerospace 2021, 8, 181. [Google Scholar] [CrossRef]
- Kara, O.; Karakaş, H.; Karabeyoğlu, M.A. Hybrid Rockets with Mixed N2O/CO2 Oxidizers for Mars Ascent Vehicles. Acta Astronaut. 2020, 175, 254–267. [Google Scholar] [CrossRef]
- Liu, L.-L.; He, X.; Wang, Y.; Chen, Z.-B.; Guo, Q. Regression Rate of Paraffin-based Fuels in Hybrid Rocket Motor. Aerosp. Sci. Technol. 2020, 107, 106269. [Google Scholar] [CrossRef]
- Pal, Y.; Ravikumar, V. Mechanical Characterization of Paraffin-Based Hybrid Rocket Fuels. Mater. Today Proc. 2019, 16, 939–948. [Google Scholar] [CrossRef]
- Paccagnella, E.; Santi, M.; Ruffin, A.; Barato, F.; Pavarin, D.; Misté, G.A.; Venturelli, G.; Bellomo, N. Testing of a Long-Burning-Time Paraffin-Based Hybrid Rocket Motor. J. Propuls. Power 2019, 35, 432–442. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Wang, Q.; Wang, N. Combustion Characteristics of Skeleton Polymer Reinforced Paraffin-Wax Fuel Grain for Applications in Hybrid Rocket Motors. Combust. Flame 2022, 241, 112055. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, S.-Q.; Liu, X.-L.; Liu, L.-L. Regression Rate Modeling of HTPB/Paraffin Fuels in Hybrid Rocket Motor. Aerosp. Sci. Technol. 2022, 121, 107324. [Google Scholar] [CrossRef]
- Thomas, J.C.; Paravan, C.; Stahl, J.M.; Tykol, A.J.; Rodriguez, F.A.; Galfetti, L.; Petersen, E.L. Experimental evaluation of HTPB/paraffin fuel blends for hybrid rocket applications. Combust. Flame 2021, 229, 111386. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Z.; Guo, Z.; Yu, R.; Cai, G.; Zhang, Y. Effect of Metal and Metalloid Solid-Fuel Additives on Performance and Nozzle Ablation in a Hydroxy-terminated Polybutadiene based Hybrid Rocket Motor. Aerosp. Sci. Technol. 2022, 123, 107493. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, H.; Wang, Z.; Meng, X.; Cai, G. Numerical and Experimental Study on 95% Hydrogen Peroxide Catalytic Ignition of Hybrid Rocket Motors with HTPB-based Aluminum Additive Fuel. Acta Astronaut. 2022, 195, 98–108. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, Y.; Li, J.; Liu, P.; Zhang, X. Insulator Ablation Modes in Different Impact Conditions of Alumina Droplets onto Wall Surfaces. Acta Astronaut. 2018, 153, 138–145. [Google Scholar] [CrossRef]
- Karakas, H.; Kahraman, B.; Ozkol, I.; Karabeyoglu, A. Hybrid Rocket Nozzle Erosion with Microaluminum-Added Fuel. J. Propuls. Power 2022, 38, 901–910. [Google Scholar] [CrossRef]
- Ozawa, K.; Shimada, T. Performance of Mixture-Ratio-Controlled Hybrid Rockets Under Uncertainties in Fuel Regression. J. Propuls. Power 2021, 37, 86–99. [Google Scholar] [CrossRef]
- Casalino, L.; Masseni, F.; Pastrone, D. Robust Design Approaches for Hybrid Rocket Upper Stage. J. Aerosp. Eng. 2019, 32, 04019087. [Google Scholar] [CrossRef]
- Cui, P.; Li, Q.; Cheng, P.; Chen, L. System Scheme Design for LOX/LCH4 Variable Thrust Liquid Rocket Engines Using Motor Pump. Acta Astronaut. 2020, 171, 139–150. [Google Scholar] [CrossRef]
- Yue, C.; Li, J.; Hou, X.; Feng, X.; Yang, S. Summarization on Variable Liquid Thrust Rocket Engines. Sci. China Ser. E Technol. Sci. 2009, 52, 2918–2923. [Google Scholar] [CrossRef]
- Song, A.; Wang, N.; Li, J.; Ma, B.; Chen, X. Transient Flow Characteristics and Performance of a Solid Rocket Motor with a Pintle Valve. Chin. J. Aeronaut. 2020, 33, 3189–3205. [Google Scholar] [CrossRef]
- Guo, C.; Wei, Z.; Xie, K.; Wang, N. Thrust Control by Fluidic Injection in Solid Rocket Motors. J. Propuls. Power 2017, 33, 815–829. [Google Scholar] [CrossRef]
- Zhao, S.; Cai, G.; Tian, H.; Yu, N.; Zeng, P. Experimental Tests of Throttleable H2O2/PE Hybrid Rocket Motors. In Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, 27–29 July 2015. [Google Scholar]
