The Potential Role of Climate Indices to Explain Floods, Mass-Movement Events and Wildfires in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Database
2.2.1. Natural Hazards Dataset
2.2.2. Climate Dataset
2.3. Methods
- -
- R01mm: annual count of days when precipitation was ≥1 mm;
- -
- R03mm: annual count of days when precipitation was ≥3 mm;
- -
- R10mm: annual count of days when precipitation was ≥10 mm;
- -
- R20mm: annual count of days when precipitation was ≥20 mm;
- -
- R50mm: annual count of days when precipitation was ≥50 mm;
- -
- R95TOT: annual total precipitation when daily precipitation ≥95th percentile;
- -
- R95F: fraction of the total annual precipitation, when daily precipitation ≥95th percentile;
- -
- R99TOT: annual total precipitation when daily precipitation ≥99th percentile;
- -
- R99F: fraction of the total annual precipitation, when daily precipitation ≥99th percentile;
- -
- RX1day: maximum annual daily precipitation value;
- -
- RX5day: maximum annual 5-daily precipitation value;
- -
- LWP: maximum number of consecutive “wet days” in a year (“wet day” is a day with a precipitation ≥1 mm);
- -
- RTWD: cumulative annual precipitation on the basis of the daily precipitation ≥1 mm.
3. Results
3.1. Climate Indices and Mass-Movements
3.2. Floods and Climate Indices
3.3. Wildfires
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, O.; Pinto, I.R.C.A.; Ferro, M.A.S. A study of the long-term variability of thunderstorm days in southeast Brazil. J. Geophys. Res. Atmos. 2013, 118, 5231–5246. [Google Scholar] [CrossRef]
- Ojara, M.A.; Yunsheng, L.; Babaousmail, H.; Wasswa, P. Trends and zonal variability of extreme rainfall events over East Africa during 1960–2017. Nat. Hazards 2021, 109, 33–61. [Google Scholar] [CrossRef]
- Taszarek, M.; Allen, J.T.; Marchio, M.; Brooks, H.E. Global climatology and trends in convective environments from ERA5 and rawinsonde data. NPJ Clim. Atmos. Sci. 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Aceto, L.; Caloiero, T.; Pasqua, A.A.; Petrucci, O. Analysis of damaging hydrogeological events in a Mediterranean region (Calabria). J. Hydrol. 2016, 541, 510–522. [Google Scholar] [CrossRef]
- Fuchs, S.; Keiler, M.; Sokratov, S.; Shnyparkov, A. Spatiotemporal dynamics: The need for an innovative approach in mountain hazard risk management. Nat. Hazards 2012, 68, 1217–1241. [Google Scholar] [CrossRef]
- Dowling, C.A.; Santi, P.M. Debris flows and their toll on human life: A global analysis of debris-flow fatalities from 1950 to 2011. Nat. Hazards 2013, 71, 203–227. [Google Scholar] [CrossRef]
- Cánovas, J.B.; Stoffel, M.; Corona, C.; Schraml, K.; Gobiet, A.; Tani, S.; Sinabell, F.; Fuchs, S.; Kaitna, R. Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance. Sci. Total Environ. 2016, 557–558, 142–153. [Google Scholar] [CrossRef]
- Guzzetti, F.; Stark, C.; Salvati, P. Evaluation of Flood and Landslide Risk to the Population of Italy. Environ. Manag. 2005, 36, 15–36. [Google Scholar] [CrossRef]
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Petrucci, O.; Pasqua, A.A. Historical climatology of storm events in the Mediterranean: A case study of damaging hydrological events in Calabria, Southern Italy. In Storminess and Environmental Change; Series: Advances in Natural and Technological Hazards Research 39; Springer: Amsterdam, The Netherlands, 2014; pp. 249–268. [Google Scholar]
- Centre for Research on the Epidemiology of Disasters; United Nations Office for Disaster Risk Reduction. The Human Cost of Disasters—An Overview of the Last 20 Years 2000–2019; Report; CRED: Brussels, Belgium; UNDRR: Geneva, Switzerland, 2020; p. 30. [Google Scholar]
- Hall, J.E.; Beechie, T.J.; Pess, G.R. Influence of Climate and Land Cover on River Discharge in the North Fork Stillaguamish River; Human cost of Disasters. An Overwiew pf the Last 20 Years 2000–2019; Contract Report by NOAA Fisheries, Northwest Fisheries Science Center, Seattle, Washington for the Stillaguamish Tribe of Indians, WA, USA, June 2014. p. 41. Available online: https://salishsearestoration.org/images/d/dc/Hall_et_al_2014_climate_and_land_cover_effects_on_stillaguamish_discharge.pdf (accessed on 10 October 2021).
