Analytical Redundancy for Variable Cycle Engine Based on Variable-Weights-Biases Neural Network
Abstract
:1. Introduction
2. Method
2.1. Core Principle of VWB Net
2.2. The Structure of VWB Net
2.3. Data Acquisition of Experiment Object
3. Experiment, Results, and Discussion
3.1. Digital Simulation Experiment
- (1)
- Single bypass mode simulation validation
- (2)
- Dual bypass mode simulation verification
3.2. Comparison of Estimation Accuracy and Real-Time Performance
3.3. Framework of Hardware in Loop Simulation Experiment
3.4. Hardware in the Loop Simulation Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.J.; Huang, J.Q.; Pan, M.X.; Zhou, W.X. Variable-Geometry Rotating Components Modeling Based on Reference Characteristic Curves for the Variable Cycle Engine. Aerospace 2023, 10, 196. [Google Scholar] [CrossRef]
- Wang, Y.J.; Huang, J.Q.; Pan, M.X.; Zhou, W.X. Game-Theory-Based Mode Switch Control Schedule Design for Variable Cycle Engine. Aerospace 2023, 10, 112. [Google Scholar] [CrossRef]
- Lv, C.K.; Chang, J.T.; Bao, W.; Yu, D.R. Recent research progress on airbreathing aero-engine control algorithm. Propuls. Power Res. 2022, 11, 1–57. [Google Scholar] [CrossRef]
- Li, L.; Shi, W. A fault tolerant model for multi-sensor measurement. Chin. J. Aeronaut. 2015, 28, 874–882. [Google Scholar] [CrossRef]
- Cristaldi, L.; Ferrero, A.; Macchi, M.; Mehrafshan, A.; Arpaia, P. Virtual sensors: A tool to improve reliability. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Rome, Italy, 3–5 June 2020; pp. 142–145. [Google Scholar]
- Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef]
- Liu, S.C.; Lyu, P.; Lai, J.Z.; Yuan, C.; Wang, B.Q. A fault-tolerant attitude estimation method for quadrotors based on analytical redundancy. Aerosp. Sci. Technol. 2019, 93, 105290. [Google Scholar] [CrossRef]
- Boomadevi, P.; Paulson, V.; Samlal, S.; Varatharajan, M.; Sekar, M.; Alsehli, M.; Elfasakhany, A.; Tola, S. Impact of microalgae biofuel on microgas turbine aviation engine: A combustion and emission study. Fuel 2021, 302, 121155. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, J.; Liu, B.; Zhang, Z.; Yan, X.; Wei, M. A review on deep learning applications in prognostics and health management. IEEE Access 2019, 7, 162415–162438. [Google Scholar] [CrossRef]
- Pang, S.W.; Li, Q.H.; Feng, H.L. A hybrid onboard adaptive model for aero-engine parameter prediction. Aerosp. Sci. Technol. 2020, 105, 105951. [Google Scholar] [CrossRef]
- Csank, J.; Connolly, J.W. Enhanced engine performance during emergency operation using a model-based engine control architecture. In Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, 27–29 July 2015; p. 3991. [Google Scholar]
- Zhao, Y.P.; Li, Z.Q.; Hu, Q.K. A size-transferring radial basis function network for aero-engine thrust estimation. Eng. Appl. Artif. Intell. 2020, 87, 103253. [Google Scholar] [CrossRef]
- Volponi, A.J. Gas Turbine Engine Health Management Past, Present and Future Trends. In Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition, San Antonio, TX, USA, 3–7 June 2013. [Google Scholar]
- Simon, D.; Simon, D.L. Constrained Kalman filtering via density function truncation for turbofan engine health estimation. Int. J. Syst. Sci. 2010, 41, 159–171. [Google Scholar] [CrossRef]
- Liu, Y.; Frederick, D.K.; DeCastro, J.A.; Litt, J.S.; Chan, W.W. User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (c-Mapss): Version 2. 2012. Available online: https://ntrs.nasa.gov/citations/20120003211 (accessed on 11 April 2023).
