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Abstract: Due to the complex nature of a variable cycle engine (VCE), which has numerous control
variables and working modes across a broad flight envelope, coupled with the whole engine’s
degradation, the analytical redundancy method based on component-level models may not provide
an accurate estimation of the sensors. Variable-weights-biases neural network (VWB Net) is proposed
to construct VCE’s analytical redundancy. Unlike conventional networks whose weights and biases
are fixed, VWB Net’s variable-weights and variable-biases are functions of input which greatly
increase its nonlinear mapping capability by integrating input information. Variable-biases can also
be used to eliminate the error between actual sensor output and estimated value quickly at the
terminal node. Compared with the BP network and Dense net, VWB Net has fewer parameters,
faster calculation speed, and higher accuracy. Digital simulation results of VCE parameter estimation
demonstrate that VWB Net’s average relative errors are under 0.27% with calculation and parameter
efficiency at least 166 times higher than that of Dense net. Hardware in the loop simulation further
verifies VWB Net’s estimation accuracy and real-time calculation.

Keywords: analytical redundancy; variable cycle engine; degradation; neural network; hardware in
the loop

1. Introduction

Compared with conventional gas turbine engines, VCE has more sophisticated
structures and more working modes, operating in a broader flight envelope and power
range [1,2]. It is necessary for the engine through the fault-tolerant control (FTC) system
to ensure safe and stable operation [3]. Engine sensors can fail under harsh conditions,
such as high-temperature and high-pressure environments. Two primary redundancy
techniques used by the engine FTC system are hardware redundancy and analytical
redundancy [4,5]. Compared with hardware redundancy, analytical redundancy reduces
the number of sensors measuring the same physical variable which is of great signifi-
cance for simplified design and weight reduction of aeroengine [6,7]. The operation of
aeroengine produces a significant amount of pollutants [8]. By utilizing analytical redun-
dancy techniques, it is possible to reduce the weight of the engine, thereby achieving the
goal of reducing emissions.

Analytical redundancy techniques can be divided into two categories: model-based
methods and data-driven methods [9–12]. The engine component-level model method
combined with the Kalman filter [13,14] is the most commonly used model-based method.
Given that it is not easy to build an accurate engine dynamic model with performance degra-
dation, the Kalman filter is adopted to improve the adaptation of the engine model [15,16].
Since VCE is a more complicated nonlinear power system across a broader flight envelope
and power range, in the absence of accurate component characteristics, the adaptive model
based on the component-level model cannot accurately track engine outputs in case more
components have degenerated [17].
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The data-driven method provides a promising solution for analytical redundancy
which can extract the engine features and bridge the relationship between input and output
from a large number of experimental data. Shallow learning methods, such as support
vector machine (SVM) [18–20] and extreme learning machine (ELM) [21,22], have quick
calculation speed; however, they cannot extract deep information. Jun Zhou et al. [21] pro-
posed an ELM-based method to provide analytical redundancy for sensor fault diagnostics.
In Zhao’s simulation, there are very few input variables, working range, and degradation
parameters. Deep learning methods are precisely the product of solving highly nonlinear
problems [23,24]. Deep learning methods, such as LSTM [25], Resnet [26], and Google
net [27], are widely used to solve regression problems. The layers of these networks range
from dozens to hundreds, and the parameters of the Dense net even exceed ten million
which result in large storage cost and slow calculation speed [28]. The control parameters of
VCE increase by 40% compared with traditional engines [29], so the mapping relationship
among variables is more complex. Most data-driven methods based on machine learning
algorithms encounter the problem that learning accuracy and calculation speed cannot be
satisfied at the same time [30].

In order to solve the problems of low accuracy caused by the simple structure of
shallow learning network and the slow speed of online operation caused by the complex
topology of a deep learning network, the variable-weights-biases neural network is pro-
posed to construct the analytical redundancy for variable cycle engine. The proposed
network’s variable-weights and variable-biases are nonlinear mappings of input variables
that can realize complete information fusion from different variables and helps neurons fit
out the nonlinear relationship among VCE variables more quickly and accurately. Addi-
tionally, variable-biases can be used at the terminal node to quickly remove the discrepancy
between the actual sensor output and estimated value. The nonlinear expressive capability
of the VWB Net significantly increases while the number of parameters is decreased so the
network calculates faster.

