Temperature and Precipitation Extremes over the Iberian Peninsula under Climate Change Scenarios: A Review
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy and Strategy of Exclusion
2.2. Selection Criteria
- Types of studies: Observational and/or numerical modeling studies;
- Topic: extreme events related to temperature and precipitation (see Section 2.3);
- Methods: statistical methods and/or climate change indices;
- Region: Preferably the Iberian Peninsula but Global or Europa as long as they cover the IP;
- Author: Relevant author with reference study;
- Period: historical and climate projections.
2.3. Concept of Weather Extreme Events and Climate Extremes
3. Results
3.1. Observed Changes and Future Projections in Temperature
3.2. Observed Changes and Future Projections in Precipitation
3.3. Simulations of Temperature and Precipitation Using Climate Models
3.4. Uncertainties in Regional Climate Modelling
Multi-Model or Multi-Physics Ensembles
4. Summary
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fischer, E.; Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Chang. 2016, 6, 986–991. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [Green Version]
- Di Sante, F.; Coppola, E.; Giorgi, F. Projections of river floods in Europe using EURO-CORDEX, CMIP5 and CMIP6 simulations. Int. J. Clim. 2021, 41, 3203–3221. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers, World Meteorological Organization, Geneva, Switzerland. 2018. Available online: https://www.ipcc.ch/sr15/chapter/spm/ (accessed on 27 July 2021).
- Pereira, S.C.; Marta-Almeida, M.; Carvalho, A.C.; Rocha, A. Heat wave and cold spell changes in Iberia for a future climate scenario. Int. J. Clim. 2017, 37, 5192–5205. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.; Pereira, S.C.; Rocha, A. Future surface temperature changes for the Iberian Peninsula according to EURO-CORDEX climate projections. Clim. Dyn. 2021, 56, 123–138. [Google Scholar] [CrossRef]
- Quesada, B.; Vautard, R.; Yiou, P.; Hirschi, M.; Seneviratne, S. Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat. Clim. Chang. 2012, 2, 736–741. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Herold, N.; Dittus, A. Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations. J. Geophys. Res. Atmos. 2016, 121, 11174–11189. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, R.M.; Soares, P.M.M.; Lima, D.C.A.; Miranda, P.M.A. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal. Clim. Dyn. 2019, 52, 129–157. [Google Scholar] [CrossRef]
- Ramos, A.M.; Trigo, R.; Santo, F.E. Evolution of extreme temperatures over Portugal: Recent changes and future scenarios. Clim. Res. 2011, 48, 177–192. [Google Scholar] [CrossRef]
- Viceto, C.; Pereira, S.C.; Rocha, A. Climate Change Projections of Extreme Temperatures for the Iberian Peninsula. Atmosphere 2019, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Katragkou, E.; García-Díez, M.; Vautard, R.; Sobolowski, S.; Zanis, P.; Alexandri, G.; Cardoso, R.M.; Colette, A.; Fernandez, J.; Gobiet, A.; et al. Regional climate hindcast simulations within EURO-CORDEX: Evaluation of a WRF multi-physics ensemble. Geosci. Model. Dev. 2015, 8, 603–618. [Google Scholar] [CrossRef] [Green Version]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.A.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions: Checklist and Explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Wartenburger, R.; Guillod, B.P.; Hirsch, A.; Vogel, M.M.; Brovkin, V.; Van Vuuren, D.P.; Schaller, N.; Boysen, L.; Calvin, K.V.; et al. Climate extremes, land-climate feedbacks and land-use forcing at 1.5 °C. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20160450. [Google Scholar] [CrossRef]
- Understanding the Impacts of 1.5 °C Global Warming above Pre-Industrial Levels and Related Global Emission Pathways in the Context of Strengthening the Response to the Threat of Climate Change, Sustainable Development and Efforts to Eradicate Poverty. Available online: https://www.ipcc.ch/sr15/ (accessed on 27 July 2021).
