On Topology Optimisation Methods and Additive Manufacture for Satellite Structures: A Review
Abstract
:1. Introduction
2. Topology Optimisation Methods
- Continuum approaches, which are based on the modification of continuous parameters such as mass density.
- Discrete approaches, which are based on the elimination or addition of material elements in a meshing context.
- Diverse approaches, containing TO continuum and discrete approaches that are used to solve specific problems such as multi-scale TO and multi-physics TO or that try to give a novel dimension to TO problems by integrating machine learning techniques.
2.1. Topology Optimisation Continuum Approaches
2.1.1. Beginnings
2.1.2. Homogenisation Method
2.1.3. Solid Isotropic Material with Penalty Method
2.1.4. Topology Derivative
2.1.5. Level-Set Method
2.1.6. Phase-Field Method
2.2. Topology Optimisation Discrete Approaches
2.2.1. Evolutionary Structural Optimisation Methods
2.2.2. Moving Morphable Voids Method
2.2.3. Metaheuristic Topology Optimisation Methods
Genetic Algorithms
Other Metaheuristic Approaches
2.3. Diverse Approaches
2.3.1. Multi-Scale Topology Optimisation Methods
- Functionally Graded Material Topology Optimisation with Level-Set Methods [261]
2.3.2. Multi-Physics Topology Optimisation Approaches
2.3.3. Machine Learning Applied to Topology Optimisation
3. Additive Manufacture in the Context of Satellite Structures
- Material bed process: This category encompasses techniques where the material is first laid down in bulk to create a bed, upon which the actual fabrication process takes place layer-by-layer. Some common examples of this category include:
- Material deposition process: This process involves transferring material from a feed source to a substrate in order to fabricate a part directly, as opposed to forming an intermediate bed. This category is divided into the following categories:
- Solid deposition.
- −
- −
- −
- −
- −
- −
- Liquid deposition.
- Slurry deposition.
- Motionless material process: Refers to AM techniques where the material feedstock remains static and does not require active conveying or deposition to construct each layer. In processes like Two-Photon Polymerisation (2PP) and Continuous Liquid Interface Production (CLIP), the photopolymer resin is already present in a vat or container. These motionless material techniques eliminate the motion requirements of powder beds, material extrusion, or droplet jetting.
3.1. General Considerations about Additive Manufacture for Topology Optimisation-Generated Solutions
3.2. Additive Manufacture Applied to the Satellite Industry
- Primary structure, structural components, and mechanisms.
- Propulsion systems, valves, filters, pipes, injectors, combustion chambers, nozzles, tanks, and multi-functional integrated components.
- Thermal systems, involving advanced thermo-optical surfaces, pre-cooling channels and piping, multi-functional integrated components, re-entry thermal protection, and gradient-sized meshes for cryogenic coolers.
- Electronics encompassing waveguides, micro-batteries, structurally embedded wiring, and intricate metallic components.
3.3. General Mechanical Requirements for Satellite Structures
- Strength: the structure must endure the designated maximum loads without failure; it is imperative that any permanent deformations that might compromise the mission’s objectives are strictly controlled.
- Local yielding: in cases of metal structures or components, localised yielding may occur, as long as it does not induce overall permanent deformation, instability, or fatigue-related structural failure.
- Buckling: the stability (i.e., no buckling) of the structure must be verified under the prescribed design loads.
- Stiffness: stiffness requirements under specified loads and boundary conditions must be identified (stiffness is often quantified in terms of a minimum natural frequency requirement), thus preventing deformations that breach specified thresholds, gaps at joints, and dynamic interaction with other subsystems.
- Dynamic behaviour: the natural frequencies of the structure must fall within designated ranges to prevent dynamic resonance with significant excitation frequencies (e.g., fundamental frequencies of launch vehicles). Avoiding mechanical resonance is a must when TO is applied to satellite structures.
4. Cases of Study on Satellite Structures by Topology Optimisation Continuum Approaches
4.1. Homogenisation Method
Small Satellite Structural Optimisation Using Genetic Algorithm Approach
- An unspecified mathematical homogenisation technique is presented to derive equivalent properties for the sandwich structure.
- There are derived relationships between the sandwich geometries and equivalent elastic module, shear rigidity, and plate rigidity.
- The equivalences enabled feasible analysis of the sandwich properties and optimisation of its design.
4.2. Solid Isotropic Material Interpolation Method
4.2.1. Design Optimisation and Validation for Additive Manufacturing: A Satellite Bracket Application
- Stress and size constraints involving a minimum member size were performed using the SIMP method through the software Altair OptiStruct® to obtain an initial optimised bracket configuration minimising compliance.
- SIMP expressed material properties as a power law function of density to interpolate between solid and void.
- The design is subjected to progressive FEA simulations under different loads to virtually validate its performance.
- The AlSi10Mg alloy is used in SLM to fabricate the final design.
4.2.2. Topology Design of a Nanosatellite Structure with Optimal Frequency Responses Filled by Non-Uniform Lattices
- A nanosatellite box with uniform lattice panels is vibration tested to obtain target frequency response data in three orthogonal axes.
- An equivalent FE model of the box is created and density-based TO is performed using the SIMP method to maximise frequency under mass constraints.
- TO result is interpreted to design variable density lattices tailored to the load paths.
4.2.3. Topology Optimisation and Modal Analysis of Nanosatellite Structure
- A vertical partitioned conceptual nanosatellite structure is designed based on requirements.
- FE modelling and analysis are performed to evaluate strength under accelerations of 11 g’s longitudinal and 6 g’s lateral launch loads.
- TO is applied through ANSYS® to reduce mass while restricting maximum displacement and stress as constraints.
- Modal analysis determined the natural frequencies and mode shapes of the optimised structure.
4.2.4. Optimisation Design of the Spaceborne Connecting Structure for a Lightweight Space Camera
- A FE model of the chamber and the initial structure is established using Hypermesh® software.
- The elastic modulus of each element is introduced using the SIMP method, whereas the optimisation model is solved by MMA.
- Parametric models were created and solved to ensure that the overall shape and dimensions of the topology remained consistent.
- A sensitivity analysis is conducted by employing a design of experiment approach to assess how size parameters impact the performance of the camera.
- Engineering analysis (static and dynamic) and performance comparison are realised.
4.2.5. Optimum Design of the Support Structure of the CMG Based on CAE
- Study of facets of the support structure of the CMG with the ANSYS® FEM software package.
- The 3D models of the CMG are established based on the optimisation.
- Vibration tests to validate the optimised design.
4.2.6. Multi-Scale Design and Optimisation for Solid-Lattice Hybrid Structures and Their Application to Aerospace Vehicle Components
- Create a solid model and define design domain.
- Establish finite mesh model and impose boundary conditions.
- Reconstruct and lattice infill.
- Perform size optimisation and verify its convergence.
4.2.7. An Aerospace Bracket Designed by Thermo-Elastic Topology Optimisation and Manufactured by Additive Manufacturing
- A thermo-elastic TO formulation is proposed to minimise compliance under displacement, volume, and thermal load constraints.
- The Rational Approximation of Material Properties (RAMP) scheme is used for material interpolation. RAMP expressed the Young’s modulus, thermal stress coefficient, and thermal conductivity of the density variables.
- Sensitivity analysis is derived for the coupled thermo-elastic response and RAMP material properties.
- An 18.3% reduction in bracket mass is achieved while satisfying all stiffness, strength, and displacement constraints.
- Mechanical testing validates the performance of the additively manufactured bracket under extreme loads (see Figure 7).
- The paper demonstrates an effective integrated approach combining TO (RAMP method) and AM for aerospace applications.
4.3. Level-Set Methods
A Level- Set-Based Topology Optimisation Approach for Thermally Radiating Structures
- To define the level-set function to implicitly represent structural boundaries.
- To construct augmented Lagrangian with volume constraint.
- To derive shape sensitivity Lagrangian using adjoint method.
- To solve state equations for and adjoint state q*.
- To construct velocity field from the shape sensitivity analysis.
- To solve the Hamilton–Jacobi equation to evolve the level set based on .
- To re-initialise periodically as signed distance function.
- To iterate steps (iii) to (vii) until convergence.
- To extract final structure shape .
- To validate the approach on a 2D aluminium plate with dimensions of 100 cm × 100 cm × 1 cm.
4.4. Other Topology Optimisation Applications on Satellite Secondary Structures
5. Cases of Study on Satellite Structures by Topology Optimisation Discrete Approaches
5.1. Metaheuristic Methods
5.1.1. Parallel Optimal Design of Satellite Bus Structures Using Particle Swarm Optimisation
- The use of the PSO algorithm is suitable for problems with expensive function evaluations that can be easily parallelised.
- The use of a grid-computing framework to distribute simulation jobs for automatic mesh generation in FEA.
- The use of MSC Patran® 2004 and MSC Nastran® 2004 (commercial software) for meshing and analysis.
- The PSO algorithm module coordinated job submission and gathered results from the grid resources.
- Optimisation is performed in two stages: an initial optimisation execution, and then, a reinforcement is added to address constraint violations. Then, a second optimisation is performed.
- Optimisation of a 32-variable adaptor-ring model, reducing its mass 54% from 26.2 kg to 12.4 kg.
- Performed optimisation in two stages:
- Optimised to 13.6 kg mass before violating constraints.
- Reinforced model and re-optimised to satisfy constraints mentioned above.
- A 60-node grid is leveraged to complete 1266 minutes of computations.
- Sensitivity analyses were conducted to study the impact of parameters on the optimised design.
5.1.2. Structural Optimisation Design of Shock Isolation Ring for Satellite–Rocket Separation
- A shock response spectrum synthesis to obtain a transient time domain shock load is used.
- A FE model of the shock isolation ring structure in Catia®, Abaqus® and Matlab®.
- An objective function is defined by designing the variables and constraints mentioned above; mass minimisation is intended.
- Response surface models for shock isolation ratio and strength based on FEA at sample points are built.
- Adaptive simulated annealing algorithm to solve the mixed discrete-continuous optimisation problem is used.
- Computed sensitivities of objectives and constraints to design variables at the optimal design.
5.1.3. Small Satellite Structural Optimisation Using Genetic Algorithm Approach
5.1.4. The Topology Optimisation of Electronic Parts Mounted on Microsatellite
- Apply auto-positioning method: Components are placed on the board from upper left to right with an established distance between parts for a given pattern. In case a component crosses the right edge of the board, it is placed on the left edge below previously placed parts.
- Placement is evaluated with an autorouting function.
- The design variables are obtained from the evolutionary computation by MOGA with 70 generations to evolve. The established objective functions are to minimise board area and maximise autorouting rate.
5.1.5. An Engineering Method for Complex Structural Optimisation Involving Both Size and Topology Design Variables
- The structural and sensitivity analysis of the initial design is carried out.
- The first-level problem is approximated by a Branched Multi-Point Approximation (BMA) function.
- Optimisation of discrete variables through a GA; if the problem is not convergent, it is repeated from the structural analysis.
- The second-level problem for the optimisation of continuous variables is approached and solved by means of the dual method for the calculation of the individual amplitude.
5.2. Other Topology Optimisation Applications on Satellite Secondary Structures
6. Discussion and Conclusions
6.1. Topology Optimisation Methods
- Homogenisation methods are difficult to use, especially when implemented for 3D TO problems. Nonetheless, multi-scale approaches make use of them.
- SIMP methods require selecting an appropriate penalisation factor.
- LSMs are sensitive to initial solution guesses.
- Topological derivative methods are mathematically complicated.
- The BESO method is sensitive to ER-selected value.
- MVV is an interesting alternative approach but requires more development.
- Metaheuristic approaches lack consistent development. There is a large variety of methods and implementations but very few of them have seen active development. Additionally, a large number of function evaluations are required in metaheuristic approaches. Nonetheless, metaheuristic approaches allow flexible objective functions that allow the combination of discrete and continuous design variables.
- Machine learning approaches do not scale well to three-dimensional design space. An important number of implementations requires large amounts of previously optimised cases to work. Additionally, very few approaches are “physics informed”, nonetheless they are very promising and will see important development in the years to come.
6.2. Additive Manufacture Processes
- Length scale is necessary to eliminate tiny (not manufacturable) features.
- Thermal gradients, residual stresses, and anisotropy need to be addressed when TO solutions are intended to be manufactured.
- Requirements for supporting structures must be met in the AM fabrication process.
- Adequate control in machine parameters must be met to ensure repeatability.
6.3. Cases of Study for TO Methods Applied to Satellite Structures
- There is little support from FEA available software for the implementation of customised TO algorithms.
- FEA’s available software for TO tools does not report implemented algorithms and/or parameters to the final user, hindering the possibility of proper comparisons between scholars.
- There is a need for support structures in metal AM processes such as SLM to print overhangs and bridges. This adds mass and requires post-processing to remove supports.
- Achieving the necessary surface finishes for satellite components can pose a challenge due to the roughness resulting from AM. Typically, extra finishing processes are needed.
- Lack of design standards for AM satellite components, especially for structural parts and mechanisms. Current international regulations have not been aimed at encompassing all the AM methods [343,345]. Moreover, in the absence of robust AM regulations, the oversight of international regulations within the aerospace field has received even less attention and the few standards that do exist for certain methods [529] (refs. [530,531,532,533,534] under development are focused on administrative or other non-pertinent issues that are not related to AM. Even though NASA has published some standards such as Laser Powder Bed Fusion methods [535,536] and general requirements [537].
- It is essential to recognise and certify novel AM alloys and methods for diverse satellite uses, as material characteristics may differ among various AM machines and methods.