The remainder of the paper is organized as follows: Section 2.1 gives the core principle
of VWB Net, Section 2.2 introduces the structure of the variable-weights-biases neural
network (VWB Net), and Section 2.3 introduces the structure of the variable cycle engine.
In Sections 3.1 and 3.2, the digital simulation experiments are conducted to demonstrate
the performance of the VWB Net and VWB Net are compared with BP neural network
(BPNN) and Dense net [28]. The experiment situation is accompanied by the whole engine’s
degradation across a broad flight envelope. Section 3.3 introduces the framework of the
hardware in the loop (HIL) simulation experiment. In Section 3.4, VWB Net’s estimation
accuracy and real-time performance are verified in the HIL simulation experiment. Section 4
presents a summary of the results and conclusions.

2. Method
2.1. Core Principle of VWB Net

For the general neural network, the output y is:

y = act(w·x + b), (1)

where x is input, w is weight, b is bias, and act() is activation function.
For VWB Net, the output y is:

y = w(x)·x + b(x), (2)

where variable-weight w(x) is the function of input x, and variable-bias b(x) is also the
function of input x.

For general networks, the input of neurons is a linear combination of input variables,
and then output through the activation function, so the ability of nonlinear expression
depends on the activation function. The variable-weights and variable-biases of VWB Net
are functions of inputs which can automatically adjust the value, integrate the informa-
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tion of each input variable, and improve the nonlinear expression ability of the network.
Furthermore, when there is an error between the sensor output and the estimated value
at the last node, the variable-bias b(x) = y− w(x)·x is a simpler way to reduce error than
adding an unreferenced mapping layer y = act(w·x + b). The VWB Net is specifically de-
signed for the analytical redundancy of the variable cycle engine which is a multi-variable,
time-varying, dynamic, and highly nonlinear problem.

The VWB Net has a more powerful capacity for nonlinear expression than general
networks which have fixed weights and biases. Take a simple nonlinear function for example:

f (x) = x2 + x. (3)

The VWB Net can quickly fit the function as long as w(x) = x and b(x) = x.

2.2. The Structure of VWB Net

In order to express arrays with different dimensions more clearly, we refer to one-
dimensional arrays as vectors, two-dimensional arrays as matrices, and three-dimensional
arrays as tensors. The first dimension of all arrays is row, the second dimension is column,
and the third dimension is depth.

Operators “ .̂”, “.∗”, and “./” denote operation by element. If the dimensions of two
arrays do not match, the lower dimensional array will be copied in the direction of the
missing dimension to expand to a higher dimension. For instance,

Y = x. ∗ A⇔ Yi,j = xi·Ai,j, (4)

where A is a matrix of size (m, n), and x is a vector of size (m, 1).
In addition, sum(array, k) is the function that sums up the elements of the kth dimen-

sion. For instance,

sum(X, 2)⇔
n

∑
j=1

Xi,j = xi, x = [x1, x2, . . . , xm], (5)

where X is a matrix of size (m, n). After sum(X, 2), X is transformed into a vector x of size
(m, 1), f lip() is referred to as

f lip(V)⇔ Vk,j,i = Vi,j,k, (6)

where V is a tensor of size (m, n, h).
As shown in Figure 1, the VWB Net contains the core layers—the variable-weights-

biases layer and auxiliary layers—an input layer, an output layer, and feature extraction
layer. Before the formula, it should be noted that in the forward propagation process, the
input of each layer is the output of the previous layer. For back propagation, the output
loss of each layer is the input loss of the next layer.

Input layer normalizes input data as follows.

Y1 = (X1 − µ)./σ, (7)

where X1 is the input data map of size (m, n), µ sizing (m, 1) is a column vector whose row
elements are mean values of each row, and σ sizing (m, 1) is a column vector whose row
elements are standard deviations of each row and no elements equal zero. Y1 is the output
data map of size (m, n).

Feature extraction layer is used to refine important feature information by changing
the corresponding weights according to the influence of parameters. For example, if a
parameter has a greater influence, its weight is greater. Additionally, by the addition of
Equation (8), this layer shrinks the number of parameters.
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The output of the feature separation layer is.

y2 = sum(X2. ∗W, 2) + b, (8)

where X2 is the data map of size (m, n), W is the weight matrix of size (m, n), b is the bias
vector of size (m, 1), and y2 is the output vector of size (m, 1).
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The backward propagation process is defined as follows.
The input loss of the feature extraction layer is defined as

Lx2 = ly2. ∗W. (9)

The weight gradient of the feature extraction layer is

DW2 = ly2. ∗ X2. (10)

The bias gradient of the feature extraction layer is

db2 = ly2. (11)

The weight matrix of the feature extraction layer is

W = W − η2·DW2. (12)

The bias vector for the feature extraction layer is

b = b− η2·db2, (13)

where ly2 is the output loss vector of size (m, 1), and η2 is the constant learning rate of the
feature extraction layer.
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Activation layer uses LeakyReLU as the activation function. Its forward propagation
is given as

y3 = act(x3), (14)

act(x3) =

{
x3 x3 ≥ 0

0.01·x3 x3 < 0
. (15)