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Crosbie, R.S.; Scanlon, B.R.; Mpelasoka, F.S.; Reedy, R.C.; Gates, J.B.; Zhang, L. Potential climate change effects on groundwater recharge in the High Plains Aquifer, USA. Water Resour. Res. 2013, 49, 3936–3951. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Peña-Gallardo, M.; Tomas-Burguera, M.; Domínguez-Castro, F.; Martín, N.; Beguería, S.; El Kenawy, A.; Noguera, I.; García, M. A high-resolution spatial assessment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015. Nat. Hazards Earth Syst. Sci. 2019, 19, 1189–1213. [Google Scholar] [CrossRef] [Green Version]
- Mozny, M.; Trnka, M.; Brázdil, R. Climate change driven changes of vegetation fires in the Czech Republic. Theor. Appl. Clim. 2020, 143, 691–699. [Google Scholar] [CrossRef]
- Bevan, S.L.; Los, S.O.; North, P. Response of vegetation to the 2003 European drought was mitigated by height. Biogeosciences 2014, 11, 2897–2908. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. WMO Statement on the State of the Global Climate in 2017; WMO-No. 1212; World Meteorological Organization: Geneve, Switzerland, 2018. [Google Scholar]
- Munich Re Group. Annual Report 2020; Munich Re Group: Munich, Germany, 2020; pp. 1–219. [Google Scholar]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.K.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Space Phys. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Sutanto, S.J.; van Lanen, H.A.J. Hydrological Drought Characteristics Based on Groundwater and Runoff Across Europe. Proc. Int. Assoc. Hydrol. Sci. 2020, 383, 281–290. [Google Scholar] [CrossRef]
- Thompson, M.P.; Calkin, D.E. Uncertainty and risk in wildland fire management: A review. J. Environ. Manag. 2011, 92, 1895–1909. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry Technical Report 35; Canadian Forest Service Publications: Ottawa, ON, Canada, 1987. [Google Scholar]
- Carvalho, A.; Flannigan, M.; Logan, K.; Miranda, A.; Borrego, C. Fire Activity in Portugal and Its Relationship to Weather and the Canadian Fire Weather Index System. Int. J. Wildland Fire 2008, 17, 328–338. [Google Scholar] [CrossRef]
- Ganatsas, P.; Antonis, M.; Marianthi, T. Development of an adapted empirical drought index to the Mediterranean conditions for use in forestry. Agric. For. Meteorol. 2011, 151, 241–250. [Google Scholar] [CrossRef]
- Stocks, B.J.; Fosberg, M.A.; Lynham, T.J.; Mearns, L.; Wotton, B.M.; Yang, Q.; Jin, J.-Z.; Lawrence, K.; Hartley, G.R.; Mason, J.A.; et al. Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests. Clim. Chang. 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Bedia, J.; Herrera, S.; Camia, A.; Moreno, J.M.; Gutiérrez, J.M. Forest fire danger projections in the Mediterranean using ensembles regional climate change scenarios. Clim. Chang. 2013, 122, 185–199. [Google Scholar] [CrossRef] [Green Version]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Moreno, M.V.; Conedera, M.; Chuvieco, E.; Pezzatti, G.B. Fire regime changes and major driving forces in Spain from 1968 to 2010. Environ. Sci. Policy 2014, 37, 11–22. [Google Scholar] [CrossRef]