6.4. Addressing Natural Frequency as Part of the TO Problem
6.5. Multi-Scale Approaches on Satellite TO
6.6. Multi-Physics Approaches to Satellite TO
6.7. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2PP | Two-Photon Polymerisation |
3DGP | 3D Gel Printing |
AM | Additive Manufacture |
ASTM | American Society for Testing and Materials |
BESO | Bi-Directional ESO |
BJ3DP | Binder Jetting 3D Printing |
BMA | Branched Multi-Point Approximation |
EBM | Electron Beam Melting |
ESO | Evolutionary Structural Optimisation |
CAD | Computer-Aided Design |
CISM | Centre for Mechanical Sciences |
CLF | Ceramic Laser Fusion |
CLIP | Continuous Liquid Interface Production |
CNC | Computerised Numerical Control |
CMG | Control Moment Gyroscope |
DED | Direct Energy Deposition |
DLP | Digital Light Processing |
DMD | Direct Metal Deposition |
FE | Finite Element |
FEA | Finite Element Analysis |
FEM | Finite Element Method |
FFF | Fused Filament Fabrication |
GAs | Genetic Algorithms |
GEO | GeoStationary Orbit |
HSS | High-Speed Sintering |
IGA | Iso-Geometric Analysis |
IJP | Ink Jet Printing |
LEO | Low Earth Orbit |
LOS | Line of Sight |
LSM | Level-Set Method |
MMA | Method of Moving Asymptotes |
MMC | Moving Morphable Components |
MMV | Moving Morphable Voids |
NASA | National Aeronautics and Space Administration |
PAM | Plasma Arc Additive Manufacturing |
PJ | Photopolymer Jetting |
PSO | Particle Swarm Optimisation |
RAMP | Rational Approximation of Material Properties |
RFP | Rapid Freeze Prototyping |
SIMP | Solid Isotropic Material with Penalty |
SLA | Stereolithography |
SLM | Selective Laser Melting |
SLS | Selective Laser Sintering |
SM | Subtractive Manufacture |
T3DP | Thermoplastic 3D Printing |
TO | Topology Optimisation |
WAAM | Wire and Arc Additive Manufacturing |
References
- Salazar, V.K. Emerging Trends in the Satellite Industry. Master’s Thesis, MIT, Cambridge, MA, USA, 2012. [Google Scholar]
- Gaudenzi, P.; Atek, S.; Cardini, V.; Eugeni, M.; Nisi, G.G.; Lampani, L.; Pasquali, M.; Pollice, L. Revisiting the configuration of small satellites structures in the framework of 3D Additive Manufacturing. Acta Astronaut. 2018, 146, 249–258. [Google Scholar] [CrossRef]
- Gasman, L. Additive aerospace considered as a business. In Additive Manufacturing for the Aerospace Industry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 327–340. [Google Scholar] [CrossRef]
- EOS GmbH. Certified for Universal Success: Additive Manufacturing of Satellite Components; EOS GmbH: Munich, Germany, 2018. [Google Scholar]
- Zhu, J.; Zhou, H.; Wang, C.; Zhou, L.; Yuan, S.; Zhang, W. A review of topology optimization for additive manufacturing: Status and challenges. Chin. J. Aeronaut. 2021, 34, 91–110. [Google Scholar] [CrossRef]
- Cappelletti, C.; Battistini, S.; Malphrus, B. CubeSat Handbook: From Mission Design to Operations; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Arora, R.K. Optimization: Algorithms and Applications; Chapman and Hall/CRC: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Rothwell, A. Optimization Methods in Structural Design; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Sigmund, O. Topology Optimization: Theory, Methods, and Applications; Engineering Online Library; Springer: Berlin/Heidelberg, Germany, 2003; pp. xiv, 370. [Google Scholar] [CrossRef]
- Christensen, P.W.; Klarbring, A. An Introduction to Structural Optimization; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Samareh, J.A. Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization. AIAA J. 2001, 39, 877–884. [Google Scholar] [CrossRef]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Zhu, L.; Li, N.; Childs, P. Light-weighting in aerospace component and system design. Propuls. Power Res. 2018, 7, 103–119. [Google Scholar] [CrossRef]
- Orme, M.E.; Gschweit, M.; Ferrari, M.; Vernon, R.; Madera, I.J.; Yancey, R.; Mouriaux, F. Additive Manufacturing of Lightweight, Optimized, Metallic Components Suitable for Space Flight. J. Spacecr. Rocket. 2017, 54, 1050–1059. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, W.; Quan, D.; Shi, G.; Tang, L.; Hou, Y.; Breitkopf, P.; Zhu, J.; Gao, T. From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap. Arch. Comput. Methods Eng. 2020, 27, 805–830. [Google Scholar] [CrossRef]
- Sigmund, O.; Maute, K. Topology optimization approaches. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [Google Scholar] [CrossRef]
- Wu, J.; Sigmund, O.; Groen, J.P. Topology optimization of multi-scale structures: A review. Struct. Multidiscip. Optim. 2021, 63, 1455–1480. [Google Scholar] [CrossRef]
- Kokare, S.; Oliveira, J.; Godina, R. Life cycle assessment of additive manufacturing processes: A review. J. Manuf. Syst. 2023, 68, 536–559. [Google Scholar] [CrossRef]
- Vlah, D.; Žavbi, R.; Vukašinović, N. Evaluation of topology optimization and generative design tools as support for conceptual design. In Proceedings of the Design Society: DESIGN Conference, Cavtat, Croatia, 18–21 May 2020; Volume 1, pp. 451–460. [Google Scholar] [CrossRef]
- Rozvany, G.I.N. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct. Multidiscip. Optim. 2001, 21, 90–108. [Google Scholar] [CrossRef]
- Saitou, K.; Izui, K.; Nishiwaki, S.; Papalambros, P. A Survey of Structural Optimization in Mechanical Product Development. J. Comput. Inf. Sci. Eng. 2005, 5, 214–226. [Google Scholar] [CrossRef]
- Deaton, J.D.; Grandhi, R.V. A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Struct. Multidiscip. Optim. 2013, 49, 1–38. [Google Scholar] [CrossRef]
- Michell, A.G.M. LVIII. The limits of economy of material in frame-structures. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1904, 8, 589–597. [Google Scholar] [CrossRef]
- Prager, W.; Rozvany, G. Optimization of structural geometry. In Dynamical Systems; Academic Press: Cambridge, MA, USA, 1977; pp. 265–293. [Google Scholar] [CrossRef]
- Rozvany, G. Structural Topology Optimization (STO); Springer: Vienna, Austria, 2014; Volume 549, pp. 1–14. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Kohn, R.V.; Strang, G. Optimal design and relaxation of variational problems, I. Commun. Pure Appl. Math. 1986, 39, 113–137. [Google Scholar] [CrossRef]
- Kohn, R.V.; Strang, G. Optimal design and relaxation of variational problems, II. Commun. Pure Appl. Math. 1986, 39, 139–182. [Google Scholar] [CrossRef]
- Kohn, R.V.; Strang, G. Optimal design and relaxation of variational problems, III. Commun. Pure Appl. Math. 1986, 39, 353–377. [Google Scholar] [CrossRef]
- Zhu, J.H.; Zhang, W.H.; Xia, L. Topology Optimization in Aircraft and Aerospace Structures Design. Arch. Comput. Methods Eng. 2015, 23, 595–622. [Google Scholar] [CrossRef]
- Rozvany, G.I.N. A critical review of established methods of structural topology optimization. Struct. Multidiscip. Optim. 2009, 37, 217–237. [Google Scholar] [CrossRef]
- Xia, L.; Xia, Q.; Huang, X.; Xie, Y.M. Bi-directional Evolutionary Structural Optimization on Advanced Structures and Materials: A Comprehensive Review. Arch. Comput. Methods Eng. 2018, 25, 437–478. [Google Scholar] [CrossRef]
- Bendsøe, M.P. Optimal shape design as a material distribution problem. Struct. Optim. 1989, 1, 193–202. [Google Scholar] [CrossRef]
- Svanberg, K. The method of moving asymptotes—A new method for structural optimization. Int. J. Numer. Methods Eng. 1987, 24, 359–373. [Google Scholar] [CrossRef]
- Bourdin, B. Filters in topology optimization. Int. J. Numer. Methods Eng. 2001, 50, 2143–2158. [Google Scholar] [CrossRef]
- Zhou, M.; Rozvany, G. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 1991, 89, 309–336. [Google Scholar] [CrossRef]
- Li, P.; Wu, Y.; Yvonnet, J. A SIMP-phase field topology optimization framework to maximize quasi-brittle fracture resistance of 2D and 3D composites. Theor. Appl. Fract. Mech. 2021, 114, 102919. [Google Scholar] [CrossRef]
- Zuo, W.; Saitou, K. Multi-material topology optimization using ordered SIMP interpolation. Struct. Multidiscip. Optim. 2017, 55, 477–491. [Google Scholar] [CrossRef]
- Huang, X.; Li, W. A new multi-material topology optimization algorithm and selection of candidate materials. Comput. Methods Appl. Mech. Eng. 2021, 386, 114114. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Zou, B.; Li, Q.; Ma, Y. Stress constrained multi-material topology optimization with the ordered SIMP method. Comput. Methods Appl. Mech. Eng. 2021, 373, 113453. [Google Scholar] [CrossRef]
- da Silveira, O.A.A.; Palma, L.F. Some considerations on multi-material topology optimization using ordered SIMP. Struct. Multidiscip. Optim. 2022, 65, 261. [Google Scholar] [CrossRef]
- Yi, B.; Yoon, G.H.; Zheng, R.; Liu, L.; Li, D.; Peng, X. A unified material interpolation for topology optimization of multi-materials. Comput. Struct. 2023, 282, 107041. [Google Scholar] [CrossRef]
- Chandrasekhar, A.; Suresh, K. Multi-Material Topology Optimization Using Neural Networks. CAD Comput. Aided Des. 2021, 136, 103017. [Google Scholar] [CrossRef]
- Agrawal, G.; Gupta, A.; Chowdhury, R.; Chakrabarti, A. Robust topology optimization of negative Poisson’s ratio metamaterials under material uncertainty. Finite Elem. Anal. Des. 2022, 198, 103649. [Google Scholar] [CrossRef]
- Duan, Z.; Liu, Y.; Fan, J.; Long, K.; Xu, B.; Zhu, J.; Yan, J. Concurrent multi-material and multi-scale design optimization of fiber-reinforced composite material and structures for minimum structural compliance. Compos. Struct. 2023, 311, 116796. [Google Scholar] [CrossRef]
- Bohrer, R.; Pamwar, M.; Sangha, B.; Kim, I.Y. Modified Multi-Material Topology Optimization Considering Isotropic and Anisotropic Materials Mixture; SAE Technical Papers: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Jantos, D.R.; Hackl, K.; Junker, P. Topology optimization with anisotropic materials, including a filter to smooth fiber pathways. Struct. Multidiscip. Optim. 2020, 61, 2135–2154. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, D.; Wang, R.; Zhao, H. Dynamic Topology Optimization of Long-Span Continuum Structures. Shock Vib. 2021, 2021, 4421298. [Google Scholar] [CrossRef]
- Resmy, V.; Rajasekaran, C. Stiffness maximization of concrete structures using topology optimization in static and dynamic problems. J. Struct. Eng. 2021, 48, 51–60. [Google Scholar]
- Zhao, T.; Zhang, Y.; Ou, Y.; Ding, W.; Cheng, F. Fail-safe topology optimization considering fatigue. Struct. Multidiscip. Optim. 2023, 66, 132. [Google Scholar] [CrossRef]
- Burri, S.; Legay, A. Static reinforcement and vibration reduction of structures using topology optimization. Mech. Ind. 2023, 24, 2023003. [Google Scholar] [CrossRef]
- Chen, Z.; Long, K.; Wen, P.; Nouman, S. Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage. Adv. Eng. Softw. 2020, 150, 102924. [Google Scholar] [CrossRef]
- Huang, J.; Xu, S.; Ma, Y.; Liu, J. A topology optimization method for hyperelastic porous structures subject to large deformation. Int. J. Mech. Mater. Des. 2022, 18, 289–308. [Google Scholar] [CrossRef]
- McConaha, M.; Venugopal, V.; Anand, S. Design Tool for Topology Optimization of Self Supporting Variable Density Lattice Structures for Additive Manufacturing. J. Manuf. Sci. Eng. Trans. ASME 2021, 143, 4049507. [Google Scholar] [CrossRef]
- Kazemi, H.S.; Tavakkoli, S.M. A new algorithm for design of support structures in additive manufacturing by using topology optimization. Struct. Eng. Mech. 2023, 86, 93–107. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, Q.; Luo, Y.; Liu, S. Concurrent topology and fiber orientation optimization method for fiber-reinforced composites based on composite additive manufacturing. Comput. Methods Appl. Mech. Eng. 2022, 395, 114962. [Google Scholar] [CrossRef]
- Zhang, K.; Cheng, G. Three-dimensional high resolution topology optimization considering additive manufacturing constraints. Addit. Manuf. 2020, 35, 101224. [Google Scholar] [CrossRef]
- Costa, G.; Montemurro, M.; Pailhès, J. Minimum length scale control in a NURBS-based SIMP method. Comput. Methods Appl. Mech. Eng. 2019, 354, 963–989. [Google Scholar] [CrossRef]
- Ntintakis, I.; Stavroulakis, G.E. Infill Microstructures for Additive Manufacturing. Appl. Sci. 2022, 12, 7386. [Google Scholar] [CrossRef]
- Lee, H.Y.; Zhu, M.; Guest, J.K. Topology optimization considering multi-axis machining constraints using projection methods. Comput. Methods Appl. Mech. Eng. 2022, 390, 114464. [Google Scholar] [CrossRef]
- Xu, B.; Han, Y.S.; Zhao, L.; Xie, Y.M. Topology optimization of continuum structures for natural frequencies considering casting constraints. Eng. Optim. 2019, 51, 941–960. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Huang, Y. An improved multi-objective topology optimization model based on SIMP method for continuum structures including self-weight. Struct. Multidiscip. Optim. 2021, 63, 211–230. [Google Scholar] [CrossRef]
- Ramamoorthy, R. Topology Optimization of Vehicle Components for Nonlinear Load Cases. In Lecture Notes in Mechanical Engineering; Springer Nature: Singapore, 2023; pp. 309–318. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, Y.; Gu, J.; Jiao, Q.; Wang, F.; Guo, Z.; Zhang, H.; Wang, J.; Mi, C.; Zheng, H. Topology optimization of unsymmetrical complex plate and shell structures bearing multicondition overload. J. Mech. Sci. Technol. 2021, 35, 3497–3506. [Google Scholar] [CrossRef]
- Kale, V.; Aage, N.; Secanell, M. Stress constrained topology optimization of energy storage flywheels using a specific energy formulation. J. Energy Storage 2023, 61, 106733. [Google Scholar] [CrossRef]
- Li, R.; Liu, S. Topology Optimization Method of Structures with Surface Corrosion Considered. Acta Mech. Solida Sin. 2023, 36, 241–253. [Google Scholar] [CrossRef]
- Gan, N.; Wang, Q. Topology optimization design of porous infill structure with thermo-mechanical buckling criteria. Int. J. Mech. Mater. Des. 2022, 18, 267–288. [Google Scholar] [CrossRef]
- Gan, N.; Wang, Q. Topology optimization design for buckling analysis related to the size effect. Math. Mech. Solids 2022, 27, 1301–1318. [Google Scholar] [CrossRef]
- Zhuang, C.; Xiong, Z.; DIng, H. Temperature-constrained topology optimization of nonlinear heat conduction problems. J. Comput. Des. Eng. 2021, 8, 1059–1081. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, H.; Wang, F.; Zhang, T.; Li, X. Topology optimization of non-Fourier heat conduction problems considering global thermal dissipation energy minimization. Struct. Multidiscip. Optim. 2021, 64, 1385–1399. [Google Scholar] [CrossRef]
- Zhuang, X.; Thai, T.Q.; Rabczuk, T. Topology optimization of nonlinear flexoelectric structures. J. Mech. Phys. Solids 2023, 171, 105117. [Google Scholar] [CrossRef]
- Hou, J.; Wei, C.; Wang, J.; Gu, X.; Zhu, J.; Zhang, W. Topology optimization for energy dissipation structures based on shape memory alloys. Struct. Multidiscip. Optim. 2023, 66, 55. [Google Scholar] [CrossRef]
- Gao, J.; Gao, L.; Xiao, M. Density-Based ITO Method. Eng. Appl. Comput. Methods 2022, 7, 17–49. [Google Scholar] [CrossRef]
- Li, B.; Duan, Y.; Yang, H.; Lou, Y.; Müller, W.H. Isogeometric topology optimization of strain gradient materials. Comput. Methods Appl. Mech. Eng. 2022, 397, 115135. [Google Scholar] [CrossRef]
- Ullah, Z.; Ullah, B.; Khan, W.; ul Islam, S. Proportional topology optimisation with maximum entropy-based meshless method for minimum compliance and stress constrained problems. Eng. Comput. 2022, 38, 5541–5561. [Google Scholar] [CrossRef]
- Eschenauer, H.; Kobelev, V.; Schumacher, A. Bubble method for topology and shape optimization of structures. Struct. Optim. 1994, 8, 42–51. [Google Scholar] [CrossRef]
- Amstutz, S. Connections between topological sensitivity analysis and material interpolation schemes in topology optimization. Struct. Multidiscip. Optim. 2011, 43, 755–765. [Google Scholar] [CrossRef]
- Sokołowski, J.; Zochowski, A. On the Topological Derivative in Shape Optimization. Siam J. Control Optim. 1999, 37, 1251–1272. [Google Scholar] [CrossRef]
- Novotny, A.; Feijóo, R.; Taroco, E.; Padra, C. Topological sensitivity analysis. Comput. Methods Appl. Mech. Eng. 2003, 192, 803–829. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, K.; Wang, M.Y. A new approach for simultaneous shape and topology optimization based on dynamic implicit surface function. Control Cybern. 2005, 34, 255–282. [Google Scholar]
- Céa, J.; Garreau, S.; Guillaume, P.; Masmoudi, M. The shape and topological optimization connection. Comput. Methods Appl. Mech. Eng. 2000, 188, 713–726. [Google Scholar] [CrossRef]
- Burger, M.; Hackl, B.; Wolfgang, R. Incorporating Topological Derivatives into Level Set Methods. J. Comput. Phys. 2004, 194, 344–362. [Google Scholar] [CrossRef]
- He, L.; Kao, C.Y.; Osher, S. Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 2007, 225, 891–909. [Google Scholar] [CrossRef]
- Sokolowski, J.; Zochowski, A. Topological Derivatives of Shape Functionals for Elasticity Systems. Mech. Struct. Mach. 2007, 29, 331–349. [Google Scholar] [CrossRef]
- Osher, S.J.; Sethian, J.A. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. Final report. J. Comput. Phys. 1987, 79, 12–49. [Google Scholar] [CrossRef]
- Sethian, J.A. Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, by J.A. Sethian. In Robotica; Cambridge University Press: Cambridge, UK, 2000; Volume 18, pp. 89–92. [Google Scholar] [CrossRef]
- Sethian, J.; Wiegmann, A. Structural Boundary Design via Level Set and Immersed Interface Methods. J. Comput. Phys. 2000, 163, 489–528. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 2003, 192, 227–246. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Guo, D. Structural shape and topology optimization in a level-set-based framework of region representation. Struct. Multidiscip. Optim. 2004, 27, 1–19. [Google Scholar] [CrossRef]
- Allaire, G.; Jouve, F.; Toader, A.M. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 2004, 194, 363–393. [Google Scholar] [CrossRef]
- Allaire, G.; Jouve, F.; Toader, A.M. A level-set method for shape optimization. Comptes Rendus Math. 2002, 334, 1125–1130. [Google Scholar] [CrossRef]
- van Dijk, N.; Langelaar, M.; Keulen, F. Explicit level-set-based topology optimization using an exact Heaviside function and consistent sensitivity analysis. Int. J. Numer. Methods Eng. 2012, 91, 67–97. [Google Scholar] [CrossRef]
- van Dijk, N.; Maute, K.; Langelaar, M.; Keulen, F. Level-set methods for structural topology optimization: A review. Struct. Multidiscip. Optim. 2013, 48, 437–472. [Google Scholar] [CrossRef]
- Gibou, F.; Fedkiw, R.; Osher, S. A review of level-set methods and some recent applications. J. Comput. Phys. 2018, 353, 82–109. [Google Scholar] [CrossRef]
- Xia, Q.; Shi, T. Generalized hole nucleation through BESO for the level set based topology optimization of multi-material structures. Comput. Methods Appl. Mech. Eng. 2019, 355, 216–233. [Google Scholar] [CrossRef]