Its back propagation is defined as

lx3 =

{
ly3 x3 ≥ 0

0.01·ly3 x3 < 0
, (16)

where x3 sizing (m, 1) is the input data of the activation layer, lx3 sizing (m, 1) is the
input loss of the activation layer, and ly3 sizing (m, 1) is the output loss of the activation
layer. LeakyReLU addresses an issue of ReLU, where the derivative is zero when the
input is negative which can make it difficult for the model to update during training. The
advantage of LeakyReLU for the analytical redundancy problem of variable cycle engines
with multiple variables is that it can increase the nonlinear ability of the model, thereby
better fitting the analytical relationship.

Variable-weights-biases layer enhances the algorithm’s nonlinear expressive capability
by separately making weights and biases functions of inputs. The following equation
describes the forward propagation process of the variable-weights-biases layer.

The output vector of the variable-weights-biases layer is given as

y4 = W(x4)·x4 + B(x4)
= sum(act( f lip(sum(x4. ∗VW , 1)) + OW). ∗ x4

+act
(

f lip
(
sum(x4. ∗VB, 1)) + OB), 1))T

. (17)

The weights matrix is given as

W(x4) =

{
x4·VW + OW (x4·VW + OW) ≥ 0

0.01(x4·VW + OW) (x4·VW + OW) < 0
. (18)

Variable-biases matrix is given as

B(x4) =

{
x4·VB + OB (x4·VB + OB) ≥ 0

0.01(x4·VB + OB) (x4·VB + OB) < 0
, (19)

where act() is the LeakyReLU activation function, y4 is the output vector of size (n, 1), x4 is
the input vector of size (m, 1), VW is the tensor of variable-weights sizing (m, n, m), OW is
the offset matrix of variable-weights sizing (m, n), VB is the tensor of variable-biases sizing
(m, n, m), and OB is the offset matrix of variable-biases sizing (m, n).

As shown in Equations (18) and (19), W(x4) and B(x4) are functions of input x4.
Furthermore, the variable-biases matrix can be obtained by

B(x4) = y−W(x4)·x4. (20)

Variable-biases B(x4) help the estimated value reach the target value at the last node.
For example, if an identity mapping were optimal, it would be simpler to push the variable-
biases to zero.

A graphic forward propagation of x4 (Equation (17)) is shown in Figure 2. The
expression of the variable-weights-biases layer is y4 = W(x4)·x4 + B(x4).
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Figure 2. Graphic forward propagation of x4.

The back propagation process is shown as follows.
The tensor gradient of the variable-weights:

DVW = ∂l
∂VW

= ∂l
∂y4
· ∂y4

∂W(x4)
· ∂W(x4)

∂(VW ·x4+OW )
· ∂(VW ·x4+OW )

∂VW

= ly4·x4·W(x4)
′·x4

= f lip(ly4
T . ∗ x4. ∗ act(W(x4))

′). ∗ x4

. (21)

The offset gradient of the variable-weights:

DOW = ∂l
∂OW

= ∂l
∂y4
· ∂y4

∂W(x4)
· ∂W(x4)

∂(VB ·x4+OW )
· ∂(VB ·x4+OW )

∂OW

= ly4·x4·W(x4)
′

= ly4
T . ∗ x4. ∗ act(W(x4))

′
. (22)

The tensor gradient of the variable-biases:

DVB = ∂l
∂VB

= ∂l
∂y4
· ∂y4

∂B(x4)
· ∂B(x4)

∂(VB ·x4+OB)
· ∂(VB ·x4+OB))

∂VB

= ly4·B(x4)
′·x4

= f lip(ly4
T . ∗ act(B(x4))

′). ∗ x4

. (23)

The offset gradient of the variable-biases:

DOB = ∂l
∂OB

= ∂l
∂y4

. ∂y4
∂B(x4)

. ∂B(x4)
∂(VB ·x4+OB)

. ∂(VB ·x4+OB)
∂OB

= ly4·B(x4)
′

= ly4
T . ∗ act(B(x4))

′
. (24)

The tensor of variable-weights:

VW = VW − η4·DVW . (25)
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The offset matrix of variable-weights:

OW = OW − η4·DOW . (26)

The tensor of variable-biases:

VB = VB − η4·DVB . (27)

The offset matrix of variable-biases:

OB = OB − η4·DOB . (28)

The input loss in variable-weights-biases layer:

lx4 = ∂l
∂x4

= ∂l
∂y4
· ∂y4

∂W(x4)
· ∂W(x4)