- Mateus, P.; Fernandes, P.M. Forest Fires in Portugal: Dynamics, Causes and Policies. In Forest Context and Policies in Portugal, Present and Future Challenges; World Forests Series; Reboredo, F., Ed.; Springer: Cham, Switzerland, 2014; Volume 19, Chapter IV; pp. 97–115. [Google Scholar]
- Turco, M.; Bedia, J.; di Liberto, F.; Fiorucci, P.; von Hardenberg, J.; Koutsias, N.; Llasat, M.-C.; Xystrakis, F.; Provenzale, A. Decreasing Fires in Mediterranean Europe. PLoS ONE 2016, 11, e0150663. [Google Scholar] [CrossRef] [Green Version]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earl, N.; Simmonds, I. Spatial and Temporal Variability and Trends in 2001–2016 Global Fire Activity. J. Geophys. Res. Atmos. 2018, 123, 2524–2536. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Williamson, G.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.C.; Catry, F.; Armesto, J.; Bond, W.J.; González, M.E.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2019, 15, 011001. [Google Scholar] [CrossRef]
- Trigo, R.M.; Sousa, P.M.; Pereira, M.G.; Rasilla, D.; Gouveia, C.M. Modelling wildfire activity in Iberia with different atmospheric circulation weather types. Int. J. Clim. 2013, 36, 2761–2778. [Google Scholar] [CrossRef]
- Turco, M.; von Hardenberg, J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lung, T.; Lavalle, C.; Hiederer, R.; Dosio, A.; Bouwer, L.M. A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Glob. Environ. Chang. 2012, 23, 522–536. [Google Scholar] [CrossRef]
- Vitolo, C.; di Napoli, C.; di Giuseppe, F.; Cloke, H.L.; Pappenberger, F. Mapping combined wildfire and heat stress hazards to improve evidence-based decision making. Environ. Int. 2019, 127, 21–34. [Google Scholar] [CrossRef]
- Caroletti, G.N.; Coscarelli, R.; Caloiero, T. A sub-regional approach to the influence analysis of teleconnection patterns on precipitation in Calabria (Southern Italy). Int. J. Clim. 2021, 41, 4574–4586. [Google Scholar] [CrossRef]
- Gariano, S.L.; Petrucci, O.; Rianna, G.; Santini, M.; Guzzetti, F. Impacts of past and future land changes on landslides in southern Italy. Reg. Environ. Chang. 2017, 18, 437–449. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Caloiero, T.; Coscarelli, R. Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index. Water Resour. Manag. 2014, 29, 557–573. [Google Scholar] [CrossRef]
- Sirangelo, B.; Caloiero, T.; Coscarelli, R.; Ferrari, E. Stochastic analysis of long dry spells in Calabria (Southern Italy). Theor. Appl. Clim. 2015, 127, 711–724. [Google Scholar] [CrossRef]
- Koppen, W. Das Geographisce System der Klimate. In Handbuch der Klimatologie; Das Geographisce System der Klimate: Stuttgart, Germany, 1936; pp. 1–44. [Google Scholar]
- Urbieta, I.R.; Zavala, G.; Bedia, J.; Gutiérrez, J.M.; Miguel-Ayanz, J.S.; Camia, A.; E Keeley, J.; Moreno, J.M. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific Western USA. Environ. Res. Lett. 2015, 10, 114013. [Google Scholar] [CrossRef] [Green Version]