- Noda, M.; Noguchi, Y.; Yamada, T. Extended level set method: A multiphase representation with perfect symmetric property, and its application to multi-material topology optimization. Comput. Methods Appl. Mech. Eng. 2022, 393, 114742. [Google Scholar] [CrossRef]
- Tan, Y.; Zhu, S. A discontinuous Galerkin level set method using distributed shape gradient and topological derivatives for multi-material structural topology optimization. Struct. Multidiscip. Optim. 2023, 66, 170. [Google Scholar] [CrossRef]
- Sheng, Z.; Hu, Q.; Xie, Y. Concurrent topology optimization of multiple components sharing partial design domain based on distance regularized parameterized level set method. Int. J. Numer. Methods Eng. 2023, 124, 3352–3386. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, Z.; Sha, W.; Zhang, Y.; Xiao, M.; Gao, L.; Liao, W.H. Level set-based topological design of multiphase micro-architectured materials using alternating active-phase method. Mater. Des. 2023, 225, 111448. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Li, Z.; Hu, J.; Han, B. Non-probabilistic reliability-based topology optimization (NRBTO) scheme for continuum structures based on the strength constraint parameterized level set method and interval mathematics. Thin-Walled Struct. 2023, 188, 110856. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Lv, T. A level set driven concurrent reliability-based topology optimization (LS-CRBTO) strategy considering hybrid uncertainty inputs and damage defects updating. Comput. Methods Appl. Mech. Eng. 2023, 405, 115872. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Ni, B.; Gu, K. Non-probabilistic Reliability-based Topology Optimization (NRBTO) Scheme for Continuum Structures Based on the parameterized Level-Set method and Interval Mathematics. Comput. Methods Appl. Mech. Eng. 2021, 373, 113477. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Luo, Z. A feature-driven robust topology optimization strategy considering movable non-design domain and complex uncertainty. Comput. Methods Appl. Mech. Eng. 2022, 401, 115658. [Google Scholar] [CrossRef]
- Pozzi, M.; Bonaccorsi, G.; Kim, H.A.; Braghin, F. Robust structural optimization in presence of manufacturing uncertainties through a boundary-perturbation method. Struct. Multidiscip. Optim. 2023, 66, 120. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Li, B.; Xie, M.; Hong, J.; Zheng, S. Topology optimization of high frequency vibration problems using the EFEM-based approach. Thin-Walled Struct. 2021, 160, 107324. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Gu, K. An interval-oriented dynamic robust topology optimization (DRTO) approach for continuum structures based on the parametric Level-Set method (PLSM) and the equivalent static loads method (ESLM). Struct. Multidiscip. Optim. 2022, 65, 150. [Google Scholar] [CrossRef]
- Townsend, S.; Kim, H.A. A level set topology optimization method for the buckling of shell structures. Struct. Multidiscip. Optim. 2019, 60, 1783–1800. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, M. Topology optimization under design-dependent loads with the parameterized level-set method based on radial-basis functions. Comput. Methods Appl. Mech. Eng. 2020, 369, 113235. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Li, Z.; Du, J. On the global optimum for heat conduction. Int. J. Heat Mass Transf. 2022, 198, 123381. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Y.; Ma, Y.; Qureshi, A.; Ahmad, R. A Topology Optimization Method for Hybrid Subtractive—Additive Remanufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 2020, 7, 939–953. [Google Scholar] [CrossRef]
- Barrera, J.L.; Geiss, M.J.; Maute, K. Minimum feature size control in level set topology optimization via density fields. Struct. Multidiscip. Optim. 2022, 65, 94. [Google Scholar] [CrossRef]
- Miki, T. Self-support topology optimization considering distortion for metal additive manufacturing. Comput. Methods Appl. Mech. Eng. 2023, 404, 115821. [Google Scholar] [CrossRef]
- Yamada, T.; Noguchi, Y. Topology optimization with a closed cavity exclusion constraint for additive manufacturing based on the fictitious physical model approach. Addit. Manuf. 2022, 52, 102630. [Google Scholar] [CrossRef]
- Morris, N.; Butscher, A.; Iorio, F. A subtractive manufacturing constraint for level set topology optimization. Struct. Multidiscip. Optim. 2020, 61, 1573–1588. [Google Scholar] [CrossRef]
- Lin, H.; Liu, H.; Wei, P. A parallel parameterized level set topology optimization framework for large-scale structures with unstructured meshes. Comput. Methods Appl. Mech. Eng. 2022, 397, 115112. [Google Scholar] [CrossRef]
- Liu, H.; Wei, P.; Wang, M.Y. CPU parallel-based adaptive parameterized level set method for large-scale structural topology optimization. Struct. Multidiscip. Optim. 2022, 65, 30. [Google Scholar] [CrossRef]
- Li, H.; Yamada, T.; Jolivet, P.; Furuta, K.; Kondoh, T.; Izui, K.; Nishiwaki, S. Full-scale 3D structural topology optimization using adaptive mesh refinement based on the level-set method. Finite Elem. Anal. Des. 2021, 194, 103561. [Google Scholar] [CrossRef]
- Li, H.; Yu, M.; Jolivet, P.; Alexandersen, J.; Kondoh, T.; Hu, T.; Furuta, K.; Izui, K.; Nishiwaki, S. Reaction–diffusion equation driven topology optimization of high-resolution and feature-rich structures using unstructured meshes. Adv. Eng. Softw. 2023, 180, 103457. [Google Scholar] [CrossRef]
- Gao, J.; Xiao, M.; Zhou, M.; Gao, L. Isogeometric topology and shape optimization for composite structures using level-sets and adaptive Gauss quadrature. Compos. Struct. 2022, 285, 115263. [Google Scholar] [CrossRef]
- Jahangiry, H.A.; Gholhaki, M.; Naderpour, H.; Tavakkoli, S.M. Isogeometric Level Set-Based Topology Optimization for Geometrically Nonlinear Plane Stress Problems. CAD Comput. Aided Des. 2022, 151, 103358. [Google Scholar] [CrossRef]
- Aminzadeh, M.; Tavakkoli, S.M. A parameter space approach for isogeometrical level set topology optimization. Int. J. Numer. Methods Eng. 2022, 123, 3485–3506. [Google Scholar] [CrossRef]
- Wei, P.; Wang, W.; Yang, Y.; Wang, M.Y. Level set band method: A combination of density-based and level set methods for the topology optimization of continuums. Front. Mech. Eng. 2020, 15, 390–405. [Google Scholar] [CrossRef]
- Chen, L.Q. Phase-Field Models for Microstructure Evolution. Annu. Rev. Mater. Res. 2002, 32, 113–140. [Google Scholar] [CrossRef]
- McFadden, G. Phase-field models of solidification. In Recent Advances in Numerical Methods for Partial Differential Equations and Applications; American Mathematical Society: Providence, RI, USA, 2002; Volume 306. [Google Scholar] [CrossRef]
- Bourdin, B.; Chambolle, A. Design-dependent loads in topology optimization. ESAIM Control Optim. Calc. Var. 2003, 9, 19–48. [Google Scholar] [CrossRef]
- Bourdin, B.; Chambolle, A. The Phase-Field Method in Optimal Design. In Proceedings of the IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials; Bendsøe, M.P., Olhoff, N., Sigmund, O., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 207–215. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, S. Phase Field: A Variational Method for Structural Topology Optimization. Cmes-Comput. Model. Eng. Sci. 2004, 6, 547–566. [Google Scholar] [CrossRef]
- Blank, L.; Garcke, H.; Sarbu, L.; Srisupattarawanit, T.; Styles, V.; Voigt, A. Phase-field Approaches to Structural Topology Optimization. Constrained Optim. Optim. Control Partial. Differ. Equ. 2012, 160, 245–256. [Google Scholar] [CrossRef]
- Marino, M.; Auricchio, F.; Reali, A.; Rocca, E.; Stefanelli, U. Mixed variational formulations for structural topology optimization based on the phase-field approach. Struct. Multidiscip. Optim. 2021, 64, 2627–2652. [Google Scholar] [CrossRef]
- Auricchio, F.; Bonetti, E.; Carraturo, M.; Hömberg, D.; Reali, A.; Rocca, E. A phase-field-based graded-material topology optimization with stress constraint. Math. Model. Methods Appl. Sci. 2020, 30, 1461–1483. [Google Scholar] [CrossRef]
- Almi, S.; Stefanelli, U. Topology optimization for incremental elastoplasticity. SIAM J. Control. Optim. 2021, 59, 339–364. [Google Scholar] [CrossRef]
- Almi, S.; Stefanelli, U. Topology optimization for quasistatic elastoplasticity. Esaim: COCV 2022, 28, 47. [Google Scholar] [CrossRef]
- Xie, Y.; Steven, G. A simple evolutionary procedure for structural optimization. Comput. Struct. 1993, 49, 885–896. [Google Scholar] [CrossRef]
- Xie, Y.M.; Steven, G.P. Evolutionary Structural Optimization; Springer: London, UK, 1997. [Google Scholar] [CrossRef]
- Querin, O.; Steven, G.; Xie, Y. Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng. Comput. 1998, 15, 1031–1048. [Google Scholar] [CrossRef]
- Querin, O.; Young, V.; Steven, G.; Xie, Y. Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput. Methods Appl. Mech. Eng. 2000, 189, 559–573. [Google Scholar] [CrossRef]
- Yang, X.Y.; Xie, Y.M.; Steven, G.P.; Querin, O.M. Bidirectional Evolutionary Method for Stiffness Optimization. AIAA J. 1999, 37, 1483–1488. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.M.; Burry, M.C. A New Algorithm for Bi-Directional Evolutionary Structural Optimization. JSME Int. J. Ser. C 2006, 49, 1091–1099. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 2007, 43, 1039–1049. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.M. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput. Mech. 2008, 43, 393–401. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.M. Evolutionary Topology Optimization of Continuum Structures; John Wiley & Sons, Ltd.: Chichester, UK, 2010. [Google Scholar] [CrossRef]
- Xia, Q.; Shi, T.; Xia, L. Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO. Comput. Methods Appl. Mech. Eng. 2019, 343, 438–452. [Google Scholar] [CrossRef]
- Gao, J.; Song, B.; Mao, Z. Combination of the phase field method and BESO method for topology optimization. Struct. Multidiscip. Optim. 2020, 61, 225–237. [Google Scholar] [CrossRef]
- Shobeiri, V. Bidirectional evolutionary structural optimization for nonlinear structures under dynamic loads. Int. J. Numer. Methods Eng. 2020, 121, 888–903. [Google Scholar] [CrossRef]
- Habashneh, M.; Rad, M.M.; Fischer, S. Bi-directional Evolutionary, Reliability-based, Geometrically Nonlinear, Elasto-Plastic Topology Optimization, of 3D Structures. Acta Polytech. Hung. 2023, 20, 169–186. [Google Scholar] [CrossRef]
- Xu, T.; Lin, X.; Xie, Y.M. Bi-directional evolutionary structural optimization with buckling constraints. Struct. Multidiscip. Optim. 2023, 66, 67. [Google Scholar] [CrossRef]
- Nabaki, K.; Shen, J.; Huang, X. Evolutionary topology optimization of continuum structures considering fatigue failure. Mater. Des. 2019, 166, 107586. [Google Scholar] [CrossRef]
- Bahramian, N.; Khalkhali, A. Crashworthiness topology optimization of thin-walled square tubes, using modified Bidirectional Evolutionary Structural Optimization approach. Thin-Walled Struct. 2020, 147, 106524. [Google Scholar] [CrossRef]
- Teimouri, M.; Asgari, M. Multi-objective BESO topology optimization for stiffness and frequency of continuum structures. Struct. Eng. Mech. 2019, 72, 181–190. [Google Scholar] [CrossRef]
- Brecher, C.; Zhao, G.; Fey, M. Topology optimization for vibrating structures with the BESO method. Vibroeng. Procedia 2019, 23, 1–6. [Google Scholar] [CrossRef]
- Han, Y.S.; Xu, B.; Zhao, L.; Xie, Y.M. Topology optimization of continuum structures under hybrid additive-subtractive manufacturing constraints. Struct. Multidiscip. Optim. 2019, 60, 2571–2595. [Google Scholar] [CrossRef]
- Xiong, Y.; Yao, S.; Zhao, Z.L.; Xie, Y.M. A new approach to eliminating enclosed voids in topology optimization for additive manufacturing. Addit. Manuf. 2020, 32, 101006. [Google Scholar] [CrossRef]
- Cao, S.; Wang, H.; Lu, X.; Tong, J.; Sheng, Z. Topology optimization considering porosity defects in metal additive manufacturing. Appl. Sci. 2021, 11, 5578. [Google Scholar] [CrossRef]
- Xu, B.; Han, Y.; Zhao, L.; Xie, Y.M. Topological optimization of continuum structures for additive manufacturing considering thin feature and support structure constraints. Eng. Optim. 2021, 53, 2122–2143. [Google Scholar] [CrossRef]
- Qiu, W.; Jin, S.; Xia, L.; Shi, T. Length scale control schemes for bi-directional evolutionary structural optimization method. Int. J. Numer. Methods Eng. 2022, 123, 755–773. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Weng, Z.; Jiang, X.; Wang, R.; Ren, H.; Zheng, F. Space Node Topology Optimization Design Considering Anisotropy of Additive Manufacturing. Appl. Sci. 2022, 12, 9396. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, F.; Deng, X.; Wu, P.; Zeng, H.; Liu, M. Isogeometric Bi-Directional Evolutionary Structural Optimization. IEEE Access 2019, 7, 91134–91145. [Google Scholar] [CrossRef]
- Gonçalves, D.; Lopes, J.; Campilho, R.; Belinha, J. An evolutionary structural optimization algorithm for the analysis of light automobile parts using a meshless technique. Eng. Comput. 2022, 39, 2081–2107. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhao, Z.L.; Lu, H.; Shen, W.; Xie, Y.M. Parallel BESO framework for solving high-resolution topology optimisation problems. Adv. Eng. Softw. 2023, 176, 103389. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, W.; Zhong, W. Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework. J. Appl. Mech. 2014, 81, 081009. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Zhu, X.; Zhou, J.; Xue, D.; Lei, X.; Guo, X. Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach. Comput. Methods Appl. Mech. Eng. 2017, 322, 590–614. [Google Scholar] [CrossRef]
- Xue, R.Y.; Du, Z.L.; Guo, X. Topology optimization of hyperelastic structures via moving morphable void (mmv) approach. Jisuan Lixue Xuebao/Chin. J. Comput. Mech. 2019, 36, 441–447. [Google Scholar] [CrossRef]
- Guo, G.; Zhao, Y.; Zuo, W. Explicit and efficient topology optimization for three-dimensional structures considering geometrical nonlinearity. Adv. Eng. Softw. 2022, 173, 103238. [Google Scholar] [CrossRef]
- Fang, L.; Wang, X.; Zhou, H. Topology optimization of thermoelastic structures using MMV method. Appl. Math. Model. 2022, 103, 604–618. [Google Scholar] [CrossRef]
- Fang, L.; Meng, Z.; Zhou, H.; Wang, X.; Guo, X. Topology optimization of piezoelectric actuators using moving morphable void method. Struct. Multidiscip. Optim. 2023, 66, 32. [Google Scholar] [CrossRef]
- Zhang, W.; Li, D.; Kang, P.; Guo, X.; Youn, S.K. Explicit topology optimization using IGA-based moving morphable void (MMV) approach. Comput. Methods Appl. Mech. Eng. 2020, 360, 112685. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, S.; Liu, C.; Li, D.; Kang, P.; Youn, S.K.; Guo, X. Stress-related topology optimization of shell structures using IGA/TSA-based Moving Morphable Void (MMV) approach. Comput. Methods Appl. Mech. Eng. 2020, 366, 113036. [Google Scholar] [CrossRef]
- Du, B.; Zhao, Y.; Yao, W.; Wang, X.; Huo, S. Multiresolution isogeometric topology optimisation using moving morphable voids. CMES-Comput. Model. Eng. Sci. 2020, 122, 1119–1140. [Google Scholar] [CrossRef]
- Gai, Y.; Zhu, X.; Zhang, Y.J.; Hou, W.; Hu, P. Correction to: Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves. Struct. Multidiscip. Optim. 2020, 61, 2217–2218. [Google Scholar] [CrossRef]
- Munk, D.J.; Vio, G.A.; Steven, G.P. Topology and shape optimization methods using evolutionary algorithms: A review. Struct. Multidiscip. Optim. 2015, 52, 613–631. [Google Scholar] [CrossRef]
- Goldberg, D.; Samtani, M.P. Engineering optimization via genetic algorithm, in will. In Electronic Computation, Proceedings of the 9th Conference on Electronic Computation, Birmingham, UK, 23–26 February 1986; Will, K.M., Ed.; American Society of Civil Engineers: New York, NY, USA, 1986. [Google Scholar]
- Hajela, P. Stochastic search in structural optimization: Genetic algorithms and simulated annealing. In Structural Optimization: Status And Promise; Kamat, M.P., Ed.; AIAA: San Diego, CA, USA, 1993; pp. 611–635. [Google Scholar]
- Jenkins, W. On the application of natural algorithms to structural design optimization. Eng. Struct. 1997, 19, 302–308. [Google Scholar] [CrossRef]
- Kane.; Schoenauerg, M. Topological Optimum Design using Genetic. Control Cybern. 1996, 25, 1059–1088. [Google Scholar]
- Jakiela, M.J.; Chapman, C.; Duda, J.; Adewuya, A.; Saitou, K. Continuum structural topology design with genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 339–356. [Google Scholar] [CrossRef]
- Ryoo, J.; Hajela, P. Handling variable string lengths in GA-based structural topology optimization. Struct. Multidiscip. Optim. 2004, 26, 318–325. [Google Scholar] [CrossRef]
- Wang, S.; Tai, K. Structural topology design optimization using Genetic Algorithms with a bit-array representation. Comput. Methods Appl. Mech. Eng. 2005, 194, 3749–3770. [Google Scholar] [CrossRef]
- Chapman, C.D.; Saitou, K.; Jakiela, M.J. Genetic Algorithms As an Approach to Configuration and Topology Design. In Proceedings of the ASME 1993 Design Technical Conferences, Albuquerque, NM, USA, 19–22 September 1993; pp. 485–498. [Google Scholar]
- Chapman, C.D.; Jakiela, M.J. Genetic algorithm-based structural topology design with compliance and topology simplification considerations. J. Mech. Des. 1996, 118, 89–98. [Google Scholar] [CrossRef]
- Fanjoy, D.W.; Crossley, W.A. Topology Design of Planar Cross-Sections with a Genetic Algorithm: Part 1–Overcoming the Obstacles. Eng. Optim. 2002, 34, 1–22. [Google Scholar] [CrossRef]
- Fanjoy, D.W.; Crossley, W.A. Topology Design of Planar Cross-Sections with a Genetic Algorithm: Part 2–Bending, Torsion and Combined Loading Applications. Eng. Optim. 2002, 34, 49–64. [Google Scholar] [CrossRef]
- Wang, S.; Tai, K.; Wang, M. An enhanced genetic algorithm for structural topology optimization. Int. J. Numer. Methods Eng. 2006, 65, 18–44. [Google Scholar] [CrossRef]
- Li, Q.; Liu, D.; Fang, J.; Tam, C. Multi-level optimal design of buildings with active control under winds using genetic algorithms. J. Wind. Eng. Ind. Aerodyn. 2000, 86, 65–86. [Google Scholar] [CrossRef]
- Li, Q.S.; Liu, D.K.; Leung, A.Y.T.; Zhang, N.; Luo, Q.Z. A multilevel genetic algorithm for the optimum design of structural control systems. Int. J. Numer. Methods Eng. 2002, 55, 817–834. [Google Scholar] [CrossRef]
- Li, Q.; Liu, D.; Tang, J.; Zhang, N.; Tam, C. Combinatorial optimal design of number and positions of actuators in actively controlled structures using genetic algorithms. J. Sound Vib. 2004, 270, 611–624. [Google Scholar] [CrossRef]
- Liu, D.; Yang, Y.; Li, Q. Optimum positioning of actuators in tall buildings using genetic algorithm. Comput. Struct. 2003, 81, 2823–2827. [Google Scholar] [CrossRef]