∂(VW ·x4+OW )
· ∂(VW ·x4+OW )

∂x4

+ ∂l
∂y4
· ∂y4

∂x4
+ ∂l

∂y4
· ∂y4

∂B(x4)
· ∂B(x4)

∂(VB ·x4+OB)
· ∂(VB ·x4+OB)

∂x4

= ly4·x4·act(W(x4))
′·VW + ly4·W(x4) + ly4·act(B(x4))

′·VB

= sum
(

f lip(ly4
T . ∗ x4. ∗ act(W(x4))

′). ∗VW , [2, 3])

+sum
(
ly4

T . ∗W(x4), 2)
+sum

(
f lip(ly4

T . ∗ act(B(x4))
′). ∗VB, [2, 3])

, (29)

where ly4 is the output loss sizing (n, 1). When sum(tensor, [2, 3]) , a tensor will be trans-
formed into a vector. sum(tensor, [2, 3]) implies obtaining the summary along a tensor’s
second and third dimensions.

A graphic description of back propagation of ly4 (Equation (29)) is presented in
Figure 3.
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Output layer loss function definition is given as

l(ye) = (ye − ya)
.̂2./(2·n), (30)

where ye is the estimated output vector of size (n, 1) which is the output data of the
variable-weights-biases layer. ya is the actual output vector of size (n, 1).
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The loss of the output layer is defined as

lx5 = (ye − ya)./n, (31)

where lx5 is the loss of size (n, 1).

2.3. Data Acquisition of Experiment Object

The basic structure and design point of the variable cycle engine are the same as that
in Aygun and Turan’s paper [31]. VCE structure is depicted in Figure 4. Mode Switch
Valve (MSV), Forward Variable Bypass Ejector (FVBE), and Back Variable Bypass Ejector
(BVBE) are used to control VCE operating modes. Core Driven Fan (CDF), High-Pressure
Compressor (HPC), and High-Pressure Turbine (HPT) are coaxial. Fan (FAN) and Low-
Pressure Turbine (LPT) are coaxial. Additionally, other major components of VCE include
Inlet (INL), Combustion (CBT), Mixer (MIX), Nozzle (NOZ), and Bypass (BPS).
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The problem studied in the paper is the analytical redundancy under the degradation
condition of VCE. The degradation coefficients are introduced to simulate the performance
degradation of engine components. Then, the data of the engine model under different
degradation conditions are acquired to train the neural networks.

Degradation coefficients are defined as

Dcom,m =
mcom,degradation

mcom,nomimal
, (32)

Dcom,e =
ecom,degradation

ecom,nomimal
, (33)

where Dcom,m and Dcom,e represent the degradation coefficients of the mass flow rate and
the adiabatic efficiency of each component, respectively. mcom,degradation is the mass flow rate
of the component after degradation and mcom,nominal is the nominal mass flow rate before
degradation. ecom,degradation is the adiabatic efficiency of the component after degradation
and ecom,nomimal is the nominal adiabatic efficiency before degradation.

In this study, ten degradation coefficients act on variable cycle engine simultane-
ously D f an,m, D f an,e, Dcd f ,m, Dcd f ,e, Dhpc,m, Dhpc,e, Dhpt,m, Dhpt,e, Dlpt,m, and Dlpt,e. The
10 degradation coefficients are random values within 0.96–1 and a total of 20 sets of degra-
dation combinations are set randomly. The data acquisition is carried out under the
20 combinations.
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Table 1 lists all variables. The original data acquired include two environmental
variables (H and Ma), five input control variables (Wf, A8, Msv,ope, Fvbe,ope, and Bvbe,ope),
and twenty measurable variables (T1, P1, T2, P2, T21, P21, T22, P22, T7, P7, T8, P8, P5, T6, Nl ,
Nh, P3, T5, P6, and EPR) during the operation of variable cycle engine. In order to verify
the proposed method, we use the variables from rows 1 to 21 as input, take three typical
signals’ estimation (Nl , P3, and T5) as output in the digital simulation experiment, and take
two typical signals’ estimation (Nl and EPR) as output in the HIL simulation experiment.
To validate the fundamental feasibility of the proposed method, the effects of Cdf stator
angle, Hpc stator angle, and turbine guide vane angle have been neglected to simplify the
problem. However, these factors will be investigated in future studies.