- Whitmore, S.A.; Peterson, Z.W.; Eilers, S.D. Deep Throttle of a Nitrous Oxide and Hydroxyl-Terminated Polybutadiene Hybrid Rocket Motor. J. Propuls. Power 2014, 30, 78–86. [Google Scholar] [CrossRef]
- Messineo, J.; Shimada, T. Theoretical Investigation on Feedback Control of Hybrid Rocket Engines. Aerospace 2019, 6, 65. [Google Scholar] [CrossRef]
- Whitmore, S.A.; Peterson, Z.W.; Eilers, S.D. Closed-Loop Precision Throttling of a Hybrid Rocket Motor. J. Propuls. Power 2014, 30, 325–336. [Google Scholar] [CrossRef]
- Velthuysen, T.; Brooks, M.; Pitot, J. Closed Loop Throttle Control of a Liquefying Fuel Hybrid Rocket Motor. J. Aerosp. Technol. Manag. 2021, 13, e2421. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Z.; Zhu, H.; Lu, Y.; Gao, J.; Cai, G. Effect of High-Mass Fraction of Aluminum on Catalytic Hybrid Rocket Motor. Appl. Sci. 2022, 12, 13023. [Google Scholar] [CrossRef]
- Guang, T.; Hui, T.; Xianzhu, J.; Ruikai, C.; Yudong, L.; Yuanjun, Z. Experimental Study on Precise Thrust Control of Hydrogen Peroxide and Polyethylene Hybrid Rocket Motors. Acta Astronaut. 2022, 196, 303–313. [Google Scholar] [CrossRef]
- Tian, H.; Zeng, P.; Yu, N.; Cai, G. Application of Variable Area Cavitating Venturi as a Dynamic Flow Controller. Flow Meas. Instrum. 2014, 38, 21–26. [Google Scholar] [CrossRef]
- Zeng, P.; Tian, H.; Yu, N.; Cai, G. Numerical Investigation on Flow in the Variable Area Cavitating Venturi. In Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, USA, 14–17 July 2013. [Google Scholar]
- Zhang, X.; Wang, D.; Liao, R.; Zhao, H.; Shi, B. Study of Mechanical Choked Venturi Nozzles Used for Liquid Flow Controlling. Flow Meas. Instrum. 2019, 65, 158–165. [Google Scholar] [CrossRef]
- Carmicino, C.; Sorge, A.R. Influence of a Conical Axial Injector on Hybrid Rocket Performance. J. Propuls. Power 2006, 22, 984–995. [Google Scholar] [CrossRef]
- Saito, Y.; Kamps, L.T.; Tsuji, A.; Nagata, H. Reconstruction techniques for determining O/F in hybrid rockets. In Proceedings of the AIAA Propulsion and Energy 2021 Forum, Virtual Event, 9–11 August 2021. [Google Scholar]
Parameter | Value | Unit |
---|---|---|
Mass flow rate of oxidizer | 0.16–0.24 | kg/s |
Inner diameter of fuel grain | 25 | mm |
Outer diameter of fuel grain | 100 | mm |
Length of fuel grain | 375 | mm |
Inner diameter of pre-chamber | 80 | mm |
Length of pre-chamber | 35 | mm |
Inner diameter of post-chamber | 80 | mm |
Length of post-chamber | 50 | mm |
Diameter of nozzle throat | 15 | mm |
Expansion ratio of nozzle | 3 | – |
Component | Company | Product Number | Error |
---|---|---|---|
Mass flowmeter | Emerson Technology | CMF025M172N2BPMKZZ | <0.1% |
Thrust sensor | Beijing Weisitezhonghang Technology | CYB-602S | <0.2% |
Pressure sensor | Beijing Weisitezhonghang Technology | Cyb-20S-HX | <1.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, G.; Tian, H.; Wang, Z.; Guo, Z.; Gao, J.; Zhang, Y.; Cai, G. Experimental Investigation into Closed-Loop Control for HTPB-Based Hybrid Rocket Motors. Aerospace 2023, 10, 421. https://doi.org/10.3390/aerospace10050421
Tan G, Tian H, Wang Z, Guo Z, Gao J, Zhang Y, Cai G. Experimental Investigation into Closed-Loop Control for HTPB-Based Hybrid Rocket Motors. Aerospace. 2023; 10(5):421. https://doi.org/10.3390/aerospace10050421
Chicago/Turabian StyleTan, Guang, Hui Tian, Zhongshuo Wang, Zihao Guo, Jingfei Gao, Yuanjun Zhang, and Guobiao Cai. 2023. "Experimental Investigation into Closed-Loop Control for HTPB-Based Hybrid Rocket Motors" Aerospace 10, no. 5: 421. https://doi.org/10.3390/aerospace10050421
APA StyleTan, G., Tian, H., Wang, Z., Guo, Z., Gao, J., Zhang, Y., & Cai, G. (2023). Experimental Investigation into Closed-Loop Control for HTPB-Based Hybrid Rocket Motors. Aerospace, 10(5), 421. https://doi.org/10.3390/aerospace10050421