- Paletto, A.; Notaro, S.; Pastorella, F.; Giacovelli, G.; Giovannelli, S.; Turco, R. Forest certification in Calabria (Italy): Attitudes, preferences and willingness to pay of manufactures and enterprises of forest-wood chain. For. Riv. Selvic. Ecol. For. 2017, 14, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Barbati, A.; Corona, P.; Marchetti, M. A forest typology for monitoring sustainable forest management: The case of European Forest Types. Plant. Biosyst. Int. J. Deal. Asp. Plant. Biol. 2007, 141, 93–103. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Calfapietra, C.; Fernandes, P. Fire Hazard and Flammability of European Forest Types. In Post-Fire Management and Restoration of Southern European Forests; Managing Forest Ecosystems; Moreira, F., Arianoutsou, M., Corona, P., de las Heras, J., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 24, pp. 79–92. [Google Scholar]
- Polemio, M.; Petrucci, O. The occurrence of floods and the role of climate variations from 1880 in Calabria (Southern Italy). Nat. Hazards Earth Syst. Sci. 2012, 12, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Canale, C.; Barbaro, G.; Foti, G.; Petrucci, O.; Besio, G.; Fiamma, V.; Barillà, G.C.; Puntorieri, P.; Bruzzaniti, L. Floods and sea storms: Analysis of contemporaneity conditions in Calabria, Italy. In Proceedings of the Eighth International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, 16–18 March 2020; Volume 11524, p. 68. [Google Scholar]
- Petrucci, O.; Pasqua, A.A.; Gullà, G. Landslide damage assessment using the Support Analysis Framework (SAF): The 2009 landsliding event in Calabria (Italy). Adv. Geosci. 2010, 26, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Gariano, S.; Rianna, G.; Petrucci, O.; Guzzetti, F. Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale. Sci. Total Environ. 2017, 596–597, 417–426. [Google Scholar] [CrossRef]
- Gullà, G.; Caloiero, T.; Coscarelli, R.; Petrucci, O. A proposal for a methodological approach to the characterisation of Widespread Landslide Events: An application to Southern Italy. Nat. Hazards Earth Syst. Sci. 2012, 12, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Petrucci, O.; Gullà, G. A Support Analysis Framework for mass movement damage assessment: Applications to case studies in Calabria (Italy). Nat. Hazards Earth Syst. Sci. 2009, 9, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Petrucci, O.; Pasqua, A.A. The study of past damaging hydrogeological events for damage susceptibility zonation. Nat. Hazards Earth Syst. Sci. 2008, 8, 881–892. [Google Scholar] [CrossRef]
- Caloiero, T.; Pasqua, A.A.; Petrucci, O. Damaging Hydrogeological Events: A Procedure for the Assessment of Severity Levels and an Application to Calabria (Southern Italy). Water 2014, 6, 3652–3670. [Google Scholar] [CrossRef] [Green Version]