The engine model and the analytical redundancy model in digital simulation are
both constructed in MATLAB R2021b. In hardware in the loop simulation, the analytical
redundancy model and PID controller are built in CodeWarrior 10.5.1. In order to acquire
the engine data of dynamic operation and steady operation with performance degradation,
under single bypass and dual bypass engine modes across a large envelope, we acquire
the simulation data from the component-level model of VCE according to Figure 5. The
VCE operates in single bypass and dual bypass modes, respectively. In the process of
traversing the fuel consumption Wf, make Wf step up in a randomly selected amplitude
among {0.05 kg/s, 0.1 kg/s, and 0.2 kg/s} and continue to step up randomly after 1.5 s of
steady-state operation. After rising to the upper limit, make Wf step down in a randomly
selected amplitude among {0.05 kg/s, 0.1 kg/s, and 0.2 kg/s} and continue to step down
after 1.5 s of steady-state operation. The process of traversing Wf is completed when the
object reaches the bottom limit. During each Wf traversal, A8 maintains a fixed value. The
nozzle area A8 is varied in 0.1 units from 0.21 to 0.25 m2. The process described above is
repeated for each value of A8, and the Wf traversal is completed again.

Moreover, in the process of traversing the nozzle area A8, make A8 step up in a
randomly selected amplitude among {0.05 m2, 0.1 m2, and 0.2 m2} and continue to step up
randomly after 1.5 s of steady-state operation. After rising to the upper limit, make A8 step
down in a randomly selected amplitude among {0.05 m2, 0.1 m2, and 0.2 m2} and continue
to step down after 1.5 s of steady-state operation. The process of traversing A8 is completed
when the object reaches the bottom limit. During each A8 traversal, Wf maintains a fixed
value. The fuel consumption Wf is varied in 0.1 units from 0.2 to 0.28 kg/s. The process
described above is repeated for each value of Wf, and the A8 traversal is completed again.

Due to the random amplitude steps, the above Wf and A8 traversal scheme allows the
acquired data to contain both dynamic data and steady-state data at different Wf, A8, and
change rates. The Wf and A8 traversal process is repeated, followed by the Mach number
Ma varied in 0.1 units from 0 to 2, the altitude H increased in 0.5 units from 0 to 12 km, and
different degradation parameters.

The acquired data are processed as follows. Variables in the same rows in Figure 6 are
the same as those in Table 1. The original input data map is produced using rows 1–21 of
data, and the original output array is produced using one of the rows from 22 to 27. Data at
different times in different columns, and the data acquired is continuous. Each input data
map has nine times of data. tm9 is the current moment of the input data map and tm1 is the
initial moment of the input data map. The two-dimensional input data map set and the
corresponding output data set are produced by using sliding segmentation in the original
data map as shown in Figure 6. Sliding windows are set for sliding segmentation of the
original input data map and the original output array with sliding window dimensions of
21 × 9 and 1 × 1, respectively, and the sliding window is moved in steps of one along the
time dimension each time. The data within the sliding window sizing 21 × 9 is selected as
the 2D input data map. The data at tm9 within the sliding window sizing 1 × 1 is selected
as the output data of the two-dimensional input data map. In the same way, the input
maps and the output arrays can be obtained. The output arrays of Nl , Nh, P3, T5, P6, and
EPR share the same input data maps. When training VWB Net, BPNN, and Dense net, we
only need to change the output array, for example, altering Nl with P3.
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Table 1. Explanation of symbols in original data set.

Row Symbol Explanation Unit Range

1 H Flight height km 0–12
2 Ma Flight Mach number 0–2
3 Wf Fuel consumption kg/s 2–2.8
4 A8 Nozzle area m2 0.21–0.25
5 Msv,ope The opening of MSV [0, 100]
6 Fvbe,ope Opening of forward variable bypass ejector [0, 100]
7 Bvbe,ope Opening of backward variable bypass ejector [0, 100]
8 T1 Fan inlet total temperature K
9 P1 Fan inlet total pressure Pa
10 T2 Core driven fan inlet total temperature K
11 P2 Core driven fan inlet total pressure Pa
12 T21 High-pressure compressor inlet total temperature K
13 P21 High-pressure compressor inlet total pressure Pa
14 T22 Bypass outlet total temperature K
15 P22 Bypass outlet total pressure Pa
16 T7 Mixer outlet total temperature K
17 P7 Mixer outlet total pressure Pa
18 T8 Nozzle outlet total temperature K
19 P8 Nozzle outlet total pressure Pa
20 P5 High-pressure turbine outlet total pressure Pa
21 T6 Low-pressure turbine outlet total temperature K
22 Nl Low-pressure rotor speed r/min
23 Nh High-pressure rotor speed r/min
24 P3 High-pressure compressor outlet total pressure Pa
25 T5 High-pressure turbine outlet total temperature K
26 P6 Low-pressure turbine outlet total pressure Pa
27 EPR Engine pressure ratio
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3. Experiment, Results, and Discussion
3.1. Digital Simulation Experiment

In the digital simulation, we take the parameter estimation of Nl , P3, and T5 as exam-
ples to compare the estimation accuracy and real-time performance of VWB Net, BPNN,
and Dense net [28]. In order to verify the steady and dynamic performance of VWB Net,
the large envelope simulation is conducted in the single and double bypass mode of the
variable cycle engine. BPNN is one of the most widely used neural networks. In this paper,
BPNN has only five layers which is a typical shallow learning network, and its calculation
speed is pretty quick. A Dense net has 709 layers. It is mainly used for high precision,
sacrificing a certain computing speed to pursue excellent nonlinear expressive capability.

