Effects of Magnetic Field Gradient on the Performance of a Magnetically Shielded Hall Thruster
Abstract
:1. Introduction
2. Computational Methods
2.1. PIC-MCC Method
2.2. Magnetic Field Configuration and Model Validation
3. Results and Discussion
3.1. Simulation of the Hall Thruster and Performance Results
3.2. Plasma Properties and Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Frieman, J.D.; Gilland, J.H.; Kamhawi, H.; Mackey, J.; Williams, J.G.J.; Hofer, R.R.; Peterson, P.Y. Wear trends of the 12.5 kw hermes hall thruster. J. Appl. Phys. 2021, 130, 143303. [Google Scholar] [CrossRef]
- Tajmar, M.; Sedmik, R.; Scharlemann, C. Numerical simulation of smart-1 hall-thruster plasma interactions. J. Propuls. Power 2009, 25, 1178–1188. [Google Scholar] [CrossRef]
- Kim, V.P. On the longitudinal distribution of electric field in the acceleration zones of plasma accelerators and thrusters with closed electron drift. Plasma Phys. Rep. 2017, 43, 486–498. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.; Ding, Y.; Xu, F.; Bao, L.; Meng, Y.; Li, H.; Wei, L.; Yu, D. Effects of the peak magnetic field location on discharge performance of a 100-W hall thruster with large gradient magnetic field. Vacuum 2022, 199, 110965. [Google Scholar] [CrossRef]
- Mikellides, I.G.; Katz, I.; Hofer, R.R.; Goebel, D.M.; de Grys, K.; Mathers, A. Magnetic shielding of the channel walls in a hall plasma accelerator. Phys. Plasmas 2011, 18, 033501. [Google Scholar] [CrossRef]
- Mikellides, I.G.; Katz, I.; Hofer, R.R.; Goebel, D.M. Magnetic shielding of a laboratory hall thruster. I. Theory and validation. J. Appl. Phys. 2014, 115, 043303. [Google Scholar] [CrossRef]
- de Grys, K.; Mathers, A.; Welander, B.; Khayms, V. Demonstration of 10,400 hours of operation on 4.5 kw qualification model hall thruster. In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, USA, 25 July 2010. pp. AIAA 2010-6698. [Google Scholar] [CrossRef]
- Li, H.; Fan, H.; Liu, X.; Ding, M.; Ding, Y.; Wei, L.; Yu, D.; Wang, X. Effect of magnetic field configuration on discharge characteristic of a hall effect thruster with a variable channel. Vacuum 2019, 162, 78–84. [Google Scholar] [CrossRef]
- Morozov, A.I.; Esipchuk, Y.V.; Kapulkin, A.M.; Nevrovskii, V.A.; Smirnov, V.A. Effect of the magnetic field on a closed-electron-drift accelerator. Sov. Phys. Tech. Phys. 1972, 17, 612–619. [Google Scholar]
- Garrigues, L.; Hagelaar, G.J.M.; Bareilles, J.; Boniface, C.; Boeuf, J.P. Model study of the influence of the magnetic field configuration on the performance and lifetime of a hall thruster. Phys. Plasmas 2003, 10, 4886–4892. [Google Scholar] [CrossRef]
- Gorshkov, O.A.; Shagayda, A.A.; Irishkov, S.V. The influence of the magnetic field topology on hall thruster performance. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA, USA, 9 July 2006. pp. AIAA 2006-4472. [Google Scholar] [CrossRef]
- E, P.; Duan, P.; Jiang, B.-H.; Liu, H.; Wei, L.-Q.; Xu, D.-G. On the effect of magnetic field gradient on the discharge characteristics of hall thrusters. Acta Phys. Sin. Ed. 2010, 59, 7182–7190. [Google Scholar] [CrossRef]
- Mazouffre, S.; Bourgeois, G.; Vaudolon, J.; Garrigues, L.; Hénaux, C.; Harribey, D.; Vilamot, R.; Rossi, A.; Zurbach, S.; Le Méhauté, D. Development and testing of hall thruster with flexible magnetic field configuration. J. Propuls. Power 2015, 31, 1167–1174. [Google Scholar] [CrossRef]
- Ma, D.; Zeng, D.; Wang, L.; Ding, Y.; Wei, L.; Li, H.; Yu, D. Numerical simulation study on the influence of channel geometry on discharge characteristics of low-power magnetically shielded hall thrusters. Vacuum 2020, 180, 109547. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Zhong, C.; Hu, Y.; Ding, Y.; Wei, L.; Yu, D. Matching characteristics of magnetic field configuration and chamfered channel wall in a magnetically shielded hall thruster. Plasma Sci. Technol. 2021, 23, 104008. [Google Scholar] [CrossRef]
- Garrigues, L.; Santhosh, S.; Grimaud, L.; Mazouffre, S. Operation of a low-power hall thruster: Comparison between magnetically unshielded and shielded configuration. Plasma Sources Sci. Technol. 2019, 28, 034003. [Google Scholar] [CrossRef]
- Grimaud, L.; Mazouffre, S. Ion behavior in low-power magnetically shielded and unshielded hall thrusters. Plasma Sources Sci. Technol. 2017, 26, 055020. [Google Scholar] [CrossRef]
- Grimaud, L.; Mazouffre, S. Performance comparison between standard and magnetically shielded 200 w hall thrusters with BN-SiO2 and graphite channel walls. Vacuum 2018, 155, 514–523. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Hu, Y.; Zhong, C.; Ding, Y.; Wei, L.; Yu, D. Expanding the design freedom of the chamfered wall shape of a magnetically shielded hall thruster. Vacuum 2023, 207, 111603. [Google Scholar] [CrossRef]