- Gariano, S.L.; Petrucci, O.; Guzzetti, F. Changes in the occurrence of rainfall-induced landslides in Calabria, Southern Italy, in the 20th century. Nat. Hazards Earth Syst. Sci. 2015, 15, 2313–2330. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, M.; Caloiero, T.; Coscarelli, R.; Gullà, G.; Nanni, T.; Simolo, C. Precipitation variability and change in the Calabria region (Italy) from a high resolution daily dataset. Int. J. Clim. 2010, 32, 57–73. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E.; Sirangelo, B. Trend analysis of monthly mean values and extreme indices of daily temperature in a region of southern Italy. Int. J. Clim. 2017, 37, 284–297. [Google Scholar] [CrossRef]
- Alexander, L.V.; Fowler, H.J.; Bador, M.; Behrangi, A.; Donat, M.G.; Dunn, R.; Goldie, J.; Lewis, E.; Rogé, M.; Seneviratne, S.I.; et al. On the use of indices to study extreme precipitation on sub-daily and daily timescales. Environ. Res. Lett. 2019, 14, 125008. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.K.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Nicholls, N.; Ghazi, A. (Eds.) Weather and Climate Extremes: Changes, Variations and a Perspective from the Insurance Industry; Springer: Berlin, Germnany, 1999. [Google Scholar]
- Peterson, T.C.; Manton, M.J. Monitoring Changes in Climate Extremes: A Tale of International Collaboration. Bull. Am. Meteorol. Soc. 2008, 89, 1266–1271. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Alexander, L.V.; Donat, M.G.; Zhang, X.; Bador, M.; Herold, N.; Lippmann, T.; Allan, R.; Aguilar, E.; Barry, A.A.; et al. Development of an Updated Global Land in situ-Based Data Set of Temperature and Precipitation Extremes: HadEX3. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Domínguez-Castro, F.; Reig, F.; Vicente-Serrano, S.M.; Aguilar, E.; Peña-Angulo, D.; Noguera, I.; Revuelto, J.; van der Schrier, G.; El Kenawy, A.M. A multidecadal assessment of climate indices over Europe. Sci. Data 2020, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Klein Tank, A.M.G.; Können, G.P. Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946–1999. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; Lopez-Moreno, I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Lopez-Moreno, I.; Drumond, A.; Gimeno, L.; Nieto, R.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Beguería, S.; Zabalza, J. Effects of warming processes on droughts and water resources in the NW Iberian Peninsula (1930–2006). Clim. Res. 2011, 48, 203–212. [Google Scholar] [CrossRef]
- Wang, W.; Guo, B.; Zhang, Y.; Zhang, L.; Ji, M.; Xu, Y.; Zhang, X.; Zhang, Y. The sensitivity of the SPEI to potential evapotranspiration and precipitation at multiple timescales on the Huang-Huai-Hai Plain, China. Theor. Appl. Clim. 2020, 143, 87–99. [Google Scholar] [CrossRef]
- Keetch, J.J.; Byram, G.M. A Drought Index for Forest Fire Control; Forest Service Research Paper SE-38; United States Department of Agriculture—Forest Service: Asheville, NC, USA, November 1968.
- Alexander, M.E. Computer Calculation of the Keetch-Byram Drought Index-Programmers Beware! Fire Manag. Notes 1990, 51, 23–25. [Google Scholar]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Fauria, M.M.; Michaletz, S.T.; Johnson, E.A. Predicting climate change effects on wildfires requires linking processes across scales. Wiley Interdiscip. Rev. Clim. Chang. 2010, 2, 99–112. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Special Report of the Intergovernmental Panel on Climate Change 9781107025; Cambridge University Press: Cambridge, UK, 2012; pp. 109–230. [Google Scholar]