- Lu, F.; Ju, H.F.; Huang, J.Q. An improved extended Kalman filter with inequality constraints for gas turbine engine health monitoring. Aerosp. Sci. Technol. 2016, 58, 36–47. [Google Scholar] [CrossRef]
- Li, B.; Zhao, Y.P.; Chen, Y.B. Learning transfer feature representations for gas path fault diagnosis across gas turbine fleet. Eng. Appl. Artif. Intell. 2022, 111, 104733. [Google Scholar] [CrossRef]
- Yongping, Z.; Jianguo, S. Fast online approximation for hard support vector regression and its application to analytical redundancy for aeroengines. Chin. J. Aeronaut. 2010, 23, 145–152. [Google Scholar] [CrossRef]
- Li, Y.; Xu, M.; Wei, Y.; Huang, W. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree. Measurement 2016, 77, 80–94. [Google Scholar] [CrossRef]
- Rodil, S.S.; Fuente, M.J. Fault tolerance in the framework of support vector machines based model predictive control. Eng. Appl. Artif. Intell. 2010, 23, 1127–1139. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Zhang, T. Analytical redundancy design for aeroengine sensor fault diagnostics based on SROS-ELM. Math. Probl. Eng. 2016, 2016, 8153282. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Sun, X.; Yi, X. Safety Boundary Extraction Using FCM and Prediction Using ELM for Aero-engine Performance Parameters. In Proceedings of the 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Beijing, China, 15–17 August 2019; pp. 18–23. [Google Scholar]
- Zhang, K.; Lin, B.; Chen, J.; Wu, X.; Lu, C.; Zheng, D.; Tian, L. Aero-Engine Surge Fault Diagnosis Using Deep Neural Network. Comput. Syst. Sci. Eng. 2022, 42, 351–360. [Google Scholar] [CrossRef]
- Du, X.; Chen, J.J.; Zhang, H.B.; Wang, J.Q. Fault Detection of Aero-Engine Sensor Based on Inception-CNN. Aerospace 2022, 9, 236. [Google Scholar] [CrossRef]
- Liu, Y.; Meenakshi, V.; Karthikeyan, L.; Maroušek, J.; Krishnamoorthy, N.R.; Sekar, M.; Nasif, O.; Alharbi, S.A.; Wu, Y.; Xia, C. Machine learning based predictive modelling of micro gas turbine engine fuelled with microalgae blends on using LSTM networks: An experimental approach. Fuel 2022, 322, 124183. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Qiu, X.J.; Chang, X.D.; Chen, J.; Fan, B.Q. Research on the Analytical Redundancy Method for the Control System of Variable Cycle Engine. Sustainability 2022, 14, 5905. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Huang, X.H.; Zhang, T.H. Analytical Redundancy of Variable Cycle Engine Based on Proper Net considering Multiple Input Variables and the Whole Engine’s Degradation. Int. J. Aerosp. Eng. 2021, 2021, 9959264. [Google Scholar] [CrossRef]
- Aygun, H.; Turan, O. Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes. Energy 2020, 195, 117008. [Google Scholar] [CrossRef]
Row | Symbol | Explanation | Unit | Range |
---|---|---|---|---|
1 | Flight height | km | 0–12 | |
2 | Flight Mach number | 0–2 | ||
3 | Fuel consumption | kg/s | 2–2.8 | |
4 | Nozzle area | m2 | 0.21–0.25 | |
5 | The opening of MSV | [0, 100] | ||
6 | Opening of forward variable bypass ejector | [0, 100] | ||
7 | Opening of backward variable bypass ejector | [0, 100] | ||
8 | Fan inlet total temperature | K | ||
9 | Fan inlet total pressure | Pa | ||
10 | Core driven fan inlet total temperature | K | ||
11 | Core driven fan inlet total pressure | Pa | ||
12 | High-pressure compressor inlet total temperature | K | ||
13 | High-pressure compressor inlet total pressure | Pa | ||
14 | Bypass outlet total temperature | K | ||
15 | Bypass outlet total pressure | Pa | ||
16 | Mixer outlet total temperature | K | ||
17 | Mixer outlet total pressure | Pa | ||
18 | Nozzle outlet total temperature | K | ||
19 | Nozzle outlet total pressure | Pa | ||
20 | High-pressure turbine outlet total pressure | Pa | ||
21 | Low-pressure turbine outlet total temperature | K | ||
22 | Low-pressure rotor speed | r/min | ||
23 | High-pressure rotor speed | r/min | ||
24 | High-pressure compressor outlet total pressure | Pa | ||
25 | High-pressure turbine outlet total temperature | K | ||
26 | Low-pressure turbine outlet total pressure | Pa | ||
27 | Engine pressure ratio |
Net | |||
---|---|---|---|
VWB Net | 65,772 | 5 | 1 |
BPNN | 97,664 | 5 | 2 |
Dense net | 18,154,753 | 709 | 165 |
Net | |||
---|---|---|---|
VWB Net | 0.19 | 0.25 | 0.27 |
BPNN | 2.65 | 2.37 | 3.34 |
Dense net | 0.20 | 0.34 | 0.39 |
Net | ||||||
---|---|---|---|---|---|---|
VWB Net | 99.81 | 99.75 | 99.73 | 151.75 | 151.66 | 151.63 |
BPNN | 48.68 | 48.82 | 48.33 | 99.68 | 99.97 | 98.97 |
Dense net | 0.60 | 0.60 | 0.60 | 0.55 | 0.55 | 0.55 |
Environment | |||
---|---|---|---|
H = 0 km Ma = 0 | (%) | 0.09 | 0.34 |
(%) | 0.09 | 0.34 | |
(%) | 0.11 | 0.34 | |
H = 11 km Ma = 1.2 | (%) | 0.10 | 0.15 |
(%) | 0.10 | 0.15 | |
(%) | 0.09 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, P.; Huang, X.; Zhang, Z.; Hao, X. Analytical Redundancy for Variable Cycle Engine Based on Variable-Weights-Biases Neural Network. Aerospace 2023, 10, 419. https://doi.org/10.3390/aerospace10050419
Ran P, Huang X, Zhang Z, Hao X. Analytical Redundancy for Variable Cycle Engine Based on Variable-Weights-Biases Neural Network. Aerospace. 2023; 10(5):419. https://doi.org/10.3390/aerospace10050419
Chicago/Turabian StyleRan, Pengyu, Xianghua Huang, Zihao Zhang, and Xuanzhang Hao. 2023. "Analytical Redundancy for Variable Cycle Engine Based on Variable-Weights-Biases Neural Network" Aerospace 10, no. 5: 419. https://doi.org/10.3390/aerospace10050419
APA StyleRan, P., Huang, X., Zhang, Z., & Hao, X. (2023). Analytical Redundancy for Variable Cycle Engine Based on Variable-Weights-Biases Neural Network. Aerospace, 10(5), 419. https://doi.org/10.3390/aerospace10050419