- Donat, M.G.; Alexander, L.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Jerez, S.; Montavez, J.P.; Jimenez-Guerrero, P.; Gomez-Navarro, J.J.; Lorente-Plazas, R.; Zorita, E. A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Clim. Dyn. 2013, 40, 3023–3046. [Google Scholar] [CrossRef]
- Carvalho, M.; Melo-Gonçalves, P.; Teixeira, J.C.; Rocha, A. Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Phys. Chem. Earth Parts A/B/C 2016, 94, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, D.; Carvalho, M.; Marta-Almeida, M.; Melo-Gonçalves, P.; Rocha, A. Recent trends of extreme temperature indices for the Iberian Peninsula. Phys. Chem. Earth Parts A/B/C 2016, 94, 66–76. [Google Scholar] [CrossRef]
- Hidalgo, J.C.G.; Peña-Angulo, D.; Brunetti, M.; Cortesi, N. Recent trend in temperature evolution in Spanish mainland (1951–2010): From warming to hiatus. Int. J. Clim. 2015, 36, 2405–2416. [Google Scholar] [CrossRef]
- Seneviratne, S.; Donat, M.; Pitman, A.J.; Knutti, R.; Wilby, R.L. Allowable CO2 emissions based on regional and impact-related climate targets. Nat. Cell Biol. 2016, 529, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Schleussner, C.-F.; Pfleiderer, P.; Fischer, E. In the observational record half a degree matters. Nat. Clim. Chang. 2017, 7, 460–462. [Google Scholar] [CrossRef]
- Schleussner, C.-F.; Lissner, T.K.; Fischer, E.M.; Wohland, J.; Perrette, M.; Golly, A.; Rogelj, J.; Childers, K.; Schewe, J.; Frieler, K.; et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °C and 2 °C. Earth Syst. Dyn. 2016, 7, 327–351. [Google Scholar] [CrossRef] [Green Version]
- Wartenburger, R.; Hirschi, M.; Donat, M.G.; Greve, P.; Pitman, A.J.; Seneviratne, S.I. Changes in regional climate extremes as a function of global mean temperature: An interactive plotting framework. Geosci. Model. Dev. 2017, 10, 3609–3634. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.; AchutaRao, K.; Allen, M.; Bethke, I.; Beyerle, U.; Ciavarella, A.; Forster, P.M.; Fuglestvedt, J.; Gillett, N.; Haustein, K.; et al. Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design. Geosci. Model. Dev. 2017, 10, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.; Allen, M.R.; Hall, J.W.; Muller, B.; Rajamani, L.; Le Quéré, C. The myriad challenges of the Paris Agreement. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20180066. [Google Scholar] [CrossRef] [PubMed]
- Vautard, R.; Gobiet, A.; Sobolowski, S.; Kjellström, E.; Stegehuis, A.I.; Watkiss, P.; Mendlik, T.; Landgren, O.; Nikulin, G.; Teichmann, C.; et al. The European climate under a 2 °C global warming. Environ. Res. Lett. 2014, 9, 034006. [Google Scholar] [CrossRef]
- Maule, C.F.; Mendlik, T.; Christensen, O.B. The effect of the pathway to a two degrees warmer world on the regional temperature change of Europe. Clim. Serv. 2017, 7, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Wehner, M.; Stone, D.; Mitchell, D.; Shiogama, H.; Fischer, E.; Graff, L.S.; Kharin, V.V.; Lierhammer, L.; Sanderson, B.; Krishnan, H. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble. Earth Syst. Dyn. 2018, 9, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Kharin, V.V.; Flato, G.M.; Zhang, X.; Gillett, N.P.; Zwiers, F.; Anderson, K.J. Risks from Climate Extremes Change Differently from 1.5 °C to 2.0 °C Depending on Rarity. Earth’s Futur. 2018, 6, 704–715. [Google Scholar] [CrossRef]
- Kjellström, E.; Nikulin, G.; Strandberg, G.; Christensen, O.B.; Jacob, D.; Keuler, K.; Lenderink, G.; van Meijgaard, E.; Schär, C.; Somot, S.; et al. European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth Syst. Dyn. 2018, 9, 459–478. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Kotova, L.; Teichmann, C.; Sobolowski, S.P.; Vautard, R.; Donnelly, C.; Koutroulis, A.; Grillakis, M.; Tsanis, I.K.; Damm, A.; et al. Climate Impacts in Europe Under +1.5 °C Global Warming. Earth’s Futur. 2018, 6, 264–285. [Google Scholar] [CrossRef] [Green Version]
- Betts, R.A.; Alfieri, L.; Bradshaw, C.; Caesar, J.; Feyen, L.; Friedlingstein, P.; Gohar, L.; Koutroulis, A.; Lewis, K.; Morfopoulos, C.; et al. Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5 °C and 2 °C global warming with a higher-resolution global climate model. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20160452. [Google Scholar] [CrossRef]
- Cutter, S.; Osman-Elasha, B.; Campbell, J.; Cheong, S.-M.; McCormick, S.; Pulwarty, R.; Supratid, S.; Ziervogel, G. Managing the Risks from Climate Extremes at the at the Local Level. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Thomas, F., Qin, D., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 291–338. [Google Scholar]
- Aerenson, T.; Tebaldi, C.; Sanderson, B.; Lamarque, J.-F. Changes in a suite of indicators of extreme temperature and precipitation under 1.5 and 2 degrees warming. Environ. Res. Lett. 2018, 13, 035009. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems. Available online: https://www.ipcc.ch/sr15/chapter/chapter-3/ (accessed on 27 July 2021).