- Seneviratne, S.I.; Lüthi, D.; Litschi, M.; Schär, C. Land–atmosphere coupling and climate change in Europe. Nat. Cell Biol. 2006, 443, 205–209. [Google Scholar] [CrossRef]
- Kuglitsch, F.G.; Toreti, A.; Xoplaki, E.; Della Marta, P.M.; Zerefos, C.S.; Türkes, M.; Luterbacher, J. Heat wave changes in the eastern Mediterranean since 1960. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoerling, M.P.; Eischeid, J.K.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P.J. On the Increased Frequency of Mediterranean Drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef] [Green Version]
ID | Station Name | Elevation | ID | Station Name | Elevation |
---|---|---|---|---|---|
900 | Albidona | 810 | 2086 | Mongiana | 921 |
930 | Villapiana Scalo | 5 | 2090 | Fabrizia | 948 |
970 | Cassano allo Ionio | 251 | 2130 | Roccella Ionica | 5 |
1000 | Domanico | 736 | 2150 | Fabrizia–Cassari | 970 |
1010 | Cosenza | 242 | 2160 | Gioiosa Ionica | 125 |
1030 | San Pietro in Guarano | 660 | 2180 | Antonimina–Canolo Nuovo | 880 |
1060 | Montalto Uffugo | 468 | 2200 | Antonimina | 310 |
1092 | Camigliatello–Monte Curcio | 1730 | 2210 | Ardore Superiore | 250 |
1100 | Cecita | 1180 | 2230 | Plati’ | 300 |
1120 | Acri | 790 | 2260 | San Luca | 250 |
1130 | Torano Scalo | 97 | 2270 | Sant’Agata del Bianco | 380 |
1140 | Tarsia | 203 | 2290 | Staiti | 550 |
1180 | Castrovillari | 353 | 2310 | Capo Spartivento | 48 |
1185 | Castrovillari–Camerata | 82 | 2320 | Bova Superiore | 905 |
1230 | San Sosti | 404 | 2340 | Roccaforte del Greco | 930 |
1324 | Corigliano Calabro | 219 | 2380 | Montebello Ionico | 470 |
1360 | Longobucco | 770 | 2450 | Reggio Calabria | 15 |
1380 | Cropalati | 367 | 2465 | Cardeto | 670 |
1410 | Cariati Marina | 10 | 2470 | Gambarie d’Aspromonte | 1200 |
1440 | Crucoli | 367 | 2510 | Scilla | 73 |
1455 | Ciro’ Marina–Punta Alice | 10 | 2540 | Santa Cristina d’Aspromonte | 510 |
1495 | Botte Donato | 1928 | 2560 | Sinopoli | 502 |
1500 | Nocelle–Arvo | 1315 | 2580 | Molochio | 310 |
1580 | Cerenzia | 663 | 2600 | Cittanova | 407 |
1670 | Cutro | 169 | 2610 | Rizziconi | 114 |
1675 | Crotone–Papanice | 156 | 2670 | Arena | 450 |
1680 | Crotone | 5 | 2690 | Feroleto della Chiesa | 160 |
1695 | Crotone–Salica | 162 | 2710 | Mammola–Limina C.C. | 800 |
1700 | Isola di Capo Rizzuto–Campolongo | 90 | 2730 | Mileto | 368 |
1733 | Roccabernarda -Serrarossa | 49 | 2740 | Rosarno | 61 |
1740 | San Mauro Marchesato | 288 | 2760 | Joppolo | 185 |
1760 | Botricello | 18 | 2780 | Zungri | 578 |
1780 | Cropani | 347 | 2800 | Vibo Valentia | 498 |
1820 | Soveria Simeri | 366 | 2815 | Capo Vaticano | 30 |
1825 | Taverna–Ciricilla | 1270 | 2830 | Filadelfia | 550 |
1830 | Albi | 710 | 2890 | Tiriolo | 690 |
1850 | Catanzaro | 334 | 2940 | Nicastro–Bella | 400 |
1865 | Borgia–Roccelletta | 8 | 2955 | Lamezia Terme-Palazzo | 24 |