- Szabo, J.J. Fully Kinetic Numerical Modeling of a Plasma Thruster. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001. [Google Scholar]
- Taccogna, F.; Longo, S.; Capitelli, M.; Schneider, R. Self-similarity in hall plasma discharges: Applications to particle models. Phys. Plasmas 2005, 12, 053502. [Google Scholar] [CrossRef]
- Liu, H.; Wu, B.; Yu, D.; Cao, Y.; Duan, P. Particle-in-cell simulation of a hall thruster. J. Phys. D Appl. Phys. 2010, 43, 165202. [Google Scholar] [CrossRef]
- Cho, S.; Watanabe, H.; Kubota, K.; Funaki, I. The effects of cathode boundary condition on particle simulation of a spt-100-like hall thruster. In Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar] [CrossRef]
- Wei, L.; Gao, Q.; Li, W.; Li, H.; Ding, Y.; Lv, Y.; Wu, F.; Gu, W.; Yu, D. Simulation of plasma dynamics during discharge ignition in hall thruster. Eur. Phys. J. D 2019, 73, 55. [Google Scholar] [CrossRef]
- Mahalingam, S. Particle Based Plasma Simulation for an Ion Engine Discharge Chamber. Ph.D. Thesis, Wright State University, Dayton, OH, USA, 2007. [Google Scholar]
- Mikellides, I.G.; Ortega, A.L. Challenges in the development and verification of first-principles models in hall-effect thruster simulations that are based on anomalous resistivity and generalized ohm’s law. Plasma Sources Sci. Technol. 2019, 28, 014003. [Google Scholar] [CrossRef]
- Lafleur, T.; Baalrud, S.D.; Chabert, P. Theory for the anomalous electron transport in hall effect thrusters. II. Kinetic model. Phys. Plasmas 2016, 23, 053503. [Google Scholar] [CrossRef]
- Cao, X.; Liu, H.; Yu, D. Simulation of discharge process of hall thruster under the internal and external cathode conditions. Eur. Phys. J. Appl. Phys. 2020, 90, 10801. [Google Scholar] [CrossRef]
- Ding, Y.; Wei, L.; Jia, D.; Yu, D. Relationship between magnetic field strength and discharge voltage of aton-type hall thrusters. Phys. Scr. 2014, 89, 085602. [Google Scholar] [CrossRef]
- Ding, Y.; Li, P.; Zhang, X.; Wei, L.; Sun, H.; Peng, W.; Yu, D. Effects of the magnetic field gradient on the wall power deposition of hall thrusters. J. Plasma Phys. 2017, 83, 905830205. [Google Scholar] [CrossRef]
- Haas, J.; Gulczinski, I.F.; Gallimore, A.; Spanjers, G.; Spores, R. Performance characteristics of a 5 kw laboratory hall thruster. In Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 13 July 1998. pp. AIAA 1998-3503. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, W.; Wei, L.; Sun, G.; Li, H.; Yu, D. Computer simulations of hall thrusters without wall losses designed using two permanent magnetic rings. J. Phys. D Appl. Phys. 2016, 49, 465001. [Google Scholar] [CrossRef]
- Hopping, E.P.; Huang, W.; Xu, K.G. Small hall effect thruster with 3d printed discharge channel: Design and thrust measurements. Aerospace 2021, 8, 227. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Xu, S.; Ling, W.Y.L.; Ren, J.; Tang, H. Three-dimensional measurement of a stationary plasma plume with a Faraday probe array. Aerosp. Sci. Technol. 2021, 110, 106480. [Google Scholar] [CrossRef]
- Chen, F.F. Introduction to Plasma Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2016; pp. 18–19. [Google Scholar]
- Beal, B.E.; Gallimore, A.D. Energy analysis of a hall thruster cluster. In Proceedings of the 28th International Electric Propulsion Conference, Toulouse, France, 17–21 March 2003. [Google Scholar]
Parameter | Value |
---|---|
Computational domain, axial length, Z (m) | 5 × 10−2 |
Computational domain radius, R(m) | 8.2 × 10−2 |
Time step (s) | 5 × 10−12 |
Grid size (m) | 5 × 10−4 |
Case Number | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 |
---|---|---|---|---|---|
Maximum Axial Gradients of Br (T/m) | 1.2 | 1.3 | 1.52 | 2.11 | 3.33 |
Performance | T/mN | Isp-an/s | ηan |
---|---|---|---|
Experiment | 76.13 | 1681 | 46.5% |
Simulation | 75.44 | 1673 | 45.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Li, Y.; Hu, Y.; Mao, W. Effects of Magnetic Field Gradient on the Performance of a Magnetically Shielded Hall Thruster. Aerospace 2023, 10, 942. https://doi.org/10.3390/aerospace10110942
Liu Q, Li Y, Hu Y, Mao W. Effects of Magnetic Field Gradient on the Performance of a Magnetically Shielded Hall Thruster. Aerospace. 2023; 10(11):942. https://doi.org/10.3390/aerospace10110942
Chicago/Turabian StyleLiu, Qi, Yong Li, Yanlin Hu, and Wei Mao. 2023. "Effects of Magnetic Field Gradient on the Performance of a Magnetically Shielded Hall Thruster" Aerospace 10, no. 11: 942. https://doi.org/10.3390/aerospace10110942
APA StyleLiu, Q., Li, Y., Hu, Y., & Mao, W. (2023). Effects of Magnetic Field Gradient on the Performance of a Magnetically Shielded Hall Thruster. Aerospace, 10(11), 942. https://doi.org/10.3390/aerospace10110942