- Dosio, A.; Mentaschi, L.; Fischer, E.M.; Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 054006. [Google Scholar] [CrossRef] [Green Version]
- Rocha, A.; Pereira, S.C.; Viceto, C.; Silva, R.; Neto, J.; Marta-Almeida, M. A Consistent Methodology to Evaluate Temperature and Heat Wave Future Projections for Cities: A Case Study for Lisbon. Appl. Sci. 2020, 10, 1149. [Google Scholar] [CrossRef] [Green Version]
- Santo, F.E.; De Lima, M.I.P.; Ramos, A.M.; Trigo, R.M.; Coelho, M.F.E.S. Trends in seasonal surface air temperature in mainland Portugal, since 1941. Int. J. Clim. 2014, 34, 1814–1837. [Google Scholar] [CrossRef]
- Andrade, C.; Fraga, H.; dos Santos, J.C.A. Climate change multi-model projections for temperature extremes in Portugal. Atmospheric Sci. Lett. 2013, 15, 149–156. [Google Scholar] [CrossRef]
- WMO. Weather extremes in a Changing Climate: Hindsight on Foresight. World Meteorol. Organ. 2011, 1075, 17. [Google Scholar]
- Coumou, D.; Robinson, A. Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett. 2013, 8, 034018. [Google Scholar] [CrossRef]
- Vogel, M.M.; Zscheischler, J.; Wartenburger, R.; Dee, D.; Seneviratne, S.I. Concurrent 2018 Hot Extremes Across Northern Hemisphere Due to Human-Induced Climate Change. Earth’s Futur. 2019, 7, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Hidalgo, J.; Brunetti, M.; De Luis, M. Precipitation trends in Spanish hydrological divisions, 1946–2005. Clim. Res. 2010, 43, 215–228. [Google Scholar] [CrossRef]
- Karagiannidis, A.F.; Karacostas, T.; Maheras, P.; Makrogiannis, T. Climatological aspects of extreme precipitation in Europe, related to mid-latitude cyclonic systems. Theor. Appl. Clim. 2011, 107, 165–174. [Google Scholar] [CrossRef]
- Costa, A.C.; dos Santos, J.C.A.; Pinto, J.G. Climate change scenarios for precipitation extremes in Portugal. Theor. Appl. Clim. 2011, 108, 217–234. [Google Scholar] [CrossRef]
- De Lima, M.I.P.; Santo, F.E.; Ramos, A.; Trigo, R. Trends and correlations in annual extreme precipitation indices for mainland Portugal, 1941–2007. Theor. Appl. Clim. 2015, 119, 55–75. [Google Scholar] [CrossRef]
- Rajczak, J.; Schär, C. Projections of Future Precipitation Extremes over Europe: A Multimodel Assessment of Climate Simulations. J. Geophys. Res. Atmos. 2017, 122, 10773–10800. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, H.-O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- O’Gorman, P.A. Precipitation Extremes under Climate Change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, P.M.M.; Cardoso, R.M.; Lima, D.C.A.; Miranda, P. Future precipitation in Portugal: High-resolution projections using WRF model and EURO-CORDEX multi-model ensembles. Clim. Dyn. 2017, 49, 2503–2530. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Soares, P.M.M.; Miranda, P.M.A.; Belo-Pereira, M. WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int. J. Climatol. 2012, 33, 2591–2608. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Trigo, R.; Lopez-Moreno, I.; Liberato, M.; Lorenzo-Lacruz, J.; Beguería, S.; Morán-Tejeda, E.; Kenawy, A. Extreme winter precipitation in the Iberian Peninsula in 2010: Anomalies, driving mechanisms and future projections. Clim. Res. 2011, 46, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Andrade, C.; dos Santos, J.C.A.; Pinto, J.G.; Corte-Real, J.A.M. Large-scale atmospheric dynamics of the wet winter 2009–2010 and its impact on hydrology in Portugal. Clim. Res. 2011, 46, 29–41. [Google Scholar] [CrossRef] [Green Version]