1910 | Gimigliano | 550 | 2990 | Parenti | 830 |
1935 | Cenadi–Serralta | 1013 | 3000 | Rogliano | 650 |
1940 | Palermiti | 480 | 3040 | Amantea | 54 |
1960 | Chiaravalle Centrale | 714 | 3060 | Paola | 160 |
1965 | Satriano Marina | 10 | 3090 | Cetraro Superiore | 416 |
1970 | Soverato Marina | 29 | 3100 | Belvedere Marittimo | 10 |
1980 | Serra San Bruno | 790 | 3150 | Laino Borgo | 250 |
1995 | Spadola | 714 | 3160 | Campotenese | 965 |
2040 | Monasterace–Punta Stilo | 70 |
X (Climate Index) | Average or Maximum Values | Correlation Equation (Y = Number of Landslides) | R2 | SE |
---|---|---|---|---|
R01mm | Ave | Y = exp (0.0571∙X) | 0.5227 | 107.7 |
Max | Y = exp (0.039867∙X) | 0.5007 | 110.2 | |
R03mm | Ave | Y = exp (0.077585∙X) | 0.6194 | 96.17 |
Max | Y = exp (0.0504919∙X) | 0.5251 | 107.4 | |
R10mm | Ave | Y = exp (0.149571∙X) | 0.7412 | 79.31 |
Max | Y = exp (0.085465∙X) | 0.5938 | 99.36 | |
R20mm | Ave | Y = exp (0.29148∙X) | 0.6047 | 98.01 |
Max | Y = exp (0.153742∙X) | 0.6798 | 88.21 | |
R50mm | Ave | Y = 72.652∙X | 0.7591 | 115.5 |
Max | Y = 21.32∙X | 0.7429 | 119.3 | |
R95TOT | Ave | Y = exp(0.0116363∙X) | 0.4345 | 117.2 |
Max | Y = 0.2258∙X | 0.6892 | 131.2 | |
R95F | Ave | Y = 6.4044∙X | 0.6386 | 141.5 |
Max | Y = 3.2616∙X | 0.5862 | 151.3 | |
R99TOT | Ave | Y = 1.5829∙X | 0.7303 | 122.2 |
Max | Y = 0.39027∙X | 0.6641 | 136.4 | |
R99F | Ave | Y = 17.868∙X | 0.6317 | 142.8 |
Max | Y = 5.2515∙X | 0.6159 | 145.8 | |
RX1Day | Ave | Y = 2.0164 ∙X | 0.6365 | 141.9 |
Max | Y = 0.6957∙X | 0.5957 | 149.6 | |
RX5Day | Ave | Y = 1.2002∙X | 0.6439 | 140.4 |
Max | Y = 0.49332∙X | 0.6490 | 139.4 | |
LWP | Ave | Y = 25.19∙X | 0.6073 | 148.0 |
Max | Y = 12.04∙X | 0.5765 | 153.1 | |
RTWD | Ave | Y = exp (0.004396∙X) | 0.7090 | 84.09 |
Max | Y = exp (0.002393∙X) | 0.6837 | 87.67 |
Province | X (Climate Index) | Average or Maximum Values | Correlation Equation (Y = Number of Landslides) | R2 | SE |
---|---|---|---|---|---|
Catanzaro | R10mm | Max | Y = exp (0.075053∙X) | 0.4563 | 22.76 |
Cosenza | R10mm | Ave | Y = exp (0.117878∙X) | 0.8436 | 26.85 |
Crotone | R01mm | Ave | Y = exp (0.043440∙X) | 0.1497 | 19.42 |
Vibo Valentia | R50mm | Ave | Y = 5.8475∙X | 0.8002 | 10.35 |
Reggio Calabria | RTWD | Max | Y = exp (0.002059∙X) | 0.5359 | 27.62 |
X (Climate Index) | Average or Maximum Values | Correlation Equation (Y = Number of Floods) | R2 | SE |
---|---|---|---|---|
R01mm | Ave | Y = exp (0.044562∙X) | 0.2861 | 39.91 |
Max | Y = exp (0.030629∙X) | 0.1086 | 44.6 | |
R03mm | Ave | Y = exp (0.060293∙X) | 0.2801 | 40.08 |
Max | Y = exp (0.038725∙X) | 0.0899 | 45.06 | |
R10mm | Ave | Y = exp (0.116947∙X) | 0.3429 | 38.29 |
Max | Y = exp (0.068318∙X) | 0.5141 | 32.92 | |
R20mm | Ave | Y = exp (0.227150∙X) | 0.1236 | 44.22 |
Max | Y = exp (0.122100∙X) | 0.5145 | 32.91 | |
R50mm | Ave | Y = 22.585∙X | 0.7632 | 35.5 |
Max | Y = 6.5998∙X | 0.7408 | 37.14 | |
R95TOT | Ave | Y = 0.19032∙X | 0.7627 | 35.54 |
Max | Y = 0.069233∙X | 0.6741 | 41.64 | |
R95F | Ave | Y = 2.0734∙X | 0.6964 | 40.20 |