- Balamurugan, R.; Ramakrishnan, C.; Singh, N. Performance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topology optimization. Appl. Soft Comput. 2008, 8, 1607–1624. [Google Scholar] [CrossRef]
- Madeira, J.F.A.; Pina, H.; Rodrigues, H.C. GA topology optimization using random keys for tree encoding of structures. Struct. Multidiscip. Optim. 2009, 40, 227–240. [Google Scholar] [CrossRef]
- Guest, J.; Genut, L.C.S. Reducing dimensionality in topology optimization using adaptive design variable fields. Int. J. Numer. Methods Eng. 2010, 81, 1019–1045. [Google Scholar] [CrossRef]
- Bureerat, S.; Limtragool, J. Performance enhancement of evolutionary search for structural topology optimisation. Finite Elem. Anal. Des. 2006, 42, 547–566. [Google Scholar] [CrossRef]
- Luh, G.C.; Chueh, C.H. Multi-modal topological optimization of structure using immune algorithm. Comput. Methods Appl. Mech. Eng. 2004, 193, 4035–4055. [Google Scholar] [CrossRef]
- Wu, C.Y.; Ku, C.C. Stress-enhanced clonal selection algorithm for structural topology optimization. Int. J. Numer. Methods Eng. 2012, 89, 957–974. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, L.; Hao, K. Bio-Inspired Optimization Algorithms. In Proceedings of the Studies in Systems, Decision and Control; 2018. [Google Scholar] [CrossRef]
- Kaveh, A.; Hassani, B.; Shojaee, S.; Tavakkoli, S. Structural topology optimization using ant colony methodology. Eng. Struct. 2008, 30, 2559–2565. [Google Scholar] [CrossRef]
- Luh, G.C.; Lin, C.Y. Structural topology optimization using ant colony optimization algorithm. Appl. Soft Comput. 2009, 9, 1343–1353. [Google Scholar] [CrossRef]
- Wu, C.Y.; Zhang, C.B.; Wang, C.J. Topology optimization of structures using ant colony optimization. In Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, Shanghai, China, 12–14 June 2009; pp. 601–608. [Google Scholar] [CrossRef]
- Shobeiri, V. The optimal design of structures using ACO and EFG. Eng. Comput. 2016, 32, 645–653. [Google Scholar] [CrossRef]
- Luh, G.C.; Lin, C.Y.; Lin, Y.S. A binary particle swarm optimization for continuum structural topology optimization. Appl. Soft Comput. 2011, 11, 2833–2844. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Y. Particle Swarm Optimization (PSO) Based Topology Optimization of Part Design with Fuzzy Parameter Tuning. Comput.-Aided Des. Appl. 2013, 11, 62–68. [Google Scholar] [CrossRef]
- Di Cesare, N.; Domaszewski, M. A new hybrid topology optimization method based on I-PR-PSO and ESO. Application to continuum structural mechanics. Comput. Struct. 2019, 212, 311–326. [Google Scholar] [CrossRef]
- Shim, P.Y.; Manoochehri, S. Generating optimal configurations in structural design using simulated annealing. Int. J. Numer. Methods Eng. 1997, 40, 1053–1069. [Google Scholar] [CrossRef]
- Bureerat, S.; Limtragool, J. Structural topology optimisation using simulated annealing with multiresolution design variables. Finite Elem. Anal. Des. 2008, 44, 738–747. [Google Scholar] [CrossRef]
- Najafabadi, H.R.; Goto, T.G.; Martins, T.C.; Barari, A.; Tsuzuki, M.S.G. Multi-objective Topology Optimization Using Simulated Annealing Method. In Proceedings of the 19th International Conference on Geometry and Graphics (ICGG 2020), São Paulo, Brazil, 9–13 August 2020; Springer: Cham, Switzerland, 2021; pp. 343–353. [Google Scholar]
- Goto, T.; Najafabadi, H.R.; Falheiro, M.; Martins, T.C.; Barari, A.; Tsuzuki, M.S. Topological Optimization and Simulated Annealing. IFAC-PapersOnLine 2021, 54, 205–210. [Google Scholar] [CrossRef]
- Lee, K.S.; Geem, Z.W. A new structural optimization method based on the harmony search algorithm. Comput. Struct. 2004, 82, 781–798. [Google Scholar] [CrossRef]
- Lee, S.M.; Han, S.Y. Topology optimization scheme for dynamic stiffness problems using harmony search method. Int. J. Precis. Eng. Manuf. 2016, 17, 1187–1194. [Google Scholar] [CrossRef]
- Lee, S.M.; Han, S.Y. Topology optimization based on the harmony search method. J. Mech. Sci. Technol. 2017, 31, 2875–2882. [Google Scholar] [CrossRef]
- Lee, D.; Shon, S.; Lee, S.; Ha, J. Size and Topology Optimization of Truss Structures Using Quantum-Based HS Algorithm. Buildings 2023, 13, 1436. [Google Scholar] [CrossRef]
- Wu, C.Y.; Tseng, K.Y. Stress-based binary differential evolution for topology optimization of structures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2010, 224, 443–457. [Google Scholar] [CrossRef]
- Wu, C.Y.; Tseng, K.Y. Topology optimization of structures using modified binary differential evolution. Struct. Multidiscip. Optim. 2010, 42, 939–953. [Google Scholar] [CrossRef]
- Leon, J.; Guzman, M. Tuning parameters using bio-inspired multiobjective optimization algorithm for topology optimization based on bacterial chemotaxis. In Proceedings of the 4th International Conference on Engineering Optimization, Lisbon, Portugal, 8–11 September 2014; pp. 427–432. [Google Scholar]
- Gholizadeh, S.; Barati, H. Topology optimization of nonlinear single layer domes by a new metaheuristic. Steel Compos. Struct. 2014, 16, 681–701. [Google Scholar] [CrossRef]
- Prayogo, D.; Harsono, K.; Prasetyo, K.E.; Wong, F.T.; Tjandra, D. Size, Topology, and Shape Optimization of Truss Structures using Symbiotic Organisms Search. In Proceedings of the 2019 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation, Batu, Indonesia, 9–10 October 2019; pp. 197–201. [Google Scholar] [CrossRef]
- Bigham, A.; Gholizadeh, S. Topology optimization of nonlinear single-layer domes by an improved electro-search algorithm and its performance analysis using statistical tests. Struct. Multidiscip. Optim. 2020, 62, 1821–1848. [Google Scholar] [CrossRef]
- Kaveh, A.; Hosseini, S.M.; Zaerreza, A. Size, Layout, and Topology Optimization of Skeletal Structures Using Plasma Generation Optimization. Iran. J. Sci. Technol.-Trans. Civ. Eng. 2021, 45, 513–543. [Google Scholar] [CrossRef]
- Jaafer, A.A.; Al-Bazoon, M.; Dawood, A.O. Structural topology design optimization using the binary bat algorithm. Appl. Sci. 2020, 10, 1481. [Google Scholar] [CrossRef]
- Ruzbehi, S.; Hahn, I. Two-level Topology Optimization based on a Metaheuristic Method and Morphological Reconstruction. In Proceedings of the 47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–5. [Google Scholar]
- Wang, X.; Zhang, Q.; Qin, X.; Sun, Y. Discrete topology and sizing optimization of frame structures with compliance constraints: A semidefinite programming-based approach. Adv. Struct. Eng. 2021, 24, 2242–2254. [Google Scholar] [CrossRef]
- Mokhtari, M.; Varedi-Koulaei, S.M.; Zhu, J.; Hao, G. Topology optimization of the compliant mechanisms considering curved beam elements using metaheuristic algorithms. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 7197–7208. [Google Scholar] [CrossRef]
- Garcia-Lopez, N.; Sanchez-Silva, M.; Medaglia, A.; Chateauneuf, A. A hybrid topology optimization methodology combining simulated annealing and SIMP. Comput. Struct. 2011, 89, 1512–1522. [Google Scholar] [CrossRef]
- Xue, H.; Yu, H.; Zhang, X.; Quan, Q. A novel method for structural lightweight design with topology optimization. Energies 2021, 14, 4367. [Google Scholar] [CrossRef]
- Liu, X.; Yi, W.J.; Li, Q.; Shen, P.S. Genetic evolutionary structural optimization. J. Constr. Steel Res. 2008, 64, 305–311. [Google Scholar] [CrossRef]
- Liu, X.; Yi, W.J. Michell-like 2D layouts generated by genetic ESO. Struct. Multidiscip. Optim. 2010, 42, 111–123. [Google Scholar] [CrossRef]
- Cui, N.; Huang, S.; Ding, X. An Improved Strategy for Genetic Evolutionary Structural Optimization. Adv. Civ. Eng. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Zuo, Z.H.; Xie, Y.M.; Huang, X. Combining genetic algorithms with BESO for topology optimization. Struct. Multidiscip. Optim. 2008, 38, 511–523. [Google Scholar] [CrossRef]
- He, Y.; Cai, K.; Zhao, Z.L.; Xie, Y.M. Stochastic approaches to generating diverse and competitive structural designs in topology optimization. Finite Elem. Anal. Des. 2020, 173, 103399. [Google Scholar] [CrossRef]
- Wu, B.N.; Xia, L.J. Research on bi-directional evolutionary structural optimization method based on improved genetic algorithm. Chuan Bo Li Xue/J. Ship Mech. 2021, 25, 193–201. [Google Scholar]
- Feng, S.; Wu, X.; Han, Q.; Qi, J.; Zhang, X. Novel multi-objective topology optimization method for stiffness and stress of continuum structures. Adv. Mech. Eng. 2022, 14, 16878132221145794. [Google Scholar] [CrossRef]
- Bao, D.W.; Yan, X.; Snooks, R.; Xie, Y. Swarmbeso: Multi-agent and evolutionary computational design based on the principles of structural performance. In Proceedings of the 26th International Conference of the Association for Computer-Aided Architectural Design Research in Asia, Hong Kong, China, 29 March–1 April 2021; pp. 241–250. [Google Scholar]
- Chen, L.; Zhang, H.; Wang, W.; Zhang, Q. Topology Optimization Based on SA-BESO. Appl. Sci. 2023, 13, 4566. [Google Scholar] [CrossRef]
- Radman, A. Combination of BESO and harmony search for topology optimization of microstructures for materials. Appl. Math. Model. 2021, 90, 650–661. [Google Scholar] [CrossRef]
- Murphy, R.; Imediegwu, C.; Hewson, R.; Santer, M. Multiscale structural optimization with concurrent coupling between scales. Struct. Multidiscip. Optim. 2021, 63, 1721–1741. [Google Scholar] [CrossRef]
- Thillaithevan, D.; Bruce, P.; Santer, M. Robust multiscale optimization accounting for spatially-varying material uncertainties. Struct. Multidiscip. Optim. 2022, 65, 40. [Google Scholar] [CrossRef]
- Al Ali, M.; Shimoda, M. Investigation of concurrent multiscale topology optimization for designing lightweight macrostructure with high thermal conductivity. Int. J. Therm. Sci. 2022, 179, 107653. [Google Scholar] [CrossRef]
- Al Ali, M.; Shimoda, M. On concurrent multiscale topology optimization for porous structures under hygro-thermo-elastic multiphysics with considering evaporation. Int. J. Numer. Methods Eng. 2023, 124, 3219–3249. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, T.; Xu, S.; Liu, J. Multiscale topology optimization for solid-lattice-void solid–lattice–void hybrid structures through an ordered multi-phase interpolation. CAD Comput. Aided Des. 2023, 154, 103424. [Google Scholar] [CrossRef]
- Meng, Z.; Guo, L.; Li, Q. Uncertainty-oriented multi-scale topology optimization of coupled thermo-mechanical continuum structures. Compos. Struct. 2023, 315, 116940. [Google Scholar] [CrossRef]
- An, R.; Ge, X.; Wang, M. Design and Microscale Fabrication of Negative Poisson’s Ratio Lattice Structure Based on Multi-Scale Topology Optimization. Machines 2023, 11, 519. [Google Scholar] [CrossRef]
- Mejías, G.; Zegard, T. Simultaneous discrete and continuum multiresolution topology optimization. Struct. Multidiscip. Optim. 2023, 66, 137. [Google Scholar] [CrossRef]
- Hu, J.; Luo, Y.; Liu, S. Three-scale concurrent topology optimization for the design of the hierarchical cellular structure. Struct. Multidiscip. Optim. 2022, 65, 143. [Google Scholar] [CrossRef]
- Patel, D.; Bielecki, D.; Rai, R.; Dargush, G. Improving connectivity and accelerating multiscale topology optimization using deep neural network techniques. Struct. Multidiscip. Optim. 2022, 65, 126. [Google Scholar] [CrossRef]
- Ali, M.A.; Shimoda, M. Toward multiphysics multiscale concurrent topology optimization for lightweight structures with high heat conductivity and high stiffness using MATLAB. Struct. Multidiscip. Optim. 2022, 65, 207. [Google Scholar] [CrossRef]
- Montemurro, M.; Bertolino, G.; Roiné, T. A general multi-scale topology optimisation method for lightweight lattice structures obtained through additive manufacturing technology. Compos. Struct. 2021, 258, 113360. [Google Scholar] [CrossRef]
- Christoff, B.G.; Almeida, J.H.S., Jr.; Cardoso, E.L.; Tita, V. A multiscale topology optimisation framework for hollow spheres as cellular materials. Eng. Struct. 2023, 284, 115990. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, R.; Chu, X.; Liu, H. Multiscale Design of Graded Stochastic Cellular Structures for the Heat Transfer Problem. Appl. Sci. 2023, 13, 4409. [Google Scholar] [CrossRef]
- Gao, J.; Luo, Z.; Xia, L.; Gao, L. Concurrent topology optimization of multiscale composite structures in Matlab. Struct. Multidiscip. Optim. 2019, 60, 2621–2651. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, M.; Li, H.; Gao, L.; Chu, S. Multiscale concurrent topology optimization for cellular structures with multiple microstructures based on ordered SIMP interpolation. Comput. Mater. Sci. 2018, 155, 74–91. [Google Scholar] [CrossRef]
- Gu, X.; He, S.; Dong, Y.; Song, T. An improved ordered SIMP approach for multiscale concurrent topology optimization with multiple microstructures. Compos. Struct. 2022, 287, 115363. [Google Scholar] [CrossRef]
- Yan, J.; Sui, Q.; Fan, Z.; Duan, Z. Multi-Material and Multiscale Topology Design Optimization of Thermoelastic Lattice Structures. CMES-Comput. Model. Eng. Sci. 2022, 130, 967–986. [Google Scholar] [CrossRef]
- Yi, B.; Zhou, Y.; Yoon, G.H.; Saitou, K. Topology optimization of functionally-graded lattice structures with buckling constraints. Comput. Methods Appl. Mech. Eng. 2019, 354, 593–619. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Fan, S.; Yang, N.; Wu, N. Design and optimization of graded lattice structures with load path-oriented reinforcement. Mater. Des. 2023, 227, 111776. [Google Scholar] [CrossRef]
- Wang, C.; Gu, X.; Zhu, J.; Zhou, H.; Li, S.; Zhang, W. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing. Struct. Multidiscip. Optim. 2020, 61, 869–894. [Google Scholar] [CrossRef]
- Hu, J.; Luo, Y.; Liu, S. Two-scale concurrent topology optimization method of hierarchical structures with self-connected multiple lattice-material domains. Compos. Struct. 2021, 272, 114224. [Google Scholar] [CrossRef]
- Chen, X.; Li, C.; Bai, Y. Topology optimization of sandwich structures with solid-porous hybrid infill under geometric constraints. Comput. Methods Appl. Mech. Eng. 2021, 382, 113856. [Google Scholar] [CrossRef]
- Nakagawa, M.; Noguchi, Y.; Matsushima, K.; Yamada, T. Level set-based multiscale topology optimization for a thermal cloak design problem using the homogenization method. Int. J. Heat Mass Transf. 2023, 207, 123964. [Google Scholar] [CrossRef]
- Murai, N.; Noguchi, Y.; Matsushima, K.; Yamada, T. Multiscale topology optimization of electromagnetic metamaterials using a high-contrast homogenization method. Comput. Methods Appl. Mech. Eng. 2023, 403, 115728. [Google Scholar] [CrossRef]
- Liu, X.; Gao, L.; Xiao, M. Multiscale concurrent topology optimization of hierarchal multi-morphology lattice structures. Comput. Methods Appl. Mech. Eng. 2023, 415, 116209. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, Z.; Huang, Q. Multi-constrained topology optimization of prefabricated joints in large-span latticed structures. Structures 2023, 56, 104809. [Google Scholar] [CrossRef]
- Jansen, M.; Pierard, O. A hybrid density/level set formulation for topology optimization of functionally graded lattice structures. Comput. Struct. 2020, 231, 106205. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Ding, Z.; Gao, L.; Xiao, M.; Liao, W.H. A multiscale topological design method of geometrically asymmetric porous sandwich structures for minimizing dynamic compliance. Mater. Des. 2022, 214, 110404. [Google Scholar] [CrossRef]
- Banh, T.T.; Nam, L.G.; Lee, D. A smooth boundary scheme-based topology optimization for functionally graded structures with discontinuities. Steel Compos. Struct. 2023, 48, 73–88. [Google Scholar] [CrossRef]
- Al Ali, M.; Shimoda, M.; Benaissa, B.; Kobayashi, M. Concurrent Multiscale Hybrid Topology Optimization for Light Weight Porous Soft Robotic Hand with High Cellular Stiffness. In Lecture Notes in Civil Engineering (LNCE); Springer International Publishing: Cham, Switzerland, 2023; Volume 317, pp. 265–278. [Google Scholar] [CrossRef]
- Qiao, H.; Wang, S.; Zhao, T.; Tang, H. Topology optimization for lightweight cellular material and structure simultaneously by combining SIMP with BESO. J. Mech. Sci. Technol. 2019, 33, 729–739. [Google Scholar] [CrossRef]
- Da, D.; Cui, X.; Long, K.; Cai, Y.; Li, G. Multiscale concurrent topology optimization of structures and microscopic multi-phase materials for thermal conductivity. Eng. Comput. 2019, 36, 126–146. [Google Scholar] [CrossRef]
- Yan, X.; Xu, Q.; Huang, D.; Zhong, Y.; Huang, X. Concurrent topology design of structures and materials with optimal material orientation. Compos. Struct. 2019, 220, 473–480. [Google Scholar] [CrossRef]
- Yan, X.; Xu, Q.; He, J.; Huang, D.; Huang, X. Integrated design of structure and anisotropic material based on the BESO method. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Suzhou, China, 29–31 March 2019; Volume 531. [Google Scholar] [CrossRef]
- Yan, X.; Xu, Q.; Hua, H.; Huang, D.; Huang, X. Concurrent topology optimization of structures and orientation of anisotropic materials. Eng. Optim. 2020, 52, 1598–1611. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, B.; Xie, Y.M.; Wu, X.; Zhou, S. FFT-based Inverse Homogenization for Cellular Material Design. Int. J. Mech. Sci. 2022, 231, 107572. [Google Scholar] [CrossRef]
- Cai, J.; Huang, L.; Wu, H.; Yin, L. Concurrent topology optimization of multiscale structure under uncertain dynamic loads. Int. J. Mech. Sci. 2023, 251, 108355. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Wei, P.; Wang, W. Parameterized level-set based topology optimization method considering symmetry and pattern repetition constraints. Comput. Methods Appl. Mech. Eng. 2018, 340, 1079–1101. [Google Scholar] [CrossRef]
- Maute, K. Topology optimization of coupled multi-physics problems. CISM Int. Cent. Mech. Sci. Courses Lect. 2014, 549, 421–437. [Google Scholar] [CrossRef]
- Meng, Q.; Xu, B.; Huang, C.; Wang, G. Lightweight topology optimization of thermal structures under compliance, stress and temperature constraints. J. Therm. Stress. 2021, 44, 1121–1149. [Google Scholar] [CrossRef]
- Das, S.; Sutradhar, A. Multi-physics topology optimization of functionally graded controllable porous structures: Application to heat dissipating problems. Mater. Des. 2020, 193, 108775. [Google Scholar] [CrossRef]
- Thurier, P.; Lesieutre, G.; Frecker, M.; Adair, J. A two-material topology optimization method for structures under steady thermo-mechanical loading. J. Intell. Mater. Syst. Struct. 2019, 30, 1717–1726. [Google Scholar] [CrossRef]
- Tang, T.; Xia, S.; Rop, P.; De Wispelaere, S.; Subramanian, R.; Koos, B. Multi-physics topology optimization for thermal-flow problems applied to additively manufactured heat exchangers. In Proceedings of the ASME Turbo Expo, 2021: Turbomachinery Technical Conference and Exposition, Online, 7–11 June 2021; Available online: https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2021/84935/V02DT36A019/1119851 (accessed on 1 August 2023).