The variable cycle engine is replaced by a component-level model. Since the control
command changes with the flight altitude, Mach number, fuel consumption, and degrada-
tion coefficient, the change of the operating point is reflected by the change of the above
variables in the simulation. The aircraft climb time is shortened to describe a larger enve-
lope range which is equivalent to increasing the intensity of external interference. If the
control system can achieve good results under this condition, the actual performance will
be better. Next, the simulation results under single and dual bypass modes are given.

(1) Single bypass mode simulation validation

The simulation under the single bypass mode starts from the high-altitude design
point (H = 12 km, Ma = 1.5). The fuel consumption Wf is 2.4 kg/s. The nozzle area A8 first
rises from 0.24 m2 to 0.25 m2 at the 10th s, then drops to 0.24 m2 at the 20th s before quickly
rising to 0.25 m2 once again. At the 35th s, the nozzle area A8 was reduced to 0.23 m2. The
engine performance degradation occurs at 45th s. Change the altitude H and the Mach
number Ma at the 55th s, so that the engine operates to the operating point of H = 7 km
and Ma = 1.2. At the 65th s, the nozzle area A8 falls from 0.23 m2 to 0.22 m2, then rises to
0.23 m2 and 0.24 m2 successively. The actual values of speed, temperature, and pressure,
and the analytical redundancy of speed, temperature, and pressure based on the three
networks in single bypass mode are shown in Figures 7–9.

(2) Dual bypass mode simulation verification

The component-level model of a variable cycle engine in dual bypass mode has a
large dynamic process from the ground design point (H = 0 km, Ma = 0). The nozzle area
A8 is 0.22 m2. The fuel consumption Wf decreases from 2.4 kg/s to 2.0 kg/s at the 10th s,
increases from 2.0 kg/s to 2.4 kg/s at the 20th s, and then rapidly decreases to 2.0 kg/s.
The engine performance degradation occurs at 35th s. Change the altitude H and the Mach
number Ma at the 45th s, so that the variable cycle engine runs to the high-altitude point
(H = 11 km, Ma = 1.2). The fuel consumption Wf increases from 2.0 kg/s to 2.4 kg/s at the
60th s, increases to the maximum fuel consumption Wf of 2.8 kg/s at the 70th s, and then
decreases to 2.4 kg/s and 2.2 kg/s in turn. The actual values of engine speed, temperature,
and pressure, and the analytical redundancy of speed, temperature, and pressure based on
the three networks in dual bypass mode are shown in Figures 10–12.

Figures 7–12 show the steady and dynamic performance of Nl , P3, and T5 analytical
redundancies based on VWB Net, BPNN, and Dense net. The analytical redundancies based
on BPNN are not ideal, and the error of BPNN is far greater than the other two networks.
BPNN cannot accurately estimate the dynamic process after the control variable changes
instantaneously, and BPNN is the worst in T5 analytical redundancy in Figures 9 and 12.
The error of the Dense net is relatively small, and the simulation curve of the Dense net is
smoother than that of VWB Net. It is obvious that the VWB Net meets the requirement of
the variable cycle engine for prediction accuracy.

The intricacy of the mapping from input to output as well as each net’s nonlinear
expressive capabilities can explain differences in the steady and dynamic performance
among Nl , P3, and T5 based on VWB Net, BPNN, and Dense net.
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3.2. Comparison of Estimation Accuracy and Real-Time Performance

Based on Section 3.1, the performance of analytical redundancy based on each network
is further discussed. VWB Net, BPNN, and Dense net are trained for 12 epochs with a batch
size of 50. Table 2 shows the number of network parameters (Pn), the number of network
layers (Ln), and the calculation speed of each forward propagation (Sc). The calculation



Aerospace 2023, 10, 419 19 of 25

speeds of each forward propagation (Sc) based on VWB Net and BPNN are less than 2 ms.
Obviously, VWB Net and BPNN, except for Dense net, meet the requirement of a variable
cycle engine for calculation speed. Compared with the most complex network Dense net,
the three indicators of VWB Net and BPNN are tens or even hundreds of times lower than
Dense net.