Max | Y = 1.049∙X | 0.6309 | 44.32 | |
R99TOT | Ave | Y = 0.4976∙X | 0.7508 | 36.41 |
Max | Y = 0.122∙X | 0.6748 | 41.60 | |
R99F | Ave | Y = 5.885∙X | 0.713 | 39.08 |
Max | Y = 1.6999∙X | 0.6714 | 41.81 | |
RX1Day | Ave | Y = exp (0.0403107∙X) | 0.4098 | 36.29 |
Max | Y = 0.23113∙X | 0.684 | 41.01 | |
RX5Day | Ave | Y = 0.38328∙X | 0.6832 | 41.06 |
Max | Y = 0.15955∙X | 0.7064 | 39.53 | |
LWP | Ave | Y = exp (0.53464∙X) | 0.4087 | 36.32 |
Max | Y = 3.9448∙X | 0.6439 | 43.53 | |
RTWD | Ave | Y = exp (0.003439∙X) | 0.2902 | 39.80 |
Max | Y = exp (0.001870∙X) | 0.2738 | 40.25 |
Province | X (Climate Index) | Average or Maximum Values | Correlation Equation (Y = Number of Floods) | R2 | SE |
---|---|---|---|---|---|
Catanzaro | R95F | Max | Y = exp (0.058378∙X) | 0.3109 | 12.94 |
Cosenza | R95TOT | Max | Y = exp (0.003779∙X) | 0.8472 | 6.00 |
Crotone | R95TOT | Ave | Y = exp (0.0049663∙X) | 0.5030 | 4.26 |
Vibo Valentia | R99F | Ave | Y = exp (0.038725∙X) | 0.2409 | 4.53 |
Reggio Calabria | R50mm | Ave | Y = 6.9124∙X | 0.8192 | 9.67 |
Index (X) | Time Domain of X (Climate Index) | Time Domain of Burnt Areas (Y) | Interpolation Curve | R2 |
---|---|---|---|---|
SPI (3) | JJA | A | Y = 1778.7 + 10198.9∙X2 for X < 0 Y = 1778.7 − 1332.5∙X for X ≥ 0 | 0.8486 |
JJA | JJA | Y = 2753.5 + 23774.8∙X2 for X < 0 Y = 2753.5 − 803.8∙X for X ≥ 0 | 0.7837 | |
JJA | AMJJASO 2 | Y = 3245.5 + 24366.2∙X2 for X < 0 Y = 3245.5 − 848.9∙X for X ≥ 0 | 0.7948 | |
SPEI (3) | JJA | A | Y = 1534.7 + 5590.5∙X2 for X < 0 Y = 1534.7 − 1322∙X for X ≥ 0 | 0.9681 |
JJA | JJA | Y = 1907.87 + 13611.69∙X2 for X < 0 Y = 1907.87 + 16.83∙X for X ≥ 0 | 0.9874 | |
JJA | AMJJASO 2 | Y = 2447.02 + 13819.6∙X2 for X < 0 Y = 2447.02 − 81.62∙X for X ≥ 0 | 0.9849 | |
KBDI 1 | Year | AMJJASO 2 | Y = 101.67·X2 − 1275.9·X + 6025.1 | 0.9480 |
JJASO | AMJJASO 2 | Y = 21.456·X2 − 649.7·X + 6940.7 | 0.9343 | |
JASO | AMJJASO 2 | Y = 15.194·X2 − 581.63·X + 7570 | 0.9291 | |
ASO | AMJJASO 2 | Y = 13.615·X2 − 669.75·X + 10092 | 0.9448 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coscarelli, R.; Aguilar, E.; Petrucci, O.; Vicente-Serrano, S.M.; Zimbo, F. The Potential Role of Climate Indices to Explain Floods, Mass-Movement Events and Wildfires in Southern Italy. Climate 2021, 9, 156. https://doi.org/10.3390/cli9110156
Coscarelli R, Aguilar E, Petrucci O, Vicente-Serrano SM, Zimbo F. The Potential Role of Climate Indices to Explain Floods, Mass-Movement Events and Wildfires in Southern Italy. Climate. 2021; 9(11):156. https://doi.org/10.3390/cli9110156
Chicago/Turabian StyleCoscarelli, Roberto, Enric Aguilar, Olga Petrucci, Sergio M. Vicente-Serrano, and Fabio Zimbo. 2021. "The Potential Role of Climate Indices to Explain Floods, Mass-Movement Events and Wildfires in Southern Italy" Climate 9, no. 11: 156. https://doi.org/10.3390/cli9110156
APA StyleCoscarelli, R., Aguilar, E., Petrucci, O., Vicente-Serrano, S. M., & Zimbo, F. (2021). The Potential Role of Climate Indices to Explain Floods, Mass-Movement Events and Wildfires in Southern Italy. Climate, 9(11), 156. https://doi.org/10.3390/cli9110156