- Akhtar, H.; Terry, H.; Ioannou, P.; Mills, L.; Samanthula, S.; Wise, A. Additive manufactured heatsinks for power electronics assemblies–multi physics topology optimisation. In Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Online, 3–7 May 2021; pp. 1–9. Available online: https://ieeexplore.ieee.org/document/9472374/authors#authors (accessed on 1 August 2023).
- Nomura, T.; Sato, K.; Nishiwaki, S.; Yoshimura, M. Multi-disciplinary multi-objective topology optimization of electromagnetics and structural mechanics (for case of optimal dielectric resonator antenna designs). Nihon Kikai Gakkai Ronbunshu A Hen/Trans. Jpn. Mech. Eng. Part A 2007, 73, 1111–1119. [Google Scholar] [CrossRef]
- Park, S.; Yoo, J. Structural optimization of a multi-physics problem considering thermal and magnetic effects. IEEE Trans. Magn. 2012, 48, 3883–3886. [Google Scholar] [CrossRef]
- Walsh, J.; Berthoud, L.; Allen, C. Drag reduction through shape optimisation for satellites in Very Low Earth Orbit. Acta Astronaut. 2021, 179, 105–121. [Google Scholar] [CrossRef]
- Hild, F.; Traub, C.; Pfeiffer, M.; Beyer, J.; Fasoulas, S. Optimisation of satellite geometries in Very Low Earth Orbits for drag minimisation and lifetime extension. Acta Astronaut. 2022, 201, 340–352. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, J.; Tian, P.; Liang, T.; Li, Z.; Wen, D. Aerodynamic drag analysis and reduction strategy for satellites in Very Low Earth Orbit. Aerosp. Sci. Technol. 2023, 132, 108077. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Sheng, T.; Zhao, Y.; Yao, W. The satellite layout optimization design approach for minimizing the residual magnetic flux density of micro- and nano-satellites. Acta Astronaut. 2019, 163, 299–306. [Google Scholar] [CrossRef]
- Fakoor, M.; Mohammad Zadeh, P.; Momeni Eskandari, H. Developing an optimal layout design of a satellite system by considering natural frequency and attitude control constraints. Aerosp. Sci. Technol. 2017, 71, 172–188. [Google Scholar] [CrossRef]
- Fakoor, M.; Taghinezhad, M. Layout and configuration design for a satellite with variable mass using hybrid optimization method. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 360–377. [Google Scholar] [CrossRef]
- Huo, J.Z.; Teng, H.F. Optimal layout design of a satellite module using a coevolutionary method with heuristic rules. J. Aerosp. Eng. 2009, 22, 101–111. [Google Scholar] [CrossRef]
- Sun, Z.G.; Teng, H.F. Optimal layout design of a satellite module. Eng. Optim. 2003, 35, 513–529. [Google Scholar] [CrossRef]
- Wang, D.; Xiang, C.; Pan, Y.; Chen, A.; Zhou, X.; Zhang, Y. A deep convolutional neural network for topology optimization with perceptible generalization ability. Eng. Optim. 2022, 54, 973–988. [Google Scholar] [CrossRef]
- Xiang, C.; Wang, D.; Pan, Y.; Chen, A.; Zhou, X.; Zhang, Y. Accelerated topology optimization design of 3D structures based on deep learning. Struct. Multidiscip. Optim. 2022, 65, 99. [Google Scholar] [CrossRef]
- Shin, J.; Kim, C. Bi-directional evolutionary 3D topology optimization with a deep neural network. J. Mech. Sci. Technol. 2022, 36, 3509–3519. [Google Scholar] [CrossRef]
- Banga, S.; Gehani, H.; Bhilare, S.; Patel, S.; Kara, L. 3D Topology Optimization using Convolutional Neural Networks. arXiv 2018, arXiv:1808.07440. [Google Scholar] [CrossRef]
- Sosnovik, I.; Oseledets, I. Neural networks for topology optimization. Russ. J. Numer. Anal. Math. 2019, 34, 215–223. [Google Scholar] [CrossRef]
- Bi, S.; Zhang, J.; Zhang, G. Scalable Deep-Learning-Accelerated Topology Optimization for Additively Manufactured Materials. arXiv 2020, arXiv:2011.14177. [Google Scholar] [CrossRef]
- Kallioras, N.; Lagaros, N. DL-SCALE: A novel deep learning-based model order upscaling scheme for solving topology optimization problems. Neural Comput. Appl. 2021, 33, 7125–7144. [Google Scholar] [CrossRef]
- Lagaros, N.; Kallioras, N.; Kazakis, G. Accelerated topology optimization by means of deep learning. Struct. Multidiscip. Optim. 2020, 62, 1185–1212. [Google Scholar] [CrossRef]
- Sun, H.; Ma, L. Structural Topology Optimization by Combining BESO with Reinforcement Learning. J. Harbin Inst. Technol. (New Ser.) 2021, 28, 85–96. [Google Scholar] [CrossRef]
- Wang, L.; Shi, D.; Zhang, B.; Li, G.; Helal, W.M.; Qi, M. Deep learning driven real time topology optimization based on improved convolutional block attention (Cba-U-Net) model. Eng. Anal. Bound. Elem. 2023, 147, 112–124. [Google Scholar] [CrossRef]
- Abueidda, D.W.; Koric, S.; Sobh, N.A. Topology optimization of 2D structures with nonlinearities using deep learning. Comput. Struct. 2020, 237, 106283. [Google Scholar] [CrossRef]
- Almasri, W.; Bettebghor, D.; Ababsa, F.; Danglade, F. Shape related constraints aware generation of Mechanical Designs through Deep Convolutional GAN. arXiv 2020, arXiv:2010.11833. [Google Scholar]
- Cang, R.; Yao, H.; Ren, Y. One-shot generation of near-optimal topology through theory-driven machine learning. Comput.-Aided Des. 2019, 109, 12–21. [Google Scholar] [CrossRef]
- Keshavarzzadeh, V.; Alirezaei, M.; Tasdizen, T.; Kirby, R.M. Image-Based Multiresolution Topology Optimization Using Deep Disjunctive Normal Shape Model. Comput.-Aided Des. 2021, 130, 102947. [Google Scholar] [CrossRef]
- Kollmann, H.T.; Abueidda, D.W.; Koric, S.; Guleryuz, E.; Sobh, N.A. Deep learning for topology optimization of 2D metamaterials. Mater. Des. 2020, 196, 109098. [Google Scholar] [CrossRef]
- Lew, A.J.; Buehler, M.J. Encoding and exploring latent design space of optimal material structures via a VAE-LSTM model. Forces Mech. 2021, 5, 100054. [Google Scholar] [CrossRef]
- Li, B.; Huang, C.; Li, X.; Zheng, S.; Hong, J. Non-iterative structural topology optimization using deep learning. Comput.-Aided Des. 2019, 115, 172–180. [Google Scholar] [CrossRef]
- Rade, J.; Balu, A.; Herron, E.; Pathak, J.; Ranade, R.; Sarkar, S.; Krishnamurthy, A. Algorithmically-consistent deep learning frameworks for structural topology optimization. Eng. Appl. Artif. Intell. 2021, 106, 104483. [Google Scholar] [CrossRef]
- Rawat, S.; Shen, M. A novel topology design approach using an integrated deep learning network architecture. arXiv 2018, arXiv:1808.02334. [Google Scholar]
- Rawat, S.; Shen, M.H. Application of Adversarial Networks for 3D Structural Topology Optimization. In Proceedings of the WCX SAE World Congress Experience, SAE International, Detroit, Mi, USA, 9–11 April 2019. [Google Scholar] [CrossRef]
- Rawat, S.; Shen, M.H.H. A Novel Topology Optimization Approach using Conditional Deep Learning. arXiv 2019, arXiv:1901.04859. [Google Scholar]
- Sharpe, C.; Seepersad, C. Topology DesignWith Conditional Generative Adversarial Networks. In Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Anaheim, CA, USA, 18–21 August 2019. [Google Scholar] [CrossRef]
- Yu, Y.; Hur, T.; Jung, J.; Jang, I.G. Deep learning for determining a near-optimal topological design without any iteration. Struct. Multidiscip. Optim. 2018, 59, 787–799. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Yuan, Z.; Xu, S.; Zou, B.; Li, L.; Ma, Y. A novel lattice structure topology optimization method with extreme anisotropic lattice properties. J. Comput. Des. Eng. 2021, 8, 1367–1390. [Google Scholar] [CrossRef]
- Nie, Z.; Lin, T.; Jiang, H.; Kara, L.B. TopologyGAN: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain. arXiv 2020, arXiv:2003.04685. [Google Scholar] [CrossRef]
- Qiu, C.; Du, S.; Yang, J. A deep learning approach for efficient topology optimization based on the element removal strategy. Mater. Des. 2021, 212, 110179. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Zhou, W.; Chen, X.; Yao, W.; Zhao, Y. TONR: An exploration for a novel way combining neural network with topology optimization. Comput. Methods Appl. Mech. Eng. 2021, 386, 114083. [Google Scholar] [CrossRef]
- Asanuma, J.; Doi, S.; Igarashi, H. Transfer Learning Through Deep Learning: Application to Topology Optimization of Electric Motor. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef]
- Aulig, N.; Olhofer, M. Topology optimization by predicting sensitivities based on local state features. In Proceedings of the 5th Eur. Conf. Comput. Mech. (ECCM V), Barcelona, Spain, 20–25 July 2014. [Google Scholar]
- Chi, H.; Zhang, Y.; Tang, T.L.E.; Mirabella, L.; Dalloro, L.; Song, L.; Paulino, G.H. Universal machine learning for topology optimization. Comput. Methods Appl. Mech. Eng. 2021, 375, 112739. [Google Scholar] [CrossRef]
- Deng, H.; To, A.C. Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design. Comput. Mech. 2020, 66, 449–469. [Google Scholar] [CrossRef]
- Deng, C.; Qin, C.; Lu, W. Deep-Learning-Enabled Simulated Annealing for Topology Optimization. arXiv 2020, arXiv:2002.01927. [Google Scholar]
- Doi, S.; Sasaki, H.; Igarashi, H. Multi-Objective Topology Optimization of Rotating Machines Using Deep Learning. IEEE Trans. Magn. 2019, 55, 1–5. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J.; Yoo, J. Machine learning-combined topology optimization for functionary graded composite structure design. Comput. Methods Appl. Mech. Eng. 2021, 387, 114158. [Google Scholar] [CrossRef]
- Keshavarzzadeh, V.; Kirby, R.M.; Narayan, A. Stress-based topology optimization under uncertainty via simulation-based Gaussian process. Comput. Methods Appl. Mech. Eng. 2020, 365, 112992. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.; Lieu, Q.X.; Lee, J. CNN-based image recognition for topology optimization. Knowl.-Based Syst. 2020, 198, 105887. [Google Scholar] [CrossRef]
- Li, H.; Kafka, O.; Gao, J.; Yu, C.; Nie, Y.; Zhang, L.; Tajdari, M.; Tang, S.; Guo, X.; Li, G.; et al. Clustering discretization methods for generation of material performance databases in machine learning and design optimization. Comput. Mech. 2019, 64, 281–305. [Google Scholar] [CrossRef]
- Sasaki, H.; Igarashi, H. Topology Optimization Accelerated by Deep Learning. IEEE Trans. Magn. 2019, 55, 7401305. [Google Scholar] [CrossRef]
- Patel, J.; Choi, S.K. Classification approach for reliability-based topology optimization using probabilistic neural networks. Struct. Multidiscip. Optim. 2010, 45, 529–543. [Google Scholar] [CrossRef]
- Qian, C.; Ye, W. Accelerating gradient-based topology optimization design with dual-model neural networks. arXiv 2020, arXiv:2009.06245. [Google Scholar] [CrossRef]
- Sasaki, H.; Igarashi, H. Topology optimization of IPM motor with aid of deep learning. Int. J. Appl. Electromagn. Mech. 2018, 59, 1–10. [Google Scholar] [CrossRef]
- Takahashi, Y.; Suzuki, Y.; Todoroki, A. Convolutional Neural Network-based Topology Optimization (CNN-TO) by Estimating Sensitivity of Compliance from Material Distribution. arXiv 2019, arXiv:2001.00635. [Google Scholar]
- White, D.A.; Arrighi, W.J.; Kudo, J.; Watts, S.E. Multiscale topology optimization using neural network surrogate models. Comput. Methods Appl. Mech. Eng. 2019, 346, 1118–1135. [Google Scholar] [CrossRef]
- Xia, M.; Yang, S.; Ho, S.L. A New Topology Optimization Methodology Based on Constraint Maximum-Weight Connected Graph Theorem. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Zheng, L.; Kumar, S.; Kochmann, D.M. Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy. Comput. Methods Appl. Mech. Eng. 2021, 383, 113894. [Google Scholar] [CrossRef]
- Zhou, Y.; Saitou, K. Topology optimization of composite structures with data-driven resin filling time manufacturing constraint. Struct. Multidiscip. Optim. 2017, 55, 2073–2086. [Google Scholar] [CrossRef]
- Ulu, E.; Zhang, R.; Kara, L.B. A data-driven investigation and estimation of optimal topologies under variable loading configurations. Comput. Methods Biomech. Biomed. Eng. Vis. 2016, 4, 61–72. [Google Scholar] [CrossRef]
- Guo, T.; Lohan, D.J.; Cang, R.; Ren, M.Y.; Allison, J.T. An Indirect Design Representation for Topology Optimization Using Variational Autoencoder and Style Transfer. In Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar] [CrossRef]
- Li, M.; Cheng, Z.; Jia, G.; Shi, Z. Dimension reduction and surrogate based topology optimization of periodic structures. Compos. Struct. 2019, 229, 111385. [Google Scholar] [CrossRef]
- Shin, S.; Shin, D.; Kang, N. Topology optimization via machine learning and deep learning: A review. J. Comput. Des. Eng. 2023, 10, 1736–1766. [Google Scholar] [CrossRef]
- Sathish, K.; Senthil Kumar, S.; Magal, R.T.; Selvaraj, V.; Narasimharaj, V.; Karthikeyan, R.; Sabarinathan, G.; Tiwari, M.; Kassa, A.E. A Comparative Study on Subtractive Manufacturing and Additive Manufacturing. Adv. Mater. Sci. Eng. 2022, 2022, 6892641. [Google Scholar] [CrossRef]
- Jayawardane, H.; Davies, I.; Gamage, J.; John, M.; Biswas, W. Sustainability perspectives—A review of additive and subtractive manufacturing. Sustain. Manuf. Serv. Econ. 2023, 2, 100015. [Google Scholar] [CrossRef]
- Kumar, V.; Isanaka, B.R.; Gupta, S.; Kushvaha, V. Future Trends and Technologies in Additive and Substractive Manufacturing. In Additive and Subtractive Manufacturing of Composites; Mavinkere Rangappa, S., Gupta, M.K., Siengchin, S., Song, Q., Eds.; Springer: Singapore, 2021; pp. 227–247. [Google Scholar] [CrossRef]
- Orme, M.; Mouriaux, F.; Gschweitl, M.; Vernon, R.; Ferrari, M.; Madera, I.; Yancey, R. A demonstration of additive manufacturing as an enabling technology for rapid satellite design and fabrication. In Proceedings of the International SAMPE Technical Conference, The Society for the Advancement of Material and Process Engineering (SAMPE®), Long Beach, CA, USA, 23–26 May 2016. [Google Scholar]
- Lim, J.; Le, K.Q.; Lu, Q.; Wong, C. An Overview of 3-D Printing in Manufacturing, Aerospace, and Automotive Industries. IEEE Potentials 2016, 35, 18–22. [Google Scholar] [CrossRef]
- Rahman, M.; Saleh, T.; Jahan, M.; McGarry, C.; Chaudhari, A.; Huang, R.; Tauhiduzzaman, M.; Ahmed, A.; Mahmud, A.; Bhuiyan, M. Review of Intelligence for Additive and Subtractive Manufacturing: Current Status and Future Prospects. Micromachines 2023, 14, 508. [Google Scholar] [CrossRef] [PubMed]
- ISO/ASTM 52900:2021(E); Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ISO/ASTM: Geneva, Switzerland, 2021.