Table 2. Number of parameters, number of layers, and calculation speed of VWB Net, BPNN, and
Dense net.

Net Pn Ln Sc(ms)

VWB Net 65,772 5 1
BPNN 97,664 5 2
Dense net 18,154,753 709 165

Tables 3 and 4 show the average relative error, calculation efficiency, and parameter
efficiency of the analytical redundancies based on VWB Net, BPNN, and Dense net. Calcu-
lation efficiency is used to evaluate the accuracy that a network can achieve per millisecond.
Furthermore, parameter efficiency is used to evaluate the accuracy that a network can
achieve per parameter.

Average relative error is defined as

ARE =

n
∑

i=1
|AVi − EVi|

n
∑

i=1
AVi

, (34)

where AVi stands for the ith actual value, and EVi is the ith estimation value. n is the
number of test data.

Calculation efficiency is defined as

Ec =
(1− ARE)

Sc
. (35)

Parameter efficiency is defined as

Ep =
(1− ARE)

Pn
. (36)

Table 3. Average relative error of Nl , P3, and T5 analytical redundancies.

Net
ARE (%)

Nl P3 T5

VWB Net 0.19 0.25 0.27
BPNN 2.65 2.37 3.34
Dense net 0.20 0.34 0.39

Table 4. Calculation efficiency and parameter efficiency of Nl , P3, and T5 analytical redundancies.

Net
Ec (%/ms) Ep (%×10−5/parameter)

Nl P3 T5 Nl P3 T5

VWB Net 99.81 99.75 99.73 151.75 151.66 151.63
BPNN 48.68 48.82 48.33 99.68 99.97 98.97
Dense net 0.60 0.60 0.60 0.55 0.55 0.55
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Dense net performs well in the estimation of the analytical redundancies for Nl ,
P3, and T5 which demonstrates the effectiveness of complex topologies in enhancing
nonlinear expressive capability. Although the average relative error of Nl based on
Dense net is only 0.20%, it comes at the cost of a large number of parameters and 165 ms
of computational overhead. BPNN has the lowest accuracy because its ability to mine
feature information is weak.

VWB Net excels in average relative errors of Nl , P3, and T5. The average relative
errors of Nl , P3, and T5 based on VWB Net are no more than 0.27%. VWB Net’s calculation
efficiency is more than 166 times higher than Dense net’s which shows that VWB Net
consumes less calculation time to achieve high accuracy of VCE parameter estimation.
Dividing the VWB Net’s parameter efficiency by Dense Net’s parameter efficiency yields
a value greater than 276 which shows that the VWB Net consumes fewer parameters to
achieve high accuracy of VCE parameter estimation. It can be seen that the VWB Net
algorithm plays an important role in improving the ability of mining feature information
and reducing network parameters and layers.

The VWB Net can be utilized to build analytical redundancy for the variable cycle
engines due to its exceptional estimation accuracy and real-time performance. With the
appropriate design of network parameters and structure, variable-weights and variable-
biases can be added to all kinds of networks to achieve higher estimation accuracy and
faster calculation speed.

3.3. Framework of Hardware in Loop Simulation Experiment

The hardware in loop simulation has higher simulation credibility which uses the real
controller in the control system simulation, therefore, we can prove the feasibility of the
proposed analytical redundancy method running on the real-time embedded controller and
further verify the estimation accuracy and real-time performance of the VWB Net. Figure 13
demonstrates the block diagram of the hardware in the loop simulation for a distributed
engine control system. The test platform is composed of an engine model computer,
monitoring computer, interface simulator, data concentrator, power, and distributed control
nodes. TTP/C communication bus is used to transmit data among nodes. The core
controller node employs a dual-core processor module (P2020) based on NXP QorlQ P2020.
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The operation process of the test platform is as follows.
Step 1. Run the engine model in the model computer and transfer the output to the

interface simulator. The interface simulator simulates relevant sensor signals, such as
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thermal resistance temperature sensor, piezoresistive sensor, LVDT displacement sensor,
magnetoelectric speed sensor, etc. These signals are transmitted to the data concentrator,
converted into digital signals, and then transmitted to the core control node through the
TTP/C bus.

Step 2. There are VWB Net and PID controllers on the core control node. The core
control node receives parameters of the current state and commands from the upper
computer, such as speed and engine pressure ratio. VWB Net estimates the speed and
engine pressure ratio. When the speed and pressure sensors fail, the estimated value
replaces the sensor signal. The target fuel consumption and nozzle area are calculated by
the PID controller and transmitted to each actuator control node through the TTP/C bus.