- de Lima, M.I.P.; Santo, F.E.; Ramos, A.M.; de Lima, J.L. Recent changes in daily precipitation and surface air temperature extremes in mainland Portugal, in the period 1941–2007. Atmospheric Res. 2013, 127, 195–209. [Google Scholar] [CrossRef]
- Ramos, A.; Trigo, R.; Liberato, M.L.R.; Tomé, R. Daily Precipitation Extreme Events in the Iberian Peninsula and Its Association with Atmospheric Rivers. J. Hydrometeorol. 2015, 16, 579–597. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Cardoso, R.M.; Ferreira, J.J.; Miranda, P. Climate change and the Portuguese precipitation: ENSEMBLES regional climate models results. Clim. Dyn. 2015, 45, 1771–1787. [Google Scholar] [CrossRef]
- Merino, A.; Fernández-Vaquero, M.; Lopez, L.; González, L.H.; Hermida, L.; Sanchez, J.L.; García-Ortega, E.; Gascón, E. Large-scale patterns of daily precipitation extremes on the Iberian Peninsula. Int. J. Clim. 2015, 36, 3873–3891. [Google Scholar] [CrossRef]
- Santos, J.A.; Belo-Pereira, M.; Fraga, H.; Pinto, J.G. Understanding climate change projections for precipitation over western Europe with a weather typing approach. J. Geophys. Res. Atmos. 2016, 121, 1170–1189. [Google Scholar] [CrossRef] [Green Version]
- Sousa, P.M.; Trigo, R.; Barriopedro, D.; Soares, P.; Ramos, A.; Liberato, M.L.R. Responses of European precipitation distributions and regimes to different blocking locations. Clim. Dyn. 2016, 48, 1141–1160. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, L.; Seneviratne, S. Anthropogenic climate change affects meteorological drought risk in Europe. Environ. Res. Lett. 2016, 11, 044005. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Seneviratne, S.I.; Zhang, X. Anthropogenic climate change detected in European renewable freshwater resources. Nat. Clim. Chang. 2017, 7, 813–816. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Bréon, F.-M.; Church, J.A.; Cubasch, U.; Emori, S.; et al. (Eds.) 2013 Technical Summary. In Climate Change 2013—The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 33–118. [Google Scholar]
- IPCC. Climate Change 2013—The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, Uk; New York, NY, USA, 2014; 1535p. [Google Scholar]
- Roderick, M.L.; Greve, P.; Farquhar, G.D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 2015, 51, 5450–5463. [Google Scholar] [CrossRef] [Green Version]
- Casanueva, A.; Herrera, S.; Fernández, J.; Gutiérrez, J. Towards a fair comparison of statistical and dynamical downscaling in the framework of the EURO-CORDEX initiative. Clim. Chang. 2016, 137, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.C.; Marta-Almeida, M.; Carvalho, A.C.; Rocha, A. Extreme precipitation events under climate change in the Iberian Peninsula. Int. J. Climatol. 2020, 40, 1255–1278. [Google Scholar] [CrossRef]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model. Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2011, 112, 449–468. [Google Scholar] [CrossRef]
- Hertig, E.; Maraun, D.; Bartholy, J.; Pongracz, R.; Vrac, M.; Mares, I.; Gutiérrez, J.M.; Wibig, J.; Casanueva, A.; Soares, P.M.M. Comparison of statistical downscaling methods with respect to extreme events over Europe: Validation results from the perfect predictor experiment of the COST Action VALUE. Int. J. Clim. 2018, 39, 3846–3867. [Google Scholar] [CrossRef]
- Giorgi, F.; Gutowski, W.J. Regional Dynamical Downscaling and the CORDEX Initiative. Annu. Rev. Environ. Resour. 2015, 40, 467–490. [Google Scholar] [CrossRef]