- Krolikowski, M.A.; Krawczyk, M.B. Does Metal Additive Manufacturing in Industry 4.0 Reinforce the Role of Substractive Machining? In Advances in Manufacturing II, VOL 1-Solutions for Industry 4.0, Lecture Notes in Mechanical Engineering, Proceedings of the 6th International Scientific-Technical Conference on Advances in Manufacturing II (MANUFACTURING), Poznan, Poland, 19–22 May 2019; Trojanowska, J., Ciszak, O., Machado, J., Pavlenko, I., Eds.; Springer International Publishing: New York, NY, USA, 2019; pp. 150–164. [Google Scholar] [CrossRef]
- ASTM F2792-12a; Standard Terminology for Additive Manufacturing Technologies, (Withdrawn 2015). ISO/ASTM: West Conshohocken, PA, USA, 2012.
- Mostafaei, A.; Elliott, A.M.; Barnes, J.E.; Li, F.; Tan, W.; Cramer, C.L.; Nandwana, P.; Chmielus, M. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Prog. Mater. Sci. 2021, 119, 100707. [Google Scholar] [CrossRef]
- Chen, L.; Chen, W.; Fu, Z.; Ding, G.; Chen, Z.; Zhu, D. Binder Jet 3D Printing of 316L Stainless Steel: Orthogonal Printing and Sintering Process Optimization. Adv. Eng. Mater. 2023, 25, 2200641. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Z.; Chen, L.; Zhu, D.; Fu, Z. Optimization of Printing Parameters to Achieve High-Density 316L Stainless Steel Manufactured by Binder Jet 3D Printing. J. Mater. Eng. Perform. 2023, 32, 3602–3616. [Google Scholar] [CrossRef]
- Le Néel, T.A.; Mognol, P.; Hascoët, J.Y. A review on additive manufacturing of sand molds by binder jetting and selective laser sintering. Rapid Prototyp. J. 2018, 24, 1325–1336. [Google Scholar] [CrossRef]
- Del Giudice, L.; Vassiliou, M.; Marelli, S. Global sensitivity analysis of sand-based binder jet 3D printed material. In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, Proceedings of the 8th International Conference on Structural Engineering, Mechanics and Computation, Kapstadt, Südafrika, 5–7 September 2022; pp. 368–373. [Google Scholar] [CrossRef]
- Tang, H.; Yen, H.; Chiu, M.; Jou, J. The characteristics and applications of Ceramic Laser Fusion and Ceramic Laser Sintering. In Proceedings of the 19th Annual International Solid Freeform Fabrication Symposium (SFF 2008), Austin, TX, USA, 4–6 August 2008; pp. 206–215. [Google Scholar]
- Tang, H.H.; Yen, H.C. Ceramic parts fabricated by ceramic laser fusion. Mater. Trans. 2004, 45, 2744–2751. [Google Scholar] [CrossRef]
- Yen, H.; Chiu, M.; Huang, P. A new layer casting system for ceramic laser rapid prototyping apparatus. In Proceedings of the 19th Annual International Solid Freeform Fabrication Symposium, SFF 2008; 2008; pp. 254–265. [Google Scholar]
- Huang, J.; Qin, Q.; Wang, J. A review of stereolithography: Processes and systems. Processes 2020, 8, 1138. [Google Scholar] [CrossRef]
- Kafle, A.; Luis, E.; Silwal, R.; Pan, H.M.; Shrestha, P.L.; Bastola, A.K. 3d/4d printing of polymers: Fused deposition modelling (fdm), selective laser sintering (sls), and stereolithography (sla). Polymers 2021, 13, 3101. [Google Scholar] [CrossRef]
- Halloran, J.W. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization. Annu. Rev. Mater. Res. 2016, 46, 19–40. [Google Scholar] [CrossRef]
- Bove, A.; Calignano, F.; Galati, M.; Iuliano, L. Photopolymerization of Ceramic Resins by Stereolithography Process: A Review. Appl. Sci. 2022, 12, 3591. [Google Scholar] [CrossRef]
- Ge, Q.; Li, Z.; Wang, Z.; Kowsari, K.; Zhang, W.; He, X.; Zhou, J.; Fang, N.X. Projection micro stereolithography based 3D printing and its applications. Int. J. Extrem. Manuf. 2020, 2, 022004. [Google Scholar] [CrossRef]
- Murr, L.E.; Gaytan, S.M.; Ramirez, D.A.; Martinez, E.; Hernandez, J.; Amato, K.N.; Shindo, P.W.; Medina, F.R.; Wicker, R.B. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. J. Mater. Sci. Technol. 2012, 28, 1–14. [Google Scholar] [CrossRef]
- Uçak, N.; Çiçek, A.; Aslantas, K. Machinability of 3D printed metallic materials fabricated by selective laser melting and electron beam melting: A review. J. Manuf. Process. 2022, 80, 414–457. [Google Scholar] [CrossRef]
- Lin, B.c.; Chen, W. Mechanical properties of TiAl fabricated by electron beam melting—A review. China Foundry 2021, 18, 307–316. [Google Scholar] [CrossRef]
- Zafar, M.Q.; Wu, C.C.; Zhao, H.; Wang, J.; Hu, X. Finite element framework for electron beam melting process simulation. Int. J. Adv. Manuf. Technol. 2020, 109, 2095–2112. [Google Scholar] [CrossRef]
- Zhang, L.; Han, X.; Lv, T.; Zhao, H. Topological optimization design for SM system of large aperture telescope. Hongwai Jiguang Gongcheng/Infrared Laser Eng. 2018, 47, 818008. [Google Scholar] [CrossRef]
- Gokuldoss, P.K.; Kolla, S.; Eckert, J. Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines. Materials 2017, 10, 672. [Google Scholar] [CrossRef]
- Song, B.; Zhao, X.; Li, S.; Han, C.; Wei, Q.; Wen, S.; Liu, J.; Shi, Y. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Front. Mech. Eng. 2015, 10, 111–125. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, H.; Peng, L.; Sun, Z. A Review of Research Progress in Selective Laser Melting (SLM). Micromachines 2023, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Liu, H.; Wang, H. Modeling and simulation of metal selective laser melting process: A critical review. Int. J. Adv. Manuf. Technol. 2022, 121, 5693–5706. [Google Scholar] [CrossRef]
- Ao, X.; Liu, J.; Xia, H.; He, Q.; Ren, C. A Review of Meso-micro Modeling and Simulation Methods of Selective Laser Melting Process. Jixie Gongcheng Xuebao/J. Mech. Eng. 2022, 58, 239–257. [Google Scholar] [CrossRef]
- Sefene, E.M. State-of-the-art of selective laser melting process: A comprehensive review. J. Manuf. Syst. 2022, 63, 250–274. [Google Scholar] [CrossRef]
- Ellis, A.; Noble, C.J.; Hartley, L.; Lestrange, C.; Hopkinson, N.; Majewski, C. Materials for high speed sintering. J. Mater. Res. 2014, 29, 2080–2085. [Google Scholar] [CrossRef]
- Jerman, E.; Wiedenmann, F.; Eichberger, M.; Reichert, A.; Stawarczyk, B. Effect of high-speed sintering on the flexural strength of hydrothermal and thermo-mechanically aged zirconia materials. Dent. Mater. 2020, 36, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sharma, V.; Sachdeva, A. Progress in selective laser sintering using metallic powders: A review. Mater. Sci. Technol. 2016, 32, 760–772. [Google Scholar] [CrossRef]
- Lupone, F.; Padovano, E.; Casamento, F.; Badini, C. Process phenomena and material properties in selective laser sintering of polymers: A review. Materials 2022, 15, 183. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Kong, L.; Xu, M. Advances in selective laser sintering of polymers. Int. J. Extrem. Manuf. 2022, 4, 042002. [Google Scholar] [CrossRef]
- Volpato, N.; Childs, T.; Stewart, T.; Watson, P. Indirect selective laser sintering of metal parts with overhung features. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2001, 215, 873–876. [Google Scholar] [CrossRef]
- Li, Z.; Gan, X.; Fei, G.; Xia, H. Progress on Selective Laser Sintering of Polymers and Polymer Composites. Gaofenzi Cailiao Kexue Yu Gongcheng/Polym. Mater. Sci. Eng. 2017, 33, 170–174. [Google Scholar] [CrossRef]
- Mamatha, S.; Biswas, P.; Johnson, R. Digital light processing of ceramics: An overview on process, materials and challenges. Prog. Addit. Manuf. 2022, 8, 1083–1102. [Google Scholar] [CrossRef]
- Zhao, Z.; Tian, X.; Song, X. Engineering materials with light: Recent progress in digital light processing based 3D printing. J. Mater. Chem. C 2020, 8, 13896–13917. [Google Scholar] [CrossRef]
- Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C. Additive manufacturing by digital light processing: A review. Prog. Addit. Manuf. 2023, 8, 331–351. [Google Scholar] [CrossRef]
- Ge, Q.; Jian, B.; Li, H. Shaping soft materials via digital light processing-based 3D printing: A review. Forces Mech. 2022, 6, 100074. [Google Scholar] [CrossRef]
- Fang, H.B.; Chen, J.M. 3D printing based on digital light processing technology. Beijing Gongye Daxue Xuebao/J. Beijing Univ. Technol. 2015, 41, 1775–1782. [Google Scholar] [CrossRef]
- Singh, S.; Singh, G.; Prakash, C.; Ramakrishna, S. Current status and future directions of fused filament fabrication. J. Manuf. Process. 2020, 55, 288–306. [Google Scholar] [CrossRef]
- Dey, A.; Eagle, I.N.R.; Yodo, N. A review on filament materials for fused filament fabrication. J. Manuf. Mater. Process. 2021, 5, 69. [Google Scholar] [CrossRef]
- Gao, X.; Qi, S.; Kuang, X.; Su, Y.; Li, J.; Wang, D. Fused filament fabrication of polymer materials: A review of interlayer bond. Addit. Manuf. 2021, 37, 101658. [Google Scholar] [CrossRef]
- Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R.B. Fused filament fabrication of fiber-reinforced polymers: A review. Addit. Manuf. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- Tao, Y.; Kong, F.; Li, Z.; Zhang, J.; Zhao, X.; Yin, Q.; Xing, D.; Li, P. A review on voids of 3D printed parts by fused filament fabrication. J. Mater. Res. Technol. 2021, 15, 4860–4879. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Singh, T.; Batish, A. Fused filament fabrication: A comprehensive review. J. Thermoplast. Compos. Mater. 2023, 36, 794–814. [Google Scholar] [CrossRef]
- Niu, X.; Singh, S.; Garg, A.; Singh, H.; Panda, B.; Peng, X.; Zhang, Q. Review of materials used in laser-aided additive manufacturing processes to produce metallic products. Front. Mech. Eng. 2019, 14, 282–298. [Google Scholar] [CrossRef]
- Gu, D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Kovalev, O.; Zaitsev, A.; Novichenko, D.; Smurov, I. Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process. J. Therm. Spray Technol. 2011, 20, 465–478. [Google Scholar] [CrossRef]
- Lalegani Dezaki, M.; Serjouei, A.; Zolfagharian, A.; Fotouhi, M.; Moradi, M.; Ariffin, M.; Bodaghi, M. A review on additive/subtractive hybrid manufacturing of directed energy deposition (DED) process. Adv. Powder Mater. 2022, 1, 100054. [Google Scholar] [CrossRef]
- Tepylo, N.; Huang, X.; Patnaik, P.C. Laser-Based Additive Manufacturing Technologies for Aerospace Applications. Adv. Eng. Mater. 2019, 21. [Google Scholar] [CrossRef]
- Kladovasilakis, N.; Charalampous, P.; Kostavelis, I.; Tzetzis, D.; Tzovaras, D. Impact of metal additive manufacturing parameters on the powder bed fusion and direct energy deposition processes: A comprehensive review. Prog. Addit. Manuf. 2021, 6, 349–365. [Google Scholar] [CrossRef]
- Treutler, K.; Wesling, V. The current state of research of wire arc additive manufacturing (Waam): A review. Appl. Sci. 2021, 11, 8619. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.; Ge, Y.; Hou, Z.; Chen, S. Wire and arc additive manufacturing of metal components: A review of recent research developments. Int. J. Adv. Manuf. Technol. 2020, 111, 149–198. [Google Scholar] [CrossRef]
- Derekar, K. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater. Sci. Technol. 2018, 34, 895–916. [Google Scholar] [CrossRef]
- Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Xu, J.; Norrish, J. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. J. Manuf. Process. 2018, 35, 127–139. [Google Scholar] [CrossRef]
- Tomar, B.; Shiva, S.; Nath, T. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances. Mater. Today Commun. 2022, 31, 103739. [Google Scholar] [CrossRef]
- Omiyale, B.; Olugbade, T.; Abioye, T.; Farayibi, P. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: A review. Mater. Sci. Technol. 2022, 38, 391–408. [Google Scholar] [CrossRef]
- Lin, J.; Lv, Y.; Liu, Y.; Sun, Z.; Wang, K.; Li, Z.; Wu, Y.; Xu, B. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment. J. Mech. Behav. Biomed. Mater. 2017, 69, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Colegrove, P.; Ding, J.; Zhou, X.; Diao, C.; Bridgeman, P.; roman Hönnige, J.; Zhang, H.; Williams, S. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int. J. Heat Mass Transf. 2018, 124, 504–516. [Google Scholar] [CrossRef]
- Prashar, G.; Vasudev, H. A comprehensive review on sustainable cold spray additive manufacturing: State of the art, challenges and future challenges. J. Clean. Prod. 2021, 310, 127606. [Google Scholar] [CrossRef]
- Assadi, H.; Kreye, H.; Gärtner, F.; Klassen, T. Cold spraying—A materials perspective. Acta Mater. 2016, 116, 382–407. [Google Scholar] [CrossRef]
- Bagherifard, S.; Monti, S.; Zuccoli, M.V.; Riccio, M.; Kondás, J.; Guagliano, M. Cold spray deposition for additive manufacturing of freeform structural components compared to selective laser melting. Mater. Sci. Eng. A 2018, 721, 339–350. [Google Scholar] [CrossRef]
- Yin, S.; Cavaliere, P.; Aldwell, B.; Jenkins, R.; Liao, H.; Li, W.; Lupoi, R. Cold spray additive manufacturing and repair: Fundamentals and applications. Addit. Manuf. 2018, 21, 628–650. [Google Scholar] [CrossRef]
- Huang, C.; Wu, H.; Xie, Y.; Li, W.; Verdy, C.; Planche, M.P.; Liao, H.; Montavon, G. Advanced brass-based composites via cold-spray additive-manufacturing and its potential in component repairing. Surf. Coat. Technol. 2019, 371, 211–223. [Google Scholar] [CrossRef]
- Benenati, G.; Lupoi, R. Development of a Deposition Strategy in Cold Spray for Additive Manufacturing to Minimize Residual Stresses. Procedia CIRP 2016, 55, 101–108. [Google Scholar] [CrossRef]
- Stringer, J.; Althagathi, T.M.; Tse, C.C.; Ta, V.D.; Shephard, J.D.; Esenturk, E.; Connaughton, C.; Wasley, T.J.; Li, J.; Kay, R.W.; et al. Integration of additive manufacturing and inkjet printed electronics: A potential route to parts with embedded multifunctionality. Manuf. Rev. 2016, 3, 12. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, Y.; Huang, H.; Ling, Z.; Dai, Y.; Ke, S. Recent development on preparation of ceramic inks in ink-jet printing. Ceram. Int. 2015, 41, 12515–12528. [Google Scholar] [CrossRef]
- Loffredo, F.; Mauro, A.D.G.D.; Burrasca, G.; La Ferrara, V.; Quercia, L.; Massera, E.; Di Francia, G.; Sala, D.D. Ink-jet printing technique in polymer/carbon black sensing device fabrication. Sens. Actuators B Chem. 2009, 143, 421–429. [Google Scholar] [CrossRef]
- Gothait, H.; Even, R.; Danai, D. Photopolymer jetting technology in rapid prototyping. In Proceedings of the 1st International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 1–4 October 2003. [Google Scholar]
- Harr, M.; Moy, P.; Yu, J. Mechanical Properties of Transparent Laminates Fabricated Using Multi-Material Photopolymer Jetting. In Dynamic Behavior of Materials, Volume 1; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Cham, Switzerland, 2020; pp. 47–51. [Google Scholar] [CrossRef]
- Priest, J.; Jacobs, E.; Smith Jr., C.; DuBois, P.; Holt, B.; Hammerschlag, B. Liquid metal-jetting technology: Application issues for hybrid technology. Int. J. Microcircuits Electron. Packag. 1994, 17, 219–227. [Google Scholar]