Step 3. The nozzle and fuel pump control nodes calculate the currents of the solenoid
valve driving the nozzle and fuel pump, respectively. The driving currents output from
actuator control nodes are acquired by the interface simulator, converted into digital signals,
and then transmitted to the actuator models in the model computer.

Step 4. The actuator models calculate the updated control variables. Finally, the engine
status is updated in real time.

3.4. Hardware in the Loop Simulation Experiment

When there is a bias or drift fault in pressure and speed sensors, and the estimation
error of the neural network exceeds a certain threshold compared to the actual sensor value,
the estimated value from the neural network is used to replace the actual sensor value. As
this paper focuses on the construction of analytical redundancy and the research on its
accuracy and real-time performance, the fault diagnosis method will be investigated in
future studies.

In hardware in the loop simulation experiment, low-pressure rotor speed (Nl) and
engine pressure ratio (EPR) dual variable control is adopted. During Nl closed-loop
control circuit, the controlled signal is switched between the physical Nl and the analytical
redundancy Nl estimated by the VWB Net. During EPR closed-loop control circuit, the
controlled signal is switched between the physical engine pressure ratio EPR and the
analytical redundancy engine pressure ratio EPR estimated by VWB Net.

The estimation accuracy of the analytical redundancy and the disturbance size of the
actual value are important indicators to measure the reconstruction accuracy of analytical
redundancy based on the VWB Net.

The steady-state estimation accuracy of the analytical redundancy is defined as

EAR =
|AVR − EVR|

tar
, (37)

where AVR is the actual value when the closed-loop control circuit is using the analytical
redundancy, EVR is the estimated value when the closed-loop control circuit is using the
analytical redundancy, and tar is the target value maintained.

In the following equations, AVb is the actual value before switching, and AVa is the
actual value after switching.

The disturbance size of the actual value when the sensor signal is switched to the
analytical redundancy signal is defined as

DSSR =
|AVb − AVa|

tar
. (38)

The disturbance size of the actual value when the analytical redundancy signal is
switched to the sensor signal is defined as

DSRS =
|AVb − AVa|

tar
. (39)
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Table 5 shows the steady-state estimation accuracy of the analytical redundancy and
the disturbance size of the actual value under two distinct flight conditions. The first
condition is sea level with zero Mach number (H = 0 km, Ma = 0), while the second
condition is an altitude of 11,000 meters with a Mach number of 1.2 (H = 11 km, Ma = 1.2).
Moreover, the engine mode used in this section is the dual bypass mode. We switch
the controlled signal in the 45th s. The estimation accuracy and the disturbance size are
less than 0.34%, meeting the requirements of VCE parameter estimation accuracy. The
calculation time of the VWB Net each time in P2020 is 1.2 ms, meeting the requirements of
real-time calculation. As shown in Figures 14–17, when the controlled signal is switched
between the sensor signal and the analytical redundancy signal, the engine can operate
stably as before, meeting the requirements of engine-safe operation.

Table 5. Estimation accuracy and disturbance size under H = 0 km, Ma = 0, and H = 11 km, Ma = 1.2.

Environment Nl EPR

H = 0 km
Ma = 0

DSSR (%) 0.09 0.34
DSRS (%) 0.09 0.34
EAR (%) 0.11 0.34

H = 11 km
Ma = 1.2

DSSR (%) 0.10 0.15
DSRS (%) 0.10 0.15
EAR (%) 0.09 0.15
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4. Conclusions

The analytical redundancy for the variable cycle engine (VCE) is a multi-variable, time-
varying, dynamic, and highly nonlinear problem. By making weights and biases nonlinear
mappings of input, variable-weights-biases neural network’s (VWB Net’s) nonlinear ex-
pressive capability is enhanced while its layers and parameters are decreased. Additionally,
variable-biases can be applied at the terminal node to quickly eliminate the error between
the actual sensor output and estimated value. The experiments and results under the large
envelope show that VWB Net is suitable for constructing the VCE analytical redundancy. In
the digital simulation experiment, based on VWB Net, the average relative errors of speed,
temperature, and pressure in steady and dynamic processes are less than 0.27%. VWB
Net demonstrates the best accuracy in speed analytical redundancy with only 0.19%. The
calculation efficiency and parameter efficiency of VWB Net are more than 166 times higher
than those of Dense net. In the hardware in the loop simulation experiment, the analytical
redundancy based on VWB Net ensures the safe and stable operation of the engine. The
estimation accuracy of the analytical redundancy and the disturbance size of the actual
value is less than 0.34%; besides, the calculation time of VWB Net is 1.2 ms in P2020 each
time which further verifies the estimation accuracy and real-time performance of VWB Net.
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