- Giorgi, F.; Gao, X.-J. Regional earth system modeling: Review and future directions. Atmospheric Ocean. Sci. Lett. 2018, 11, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Dyrrdal, A.V.; Stordal, F.; Lussana, C. Evaluation of summer precipitation from EURO-CORDEX fine-scale RCM simulations over Norway. Int. J. Clim. 2018, 38, 1661–1677. [Google Scholar] [CrossRef]
- Fantini, A.; Raffaele, F.; Torma, C.; Bacer, S.; Coppola, E.; Giorgi, F.; Ahrens, B.; Dubois, C.; Sanchez, E.; Verdecchia, M. Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations. Clim. Dyn. 2018, 51, 877–900. [Google Scholar] [CrossRef]
- Berg, P.; Christensen, O.B.; Klehmet, K.; Lenderink, G.; Olsson, J.; Teichmann, C.; Yang, W. Summertime precipitation extremes in a EURO-CORDEX 0.11° ensemble at an hourly resolution. Nat. Hazards Earth Syst. Sci. 2019, 19, 957–971. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.; Frías, M.D.; Cabos, W.D.; Cofiño, A.S.; Domínguez, M.; Fita, L.; Gaertner, M.A.; García-Díez, M.; Gutiérrez, J.M.; Jiménez-Guerrero, P.; et al. Consistency of climate change projections from multiple global and regional model intercomparison projects. Clim. Dyn. 2019, 52, 1139–1156. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Maraun, D.; Widmann, M.; Huth, R.; Hertig, E.; Benestad, R.; Roessler, O.; Wibig, J.; Wilcke, R.; Kotlarski, S.; et al. An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment. Int. J. Clim. 2019, 39, 3750–3785. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A.; Truhetz, H.; Keuler, K.; Goergen, K.; Teichmann, C.; Maule, C.F.; Van Meijgaard, E.; Déqué, M.; Nikulin, G.; et al. Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Clim. Dyn. 2016, 46, 383–412. [Google Scholar] [CrossRef] [Green Version]
- Cattiaux, J.; Douville, H.; Peings, Y. European temperatures in CMIP5: Origins of present-day biases and future uncertainties. Clim. Dyn. 2013, 41, 2889–2907. [Google Scholar] [CrossRef]
- Kawazoe, S.; Gutowski, W.J. Regional, Very Heavy Daily Precipitation in NARCCAP Simulations. J. Hydrometeorol. 2013, 14, 1212–1227. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- García-Díez, M.; Fernández, J.; Vautard, R. An RCM multi-physics ensemble over Europe: Multi-variable evaluation to avoid error compensation. Clim. Dyn. 2015, 45, 3141–3156. [Google Scholar] [CrossRef] [Green Version]
- Casanueva, A.; Kotlarski, S.; Herrera, S.; Fernández, J.; Gutiérrez, J.M.; Boberg, F.; Colette, A.; Christensen, O.B.; Goergen, K.; Jacob, D.; et al. Daily precipitation statistics in a EURO-CORDEX RCM ensemble: Added value of raw and bias-corrected high-resolution simulations. Clim. Dyn. 2016, 47, 719–737. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A. Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J. Geophys. Res. Atmos. 2016, 121, 5488–5511. [Google Scholar] [CrossRef]
- LeDuc, M.; Matthews, M.L.H.D.; De Elía, M.L.R. Regional estimates of the transient climate response to cumulative CO2 emissions. Nat. Clim. Chang. 2016, 6, 474–478. [Google Scholar] [CrossRef]
- Casanueva, A.; Bedia, J.; Herrera, S.; Fernández, J.; Gutierrez, J.M. Direct and component-wise bias correction of multi-variate climate indices: The percentile adjustment function diagnostic tool. Clim. Chang. 2018, 147, 411–425. [Google Scholar] [CrossRef] [Green Version]
- Lhotka, O.; Kyselý, J.; Farda, A. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor. Appl. Clim. 2018, 131, 1043–1054. [Google Scholar] [CrossRef]
- García-Díez, M.; Fernández, J.; Fita, L.; Yagüe, C. Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q. J. R. Meteorol. Soc. 2012, 139, 501–514. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Kotamarthi, V.R. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America. Earth’s Futur. 2015, 3, 268–288. [Google Scholar] [CrossRef]