- Godin, R. Metal jetting solders on. Mater. World 1997, 5, 451–453. [Google Scholar]
- Aboulkhair, N.T.; Bosio, F.; Gilani, N.; Phutela, C.; Hague, R.J.; Tuck, C.J. Additive Manufacturing Processes for Metals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 201–258. [Google Scholar] [CrossRef]
- Leu, M.; Zhang, W.; Sui, G. Experimental and analytical study of ice part fabrication with Rapid Freeze Prototyping. CIRP Ann.-Manuf. Technol. 2000, 49, 147–150. [Google Scholar] [CrossRef]
- Sui, G.; Leu, M.C. Investigation of layer thickness and surface roughness in rapid freeze prototyping. J. Manuf. Sci. Eng. 2003, 125, 556–563. [Google Scholar] [CrossRef]
- Liu, Q.; Leu, M.C.; Richards, V.L.; Schmitt, S.M. Dimensional accuracy and surface roughness of rapid freeze prototyping ice patterns and investment casting metal parts. Int. J. Adv. Manuf. Technol. 2004, 24, 485–495. [Google Scholar] [CrossRef]
- Sui, G.; Leu, M.C. Thermal analysis of ice walls built by rapid freeze prototyping. J. Manuf. Sci. Eng. 2003, 125, 824–834. [Google Scholar] [CrossRef]
- Bryant, F.D.; Leu, M.C. Modeling and experimental results of concentration with support material in rapid freeze prototyping. Rapid Prototyp. J. 2009, 15, 317–324. [Google Scholar] [CrossRef]
- Hartel, A.; Scheithauer, U.; Schwarzer, E.; Weingarten, S.; Slawik, T.; Richter, H.J.; Moritz, T. Additive manufacturing of metallic and ceramic multimaterial components using thermoplastic 3D printing (T3DP); [Additive Herstellung mehrkomponentiger metallischer und keramischer Bauteile mittels Thermoplastischen 3D-Druckes (T3DP)]. Keram. Z. 2016, 68, 43–47. [Google Scholar] [CrossRef]
- Özden, I.; Iveković, A.; Kocjan, A. Additive manufacturing of ceramics from thermoplastic feedstocks. Open Ceramics 2021, 6. Cited by: 6; All Open Access, Gold Open Access. [Google Scholar] [CrossRef]
- Scheithauer, U.; Schwarzer, E.; Haertel, A.; Richter, H.; Moritz, T.; Michaelis, A. Processing of Thermoplastic Suspensions for Additive Manufacturing of Ceramic-and Metal-Ceramic-Composites by Thermoplastic 3D-Printing (T3DP); The American Ceramic Society: Westerville, OH, USA, 2016; Volume 258, pp. 19–30. [Google Scholar] [CrossRef]
- Scheithauer, U.; Weingarten, S.; Johne, R.; Schwarzer, E.; Abel, J.; Richter, H.J.; Moritz, T.; Michaelis, A. Ceramic-Based 4D Components: Additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by thermoplastic 3D printing (T3DP). Materials 2017, 10, 1368. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Shao, H.; Lin, T.; Zheng, H. 3D gel-printing—An additive manufacturing method for producing complex shape parts. Mater. Des. 2016, 101, 80–87. [Google Scholar] [CrossRef]
- Shao, H.; Zhao, D.; Lin, T.; He, J.; Wu, J. 3D gel-printing of zirconia ceramic parts. Ceram. Int. 2017, 43, 13938–13942. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Z.; Chen, C.; Yang, W. Additive manufacturing of WC-20Co components by 3D gel-printing. Int. J. Refract. Met. Hard Mater. 2018, 70, 215–223. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, X.; Guo, Z.; Volinsky, A.A. 3D gel-printing of Sr ferrite parts. Ceram. Int. 2018, 44, 22370–22377. [Google Scholar] [CrossRef]
- Zhu, J.H.; Gu, X.J.; Zhang, W.H.; Beckers, P. Structural design of aircraft skin stretch-forming die using topology optimization. J. Comput. Appl. Math. 2013, 246, 278–288. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, Z. Structural shape and topology optimization of cast parts using level set method. Int. J. Numer. Methods Eng. 2017, 111, 1252–1273. [Google Scholar] [CrossRef]
- Harzheim, L.; Graf, G. A review of optimization of cast parts using topology optimization: I-Topology optimization without manufacturing constraints. Struct. Multidiscip. Optim. 2005, 30, 491–497. [Google Scholar] [CrossRef]
- Harzheim, L.; Graf, G. A review of optimization of cast parts using topology optimization: III-Topology optimization with manufacturing constraints. Struct. Multidiscip. Optim. 2006, 31, 388–399. [Google Scholar] [CrossRef]
- Gersborg, A.R.; Andreasen, C.S. An explicit parameterization for casting constraints in gradient driven topology optimization. Struct. Multidiscip. Optim. 2011, 44, 875–881. [Google Scholar] [CrossRef]
- Xia, Q.; Shi, T.; Wang, M.Y.; Liu, S. A level set based method for the optimization of cast part. Struct. Multidiscip. Optim. 2010, 41, 735–747. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kim, T.S. Topology optimization of beam cross sections. Int. J. Solids Struct. 1999, 37, 477–493. [Google Scholar] [CrossRef]
- Liu, S.; An, X.; Jia, H. Topology optimization of beam cross-section considering warping deformation. Struct. Multidiscip. Optim. 2008, 35, 403–411. [Google Scholar] [CrossRef]
- Li, H.; Li, P.; Gao, L.; Zhang, L.; Wu, T. A level set method for topological shape optimization of 3D structures with extrusion constraints. Comput. Methods Appl. Mech. Eng. 2015, 283, 615–635. [Google Scholar] [CrossRef]
- Ishii, K.; Aomura, S. Topology optimization for the extruded three dimensional structure with constant cross section. JSME Int.J. Ser. A Solid Mech. Mater. Eng. 2004, 47, 198–206. [Google Scholar] [CrossRef]
- Zuberi, R.H.; Zhengxing, Z.; Kai, L. Topological optimization of beam cross section by employing extrusion constraint. AIP Conf. Proc. 2010, 1233, 964–969. [Google Scholar] [CrossRef]
- Vatanabe, S.L.; Lippi, T.N.; Lima, C.R.d.; Paulino, G.H.; Silva, E.C. Topology optimization with manufacturing constraints: A unified projection-based approach. Adv. Eng. Softw. 2016, 100, 97–112. [Google Scholar] [CrossRef]
- Mani, M.; Witherell, P.; Jee, H. Design Rules for Additive Manufacturing: A Categorization. In Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, OH, USA, 6–9 August 2017; p. V001T02A035. [Google Scholar] [CrossRef]
- Guest, J.K.; Prévost, J.H.; Belytschko, T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 2004, 61, 238–254. [Google Scholar] [CrossRef]
- Sigmund, O. Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 2007, 33, 401–424. [Google Scholar] [CrossRef]
- Wang, F.; Lazarov, B.; Sigmund, O. On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 2011, 43, 767–784. [Google Scholar] [CrossRef]
- Gaynor Andrew, G.J. Topology optimization considering overhang constraints: Eliminating sacrificial support material in additive manufacturing through design. Struct. Multidiscip. Optim. 2016, 54, 1157–1172. [Google Scholar] [CrossRef]
- Mass, Y.; Amir, O. Topology optimization for additive manufacturing: Accounting for overhang limitations using a virtual skeleton. Addit. Manuf. 2017, 18, 58–73. [Google Scholar] [CrossRef]
- Ibhadode, O.; Zhang, Z.; Bonakdar, A.; Toyserkani, E. A Post-Topology Optimization Process for Overhang Elimination in Additive Manufacturing: Design Workflow and Experimental Investigation. Int. J. Adv. Manuf. Technol. 2023, preprint. [Google Scholar] [CrossRef]
- Liu, S.; Li, Q.; Chen, W.; Tong, L.; Cheng, G. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures. Front. Mech. Eng. 2015, 10, 126–137. [Google Scholar] [CrossRef]
- Luo, Y.; Sigmund, O.; Li, Q.; Liu, S. Additive manufacturing oriented topology optimization of structures with self-supported enclosed voids. Comput. Methods Appl. Mech. Eng. 2020, 372, 113385. [Google Scholar] [CrossRef]
- Shiomi, M.; Osakada, K.; Nakamura, K.; Yamashita, T.; Abe, F. Residual Stress within Metallic Model Made by Selective Laser Melting Process. CIRP Ann. 2004, 53, 195–198. [Google Scholar] [CrossRef]
- Önder, S.; Saklakoğlu, N.; Sever, A. Selective laser melting of Ti6Al4V alloy: Effect of post-processing on fatigue life, residual stress, microstructure, microhardness and surface roughness. Mater. Charact. 2023, 196, 112571. [Google Scholar] [CrossRef]
- Kumar, V.P.; Jebaraj, A.V. Comprehensive review on residual stress control strategies in laser-based powder bed fusion process—Challenges and opportunities. Lasers Manuf. Mater. Process. 2023, 10, 400–442. [Google Scholar] [CrossRef]
- Mukherjee, T.; Elmer, J.; Wei, H.; Lienert, T.; Zhang, W.; Kou, S.; DebRoy, T. Control of grain structure, phases, and defects in additive manufacturing of high-performance metallic components. Prog. Mater. Sci. 2023, 138, 101153. [Google Scholar] [CrossRef]
- Kok, Y.; Tan, X.; Wang, P.; Nai, M.; Loh, N.; Liu, E.; Tor, S. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [Google Scholar] [CrossRef]
- Simonelli, M.; Tse, Y.; Tuck, C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Mater. Sci. Eng. A 2014, 616, 1–11. [Google Scholar] [CrossRef]
- Popovich, V.; Borisov, E.; Popovich, A.; Sufiiarov, V.; Masaylo, D.; Alzina, L. Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Mater. Des. 2017, 114, 441–449. [Google Scholar] [CrossRef]
- Yadollahi, A.; Shamsaei, N.; Thompson, S.M.; Elwany, A.; Bian, L. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. Int. J. Fatigue 2017, 94, 218–235. [Google Scholar] [CrossRef]
- Yasa, E.; Kruth, J.P.; Deckers, J. Manufacturing by combining Selective Laser Melting and Selective Laser Erosion/laser re-melting. CIRP Ann. 2011, 60, 263–266. [Google Scholar] [CrossRef]
- Yang, K.K.; Zhu, J.; Wang, C.; Jia, D.; Song, L.; Zhang, W. Experimental validation of 3D printed material behaviors and their influence on the structural topology design. Comput. Mech. 2018, 61, 581–598. [Google Scholar] [CrossRef]
- FlightCenter, N.S. Advanced Space Transportation Program: Paving the Highway to Space. 2016. Available online: https://archive.ph/Yq9EA (accessed on 1 August 2023).
- Haddad, D. Tools, processes and examples of Space Structures Optimisation. In Proceedings of the 1st European Conference on Materials and Structures in Aerospace (EUCOMAS), VDIBERICHTE, Berlin, Germany, 26–27 May 2008; Volume 2028, pp. 347–354. [Google Scholar]
- Fetisov, K.; Maksimov, P. Topology optimization and laser additive manufacturing in design process of efficiency lightweight aerospace parts. J. Phys. Conf. Ser. 2018, 1015, 052006. [Google Scholar] [CrossRef]
- Kobryn, P.A.; Ontko, N.R.; Perkins, L.P.; Tiley, J.S. Additive Manufacturing of Aerospace Alloys for Aircraft Structures. 2006. Available online: https://www.semanticscholar.org/paper/Additive-Manufacturing-of-Aerospace-Alloys-for-Kobryn-Ontko/6f5d50d21042beb12ce613d7ddb14254064055cf (accessed on 1 August 2023).
- Huang, R.; Riddle, M.; Graziano, D.; Warren, J.; Das, S.; Nimbalkar, S.; Cresko, J.; Masanet, E. Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. J. Clean. Prod. 2016, 135, 1559–1570. [Google Scholar] [CrossRef]
- Sahini, D.; Ghose, J.; Jha, S.K.; Behera, A.; Mandal, A. Optimization and Simulation of Additive Manufacturing Processes: Challenges and Opportunities—A Review. In Additive Manufacturing Applications for Metals and Composites; IGI Global: Hershey, PA, USA, 2020; pp. 187–209. [Google Scholar] [CrossRef]
- Quincieu, J.; Robinson, C.; Stucker, B.; Mosher, T. Case study: Selective laser sintering of the USUSat II small satellite structure. Assem. Autom. 2005, 25, 267–272. [Google Scholar] [CrossRef]
- Espalin, D.; Muse, D.; Macdonald, E.; Wicker, R. 3D Printing multifunctionality: Structures with electronics. Int. J. Adv. Manuf. Technol. 2014, 72, 963–978. [Google Scholar] [CrossRef]
- Obilanade, D.; Kingston, J. Spacecraft designers’ guide to using additive manufacturing processes for large metallic spacecraft structures. In Proceedings of the International Astronautical Congress, IAC, Adelaide, Australia, 25–29 September 2017; Volume 13, pp. 8280–8304. [Google Scholar]
- Cismilianu, A.M.; Munteanu, C.E.; Oncescu, I.C.; Bibire, R.P.; Stoenescu, V.; Pricop, M.V.; Rey, E.; Eyrignoux, S. End-to-end process of hollow spacecraft structures with high frequency and low mass obtained with in-house structural optimization tool and additive manufacturing. INCAS Bull. 2017, 9, 13–20. [Google Scholar] [CrossRef]
- Willner, R.; Lender, S.; Ihl, A.; Wilsnack, C.; Gruber, S.; Brandão, A.; Pambaguian, L.; Riede, M.; López, E.; Brueckner, F.; et al. Potential and challenges of additive manufacturing for topology optimized spacecraft structures. J. Laser Appl. 2020, 32, 032012. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, G.; Ehrmann, A. Metal additive manufacturing for satellites and rockets. Appl. Sci. 2021, 11, 12036. [Google Scholar] [CrossRef]
- Boschetto, A.; Bottini, L.; Macera, L.; Vatanparast, S. Additive Manufacturing for Lightweighting Satellite Platform. Appl. Sci. 2023, 13, 2809. [Google Scholar] [CrossRef]
- Rawal, S.; Brantley, J.; Karabudak, N. Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications. In Proceedings of the 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 12–14 June 2013; pp. 5–11. [Google Scholar] [CrossRef]
- Lockheed Martin. Design Evolution: Lockheed Martin is using 3-D Printed Parts for U.S. Military Satellites. 2017. Available online: https://news.lockheedmartin.com/2017-04-04-Design-Evolution-Lockheed-Martin-is-using-3-D-Printed-Parts-for-U-S-Military-Satellites (accessed on 1 August 2023).
- Krassenstein, B. Aerojet Rocketdyne 3D Prints an Entire Engine in Just Three Parts. 2014. Available online: https://3dprint.com/7355/3d-printed-engine/ (accessed on 1 August 2023).
- Spacex. SpaceX’s New SuperDraco Thrusters on Dragon V2 Feature Advanced 3D Printed Engine Chamber. 2014. Available online: https://3dprint.com/4740/spacex-dragon-2-3d-print/ (accessed on 1 August 2023).
- Ritz, D.; Misuri, T.; Raiji, H.; Pace, G.; Valentini, D.; Hadavandi, R.; Pasini, A. Additive manufacturing techniques applied to the space industry. In Proceedings of the International Astronautical Congress, IAC, October 2018; Volume 2018. [Google Scholar]
- Tian, X.; Zhao, Z.; Wang, H.; Liu, X.; Song, X. Progresses on the additive manufacturing of functionally graded metallic materials. J. Alloys Compd. 2023, 960, 170687. [Google Scholar] [CrossRef]
- Bankapalli, N.K.; Gupta, V.; Saxena, P.; Bajpai, A.; Lahoda, C.; Polte, J. Filament fabrication and subsequent additive manufacturing, debinding, and sintering for extrusion-based metal additive manufacturing and their applications: A review. Compos. Part B Eng. 2023, 264, 110915. [Google Scholar] [CrossRef]
- Williams, J.; Revington, P. Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int. J. Oral Maxillofac. Surg. 2010, 39, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Davim, J. (Eds.) Additive Manufacturing: Applications and Innovations, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Gumpinger, J.; Pambaguian, L.; Bonvoisin, B.; Makaya, A.; Pigliaru, L.; Gerard, R. Harmonisation Roadmap on Additive Manufacturing for Space Applications. 2021. Available online: https://technology.esa.int/page/harmonisation (accessed on 1 August 2023).
- Gradl, P. Principles of Directed Energy Deposition for Aerospace Applications. Seminar for WM Keck Center for 3D Innovation; NASA Technical Reports Server: Cleveland, OH, USA, 2021. [CrossRef]
- Gradl, P.; Mireles, O.R.; Katsarelis, C.; Smith, T.M.; Sowards, J.; Park, A.; Chen, P.; Tinker, D.C.; Protz, C.; Teasley, T.; et al. Advancement of extreme environment additively manufactured alloys for next generation space propulsion applications. Acta Astronaut. 2023, 211, 483–497. [Google Scholar] [CrossRef]
- Debroy, T.; Wei, H.; Zuback, J.; Mukherjee, T.; Elmer, J.; Milewski, J.; Beese, A.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components–Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Williams, J.C.; Boyer, R.R. Opportunities and issues in the application of titanium alloys for aerospace components. Metals 2020, 10, 705. [Google Scholar] [CrossRef]
- Akca, E.; Gürsel, A. A review on superalloys and IN718 nickel-based INCONEL superalloy. Period. Eng. Nat. Sci. 2015, 3. [Google Scholar] [CrossRef]
- ECSS. ECSS-E-ST-32C Rev.1–Structural General Requirements; Technical Report; ECSS: Cologne, Germany, 2008. [Google Scholar]
- Kodiyalam, S.; Nagendra, S.; DeStefano. Composite sandwich structure optimization with application to satellite components. AIAA J. 1996, 34, 614–621. [Google Scholar] [CrossRef]
- Gohar, S.; Hussain, G.; Ali, A.; Ahmad, H. Mechanical performance of honeycomb sandwich structures built by FDM printing technique. J. Thermoplast. Compos. Mater. 2023, 36, 182–200. [Google Scholar] [CrossRef]
- Aborehab, A.; Kamel, M.; Nemnem, A.F.; Kassem, M. Finite element model updating of a satellite honeycomb sandwich plate in structural dynamics. Int. J. Space Struct. 2021, 36, 105–116. [Google Scholar] [CrossRef]
- Ganilova, O.A.; Cartmell, M.P.; Kiley, A. Experimental investigation of the thermoelastic performance of an aerospace aluminium honeycomb composite panel. Compos. Struct. 2021, 257, 113159. [Google Scholar] [CrossRef]
- Luo, H.; Fu, J.; Wang, H.; Li, Y. Research on modeling method of honeycomb plate and its application on solar wing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 563, 052020. [Google Scholar] [CrossRef]
- Yan, L.; Xu, H.; Deng, Y. 3D digital mockup for honeycomb sandwich panels of satellites. In Proceedings of the 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference, ITOEC 2018, Chongqing, China, 14–16 December 2018; pp. 1956–1959. [Google Scholar] [CrossRef]
- Zheng, K.; Liao, W.; Qin, Y. Analysis and research of honeycomb sandwich structure for microsatellite based on equivalent theory. Key Eng. Mater. 2010, 426-427, 472–476. [Google Scholar] [CrossRef]
- Chen, C.; Jin, P.; Wang, D. The satellite structure topology optimization based on homogenization method and its size sensitivity analysis. Acta Mech. Solida Sin. 2005, 18, 173–180. [Google Scholar]
- Gökdağ, I.; İzgü, O.; Dağkolu, A.; Tanrıkulu, A.A.; Acar, E. Design optimization and validation for additive manufacturing: A satellite bracket application. Struct. Multidiscip. Optim. 2022, 65, 237. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, B.; Huang, S.; Dou, W.; Xin, S.; Yan, J. DMA2022-Topological Design of a Nanosatellite Structure with Optimal Frequency Responses Filled by Non-Uniform Lattices. Chin. J. Mech. Eng. 2023. preprint. [Google Scholar] [CrossRef]
- Vinay Kumar, K.; Sesha Sai CharanTej, K.; Jana, N.K.; Sharma, D.; Esakki, B. Topology Optimization and Modal Analysis of Nanosatellite Structure. In Lecture Notes in Mechanical Engineering; Springer: Singapore, 2020; pp. 17–29. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, L.; Jia, X. Optimization Design of the Spaceborne Connecting Structure for a Lightweight Space Camera. Appl. Sci. 2020, 10, 8249. [Google Scholar] [CrossRef]
- Gao, Y.X.; Yang, D.; Liu, Z.J. Optimum Design of the Support Structure of the CMG Based on CAE. In Applied Mechanics and Materials, Proceedings of the International Conference on Frontiers of Mechanical Engineering and Materials Engineering (MEME 2012), Pts 1 and 2, Hong Kong, China, 27–29 July 2012; Sung, W., Kao, J., Chen, R., Eds.; Trans Tech Publications Ltd.: Hong Kong, China, 2012; Volume 184–185, pp. 364–367. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, J.; Wu, M.; Hou, J.; Zhou, H.; Meng, L.; Li, C.; Zhang, W. Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components. Chin. J. Aeronaut. 2021, 34, 386–398. [Google Scholar] [CrossRef]
- Shi, G.; Guan, C.; Quan, D.; Wu, D.; Tang, L.; Gao, T. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing. Chin. J. Aeronaut. 2020, 33, 1252–1259. [Google Scholar] [CrossRef]
- Cohen, B.S.; March, A.I.; Willcox, K.E.; Miller, D.W. A level set-based topology optimization approach for thermally radiating structures. Struct. Multidiscip. Optim. 2022, 65, 167. [Google Scholar] [CrossRef]
- Manil, P.; Jan, Y.; Nunio, F.; Lomello, F.; Arhancet, A.; Lacroix, M.; Bachet, D.; Lapresle, J. Structural optimization, additive manufacturing and vibration testing of titanium alloy supports based on the space detector SVOM-MXT. In Proceedings of the SPIE-The International Society for Optical Engineering, Online, 6–10 April 2020; Volume 11451. [Google Scholar] [CrossRef]
- nTopology Inc. Air Force Optimizes CubeSat Bus Using Architected Materials. 2021. Available online: http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm (accessed on 1 November 2023).
- Schimmerohn, M.; Bierdel, M.; Gulde, M.; Sholes, D.; Pfaff, A.; Pielok, M.; Hoschke, K.; Horch, C.; Schäfer, F. Additive manufactured structures for the 12U nanosatellite ERNST. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4 August 2018. [Google Scholar]
- Berrocal, L.; Fernández, R.; González, S.; Periñán, A.; Tudela, S.; Vilanova, J.; Rubio, L.; Martín Márquez, J.M.; Guerrero, J.; Lasagni, F. Topology optimization and additive manufacturing for aerospace components. Prog. Addit. Manuf. 2019, 4, 83–95. [Google Scholar] [CrossRef]
- Lottes, L.M.; Kaiser, N.; Goossens, N.; Oelze, H.W.; Braxmaier, C. TOMARES: Topology optimization of an additive manufactured reaction flywheel designed for an Earth-observation satellite. CEAS Space J. 2021, 13, 521–532. [Google Scholar] [CrossRef]
- Yongxin, G.; Lihua, Z.; Zhijia, L.; Yimin, G.; Lingxi, M. Optimization Design of Star Tracker Bracket of Small Satellite for 3D Printing. In Proceedings of the 2019 5th International Conference on Control, Automation Furthermore, Robotics (ICCAR), Beijing, China, 19–22 April 2019; pp. 808–811. [Google Scholar] [CrossRef]
- Tan, L.; Li, L.; Gu, S.; Wang, D. Multi-objective topology optimization to reduce vibration of micro-satellite primary supporting structure. J. Vibroeng. 2017, 19, 831–843. [Google Scholar] [CrossRef]
- Caiazzo, F.; Alfieri, V.; Fabbricatore, A.; Argenio, P. Topological optimization and additive manufacturing of a metal functional panel for multi-mission modular satellite platform. In Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace, MetroAeroSpace 2022, Pisa, Italy, 27–29 June 2022; pp. 509–513. [Google Scholar] [CrossRef]
- Lee, H.Y.; Carroll, J.D.; Guest, J.K. Topology optimization for additively manufactured self-supporting axisymmetric structures. In Proceedings of the ASME Design Engineering Technical Conference, Online, 17–19 August 2021; Volume 3A-2021. [Google Scholar] [CrossRef]
- Orme, M.; Madera, I.; Gschweitl, M.; Ferrari, M. Topology Optimization for Additive Manufacturing as an Enabler for Light Weight Flight Hardware. Designs 2018, 2, 51. [Google Scholar] [CrossRef]
- Carvalho, S. Design Optimization for Additive Manufacturing of a 1U CubeSat’s Mechanical System. Master’s Thesis, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, 2019. [Google Scholar]
- Dell’Acqua, M. Optimization and Additive Manufacturing of a Single-Piece 1u Cubesat Primary Structure. Master’s Thesis, Politecnico Di Milano: School of Industrial and Information Engineering, Master of Science in Space Engineering, Milan, Italy, 2020. [Google Scholar]
- Esteves, M.C.G. Design Optimization for AM of MECSE CubeSat’s Mechanical System. Master’s Thesis, Universidade da Beira Interior, Covilhã, Portugal, 2018. [Google Scholar]
- Yoon, Y.H.; Moon, J.K.; Lee, E.S.; Kim, S.J.; Kim, J.H. Parallel optimal design of satellite bus structures using particle swarm optimization. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA, Honolulu, HI, USA, 23–26 April 2007; p. 1. [Google Scholar]
- Zhu, L.; Li, X.; Hu, D.; Zhou, Z. Structural Optimization Design of Shock Isolation Ring for Satellite Rocket Separation. Yuhang Xuebao/J. Astronaut. 2022, 43, 946–956. [Google Scholar] [CrossRef]
- Boudjemai, A.; Bouanane, M.H.; Merad, L.; Mohammed, A.M.S. Small satellite structural optimisation using genetic algorithm approach. In Proceedings of the 2007 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 14–16 June 2007; Volume 1, pp. 398–406. [Google Scholar] [CrossRef]
- Stevens, C.L. Design, Analysis, Fabrication, and Testing of a Nanosatellite Structure. Master’s Thesis, Faculty of the Virginia Polytechnic Institute, Blacksburg, VA, USA, 2002. Aerospace Engineer. [Google Scholar]
- Fortescue, P.; Swinerd, G.; Stark, J. Spacecraft Systems Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Dawood, S.D.S.; b. Inayatullah, O.; b. Samin, R. Computational study of the effect of using open isogrids on the natural frequencies of a small satellite structure. Acta Astronaut. 2015, 106, 120–138. [Google Scholar] [CrossRef]
- Nakamura H, M.T. The topology optimization of electronic parts mounted on micro satellite. In Proceedings of the 4th International Conference on Engineering Optimization, ENGOPT 2014, Lisbon, Portugal, 8–11 September 2014. [Google Scholar]
- Hai, H.; Haichao, A.; Haibo, M.; Chen, S. An engineering method for complex structural optimization involving both size and topology design variables. Int. J. Numer. Methods Eng. 2019, 117, 291–315. [Google Scholar] [CrossRef]
- Yahg, S.; Sha, W.; Chen, C.Z.; Zhang, X.X.; Ren, J.Y. Design and optimization of carbon fiber framework for space camera. Guangxue Jingmi Gongcheng/Opt. Precis. Eng. 2017, 25, 697–705. [Google Scholar] [CrossRef]
- Vogel, D.; Geismayr, L.; Langer, M.; Leslabay, P.; Schlick, G. Combining additive manufacturing and biomimetics for the optimization of satellite structures. In Proceedings of the International Astronautical Congress, IAC, Bremen, Germany, 1–5 October 2018; Volume 2018. [Google Scholar]
- Kaiser, N.; Nils, G.; Ane, J.; Laraudogoitia, I.; Psarras, S.; Stavros, T. Advanced manufacturing concept of a bio-inspired reaction wheel rotor for small- and medium-sized constellation satellites. CEAS Space J. 2023, 1, 1–4. [Google Scholar] [CrossRef]
- ISO/ASTM 52942:2020; Additive Manufacturing—Qualification Principles—Qualifying Machine Operators of Laser Metal Powder Bed Fusion Machines and Equipment Used in Aerospace Applications. Technical Report; ISO/ASTM: Geneva, Switzerland, 2020.
- ISO/ASTM 52926-1; Additive Manufacturing of Metals—Qualification Principles—Part 1: General Qualification of Operators. ISO/ASTM: Geneva, Switzerland, 2023; Under development.
- ISO/ASTM 52926-2; Additive Manufacturing of Metals—Qualification Principles—Part 2: Qualification of Operators for PBF-LB. ISO/ASTM: Geneva, Switzerland, 2023; Under development.
- ISO/ASTM 52926-3; Additive Manufacturing of Metals—Qualification Principles—Part 3: Qualification of Operators for PBF-EB. ISO/ASTM: Geneva, Switzerland, 2023; Under development.
- ISO/ASTM 52926-4; Additive Manufacturing of Metals—Qualification Principles—Part 4: Qualification of Operators for DED-LB. ISO/ASTM: Geneva, Switzerland, 2023; Under development.
- ISO/ASTM 52926-5; Additive Manufacturing of Metals—Qualification Principles—Part 5: Qualification of Operators for DED-Arc. ISO/ASTM: Geneva, Switzerland, 2023; Under development.
- MSFC-STD-3716; Standard for Additively Manufactured Spaceflight Hardware by Laser Powder Bed Fusion in Metals. NASA Marshall Space Flight Center: Huntsville, AL, USA, 2017.
- MSFC-SPEC-3717; Specification for Control and Qualification of Laser Powder Bed Fusion Metallurgical Processes. NASA Marshall Space Flight Center: Huntsville, AL, USA, 2017.
- NASA-STD-6030; Additive Manufacturing Requirements for Spaceflight Systems. NASA Office of the Chief Engineer: Washington, DC, USA, 2021.
- Wang, C.; Zhao, Z.; Zhou, M.; Sigmund, O.; Zhang, X. A comprehensive review of educational articles on structural and multidisciplinary optimization. Struct. Multidiscip. Optim. 2021, 64, 2827–2880. [Google Scholar] [CrossRef]
- Liu, S.; Wang, q.; Gao, R. A topology optimization method for design of small GPR antennas. Struct. Multidiscip. Optim. 2014, 50, 1165–1174. [Google Scholar] [CrossRef]
- Zhou, S.; Li, W.; Li, Q. Level-set based topology optimization for electromagnetic dipole antenna design. J. Comput. Phys. 2010, 229, 6915–6930. [Google Scholar] [CrossRef]
- Erentok, A.; Sigmund, O. Topology Optimization of Sub-Wavelength Antennas. IEEE Trans. Antennas Propag. 2011, 59, 58–69. [Google Scholar] [CrossRef]
- Hassan, E.; Wadbro, E.; Berggren, M. Topology Optimization of Metallic Antennas. IEEE Trans. Antennas Propag. 2014, 62, 2488–2500. [Google Scholar] [CrossRef]
- Zhu, S.H.; Yang, X.S.; Wang, J.; Wang, B.Z. Miniaturization of patch antenna based on hybrid topology optimization. Int. J. Microw. Comput.-Aided Eng. 2020, 30, e22308. [Google Scholar] [CrossRef]
- Herscovici, N.; Osorio, M.; Peixeiro, C. Miniaturization of rectangular microstrip patches using genetic algorithms. IEEE Antennas Wirel. Propag. Lett. 2002, 1, 94–97. [Google Scholar] [CrossRef]
- Ouedraogo, R.O.; Rothwell, E.J.; Diaz, A.; Chen, S.Y.; Temme, A.; Fuchi, K. In Situ Optimization of Metamaterial-Inspired Loop Antennas. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 75–78. [Google Scholar] [CrossRef]
Topology Optimisation Approaches | ||
---|---|---|
Continuum Approaches | Discrete Approaches | Diverse Approaches |
Homogenisation Method | Evolutionary Structural Optimisation (ESO) | Machine Learning Applied to TO |
Level-Set Method (LSM) | Moving Morphable Voids (MMV) | Multi-Physics TO |
Phase-Field Method | Soft-Kill Bidirectional ESO (SBESO) | Multi-Scale TO |
Solid Isotropic Material with Penalty (SIMP) | Metaheuristic Algorithms | |
Topology Derivative Method | Metaheuristic Hybrid Algorithms |
Metaheuristic Algorithms | ||
---|---|---|
Ant Colony Algorithm | Electro-Search Algorithm | Simulated Annealing (SA) |
Artificial Immune System Algorithm | Firefly Algorithm | Symbiotic Organisms Search Algorithm |
Bacterial Chemotaxis | Genetic Algorithms (GAs) | Plasma Generation Algorithm |
Bat Algorithm | Harmony Search (HS) | |
Differential Evolution | Particle Swarm (PSO) |
Metaheuristic Hybrid Algorithms | ||
---|---|---|
ESO with GA | BESO with HS | BESO with SA |
BESO with GA | BESO with PSO | SIMP with a GA |
Ni-Base | Fe-Base | Cu-Base | Al-Base | Refractory | Ti-Base | Co-Base | Bimetalic |
---|---|---|---|---|---|---|---|
Inconel 625 | SS 17-4PH | GRCop-84 | AlSi10Mg | W | Ti6Al4V | CoCr | GRCop-84/IN625 |
Inconel 718 | SS 15-5 GP1 | GRCop-42 | A205 | W-25Re | -TiAl | Stellite 6 | C18150/IN625 |
Hastelloy-X | SS 304L | C18150 | F357 | Mo | Ti-6–2-4–2 | Stellite 21 | |
Haynes 230 | SS 316L | C18200 | 2024 | Mo-41Re | Haynes 188 | ||
Haynes 214 | SS 420 | Glidcop | 4047 | Mo-47.5Re | |||
Haynes 282 | Tool Steel (4140/4340) | CU110 | 6061 | C-103 | |||
Monel K-500 | Invar 36 | 7050 | Ta | ||||
C-276 | SS347 | ||||||
Rene 80 | JBK-75 | ||||||
Waspalloy | NASA HR- 1 |
Acceleration (Hz) | Frequency (Hz) | Square Root of the Sum of the Squares | |
---|---|---|---|
X-axis | 20 | 112 | 24.4 |
Y-axis | 10 | 138 | 24.4 |
Z-axis | 8.7 | 148 | 18.9 |
Zone | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Lower bound (mm) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Initial value (mm) | 5 | 5 | 5 | 15 | 10 | 5 | 5 | 5 | 10 | 10 |
Upper bound (mm) | 10 | 10 | 10 | 15 | 10 | 10 | 10 | 10 | 10 | 10 |
Optimised value (mm) | 8.5 | 9 | 5 | 15 | 10 | 4 | 5 | 8 | 3 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtado-Pérez, A.B.; Pablo-Sotelo, A.d.J.; Ramírez-López, F.; Hernández-Gómez, J.J.; Mata-Rivera, M.F. On Topology Optimisation Methods and Additive Manufacture for Satellite Structures: A Review. Aerospace 2023, 10, 1025. https://doi.org/10.3390/aerospace10121025
Hurtado-Pérez AB, Pablo-Sotelo AdJ, Ramírez-López F, Hernández-Gómez JJ, Mata-Rivera MF. On Topology Optimisation Methods and Additive Manufacture for Satellite Structures: A Review. Aerospace. 2023; 10(12):1025. https://doi.org/10.3390/aerospace10121025
Chicago/Turabian StyleHurtado-Pérez, Arturo Benjamín, Abraham de Jesús Pablo-Sotelo, Fabián Ramírez-López, Jorge Javier Hernández-Gómez, and Miguel Felix Mata-Rivera. 2023. "On Topology Optimisation Methods and Additive Manufacture for Satellite Structures: A Review" Aerospace 10, no. 12: 1025. https://doi.org/10.3390/aerospace10121025
APA StyleHurtado-Pérez, A. B., Pablo-Sotelo, A. d. J., Ramírez-López, F., Hernández-Gómez, J. J., & Mata-Rivera, M. F. (2023). On Topology Optimisation Methods and Additive Manufacture for Satellite Structures: A Review. Aerospace, 10(12), 1025. https://doi.org/10.3390/aerospace10121025