- Vautard, R.; Gobiet, A.; Jacob, D.; Belda, M.; Colette, A.; Déqué, M.; Fernández, J.; García-Díez, M.; Goergen, K.; Güttler, I.; et al. The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim. Dyn. 2013, 41, 2555–2575. [Google Scholar] [CrossRef]
- Maraun, D.; Huth, R.; Gutiérrez, J.M.; Martín, D.S.; Dubrovsky, M.; Fischer, A.; Hertig, E.; Soares, P.M.M.; Bartholy, J.; Pongrácz, R.; et al. The VALUE perfect predictor experiment: Evaluation of temporal variability. Int. J. Clim. 2017, 39, 3786–3818. [Google Scholar] [CrossRef]
- Casanueva, A.; Rodríguez-Puebla, C.; Frías, M.D.; González-Reviriego, N. Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrol. Earth Syst. Sci. 2014, 18, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Argüeso, D.; Hidalgo-Muñoz, J.M.; Gámiz-Fortis, S.R.; Esteban-Parra, M.J.; Dudhia, J.; Castro-Díez, Y. Evaluation of WRF Parameterizations for Climate Studies over Southern Spain Using a Multistep Regionalization. J. Clim. 2011, 24, 5633–5651. [Google Scholar] [CrossRef]
- Abramowitz, G.; Herger, N.; Gutmann, E.; Hammerling, D.; Knutti, R.; Leduc, M.; Lorenz, R.; Pincus, R.; Schmidt, G.A. ESD Reviews: Model dependence in multi-model climate ensembles: Weighting, sub-selection and out-of-sample testing. Earth Syst. Dyn. 2019, 10, 91–105. [Google Scholar] [CrossRef] [Green Version]
Type of Change Already Observed | Documented Findings | References | |
---|---|---|---|
How much has mean surface air temperature in the IP increase in the last decades? | 0.75 °C to 1.5 °C relative to 1850–1900 | [5,6,7,9,10,19,20,28,29,37,38,40,42,43,79,89] | |
Extremes based on daily temperature | Higher maximum temperatures | +0.15 °C to +0.54 °C per decade | |
Hot to extreme hot days | +0.8 days to +6 days per decade | ||
Tropical nights | +0.24 days +6 days per decade | ||
Warm spells | +0.25 days to +10 days per decade | ||
Higher minimum temperatures | +0.27 °C to + 0.49 °C per decada | ||
Cold to extreme cold days | –0.91 days to –1 day per decade | ||
Cold nights | –1 day per decade | ||
Extremes based on daily precipitation | Mean total precipitation | –44.60 mm per decade | [1,2,44,45,46,47,48,50,51,53,54,55,56,57,58,59,60,62,65,67,73,74,75,78,85] |
Precipiation intensity | –0.19 mm per decade | ||
Above 99th percentile | +1.17 mm per decade | ||
Fraction above 95th percentile | +0.30% per decade | ||
RX1D | +0.25 mm per decade | ||
RX5D | –2.29 mm per decade | ||
Very to extremely wet days | –0.43 to –1.69 days per decade |
What Are the Climate Models Projections for the IP for the 21st Century? | Findings | References | |
---|---|---|---|
Based on daily temperature | Mean surface air temperature | Mean and maximum temperatures are projected to increase around 2 °C (4 °C) for the 2046–2065 (2081–2100) period in all seasons and scenarios. Summer temperature can increase up to 6 °C to 8 °C by the end of the century. | [4,5,6,7,8,9,10,12,14,15,16,18,19,20,21,22,23,24,26,27,28,29,31,32,33,35,37,38,39,40,41,42,43,49,63,64,71,76,79,84,85,89,92] |
Minimum temperature | Increased minimum temperatures in all seasons and scenario with mean annual temperature increases up to 2 °C. | ||
Maximum temperature | Annual maxima temperature increases up to 4 °C annual maxima reaching more than 8 °C at a 2 °C warming level | ||
Hot to extreme extreme hot days (tmax >40 °C) | 10 to 60 days/year for mid century | ||
Summer days (Tmax> 25 °C) | Up to 30 to 60 more days for mid-century and the end of century, respectively | ||
Tropical nights | On average 60 to 100 more tropical nights days by the end of the century | ||
Heatwaves | Yearly average number of heat waves increases by seven to ninefold by 2100. Up to a mean of six more heatwaves (three to 10-fold more heatwaves). In cities the number of heatwaves per year will increase on average from 10 (present) to 38 in mid-century and 63 by the end of the century. | ||
Heatwaves frequency | 100 events in the 2071–2100 period (more than 3 per year) will cover the whole country | ||
Heatwaves duration | Most frequent length rises from 5 to 22 days throughout the 21st century with 5% of the longest events will last for more than one month. Mean duration up to 10 days (triple in relation to historical period). Possibility of mega/extreme heatwaves (temperatures exceeding the 40 °C most days and some consecutive days of more than 45 °C, in particular for the central-south IP. | ||
Heatwaves intensity | Half of the heat waves will be stronger than the extreme heat wave of 2003; increases up to 4 °C (triple duration in historical period) reaching the end-of-century with mean intensity up to 6 °C (5 times than the hsitorical period) | ||
Cold days/cold spells/frost days/cold nights | Almost disappears due to strong reductions in minimum temperature | ||
Frost days | Reduction up to 80 days during the 21st century | ||
Exposure area to hot extremes | Projected to increase | ||
Based on daily precipitation | Annual precipitation | Reductions up to10% to 15% for mid-century and 20% to 40% at a 2 °C warming level more prominent in southern areas | [1,2,4,8,14,15,18,21,22,23,24,25,27,31,32,33,34,35,41,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,63,64,70,76,84,85,92] |
Summer precipitation | Reduction of up to 80% by end-of-century with median decreases of 11% for Spain | ||
Winter precipitation | Increase | ||
Spring precipitation | Decrease | ||
Autumn precipitation | Slighty decreases | ||
Precipitation events (duration)/wet days | Redution across all seasons | ||
Extreme precipitation indicators * | Daily precipitation | reduction | |
RX5day | Slight increase up to 5% towards 0% at a 2 °C warming level | ||
Winter heavy precipitation | Increases shown in different MIPs projects change from 7% to 14%. Signal also present for spring but less evident in summer and autumn | ||
Extreme precipitation | Increase | ||
Exposure area to mean and heavy precipitation | Annual reductions up to 20% to 40% | ||
Wet days | Decreases up to 60% fewer days | ||
Dry days | Dryness trend more pronunced by the end of century |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, S.C.; Carvalho, D.; Rocha, A. Temperature and Precipitation Extremes over the Iberian Peninsula under Climate Change Scenarios: A Review. Climate 2021, 9, 139. https://doi.org/10.3390/cli9090139
Pereira SC, Carvalho D, Rocha A. Temperature and Precipitation Extremes over the Iberian Peninsula under Climate Change Scenarios: A Review. Climate. 2021; 9(9):139. https://doi.org/10.3390/cli9090139
Chicago/Turabian StylePereira, Susana C., David Carvalho, and Alfredo Rocha. 2021. "Temperature and Precipitation Extremes over the Iberian Peninsula under Climate Change Scenarios: A Review" Climate 9, no. 9: 139. https://doi.org/10.3390/cli9090139
APA StylePereira, S. C., Carvalho, D., & Rocha, A. (2021). Temperature and Precipitation Extremes over the Iberian Peninsula under Climate Change Scenarios: A Review. Climate, 9(9), 139. https://doi.org/10.3390/cli9090139