Observed and Projected Changes in Temperature and Precipitation in the Core Crop Region of the Humid Pampa, Argentina
Abstract
:1. Introduction
2. Study Region, Data, and Methodology
2.1. The Relevance of the Core Crop Region
2.2. Observed Data
2.2.1. Detecting Variability and Changes in Time Series
2.2.2. Extreme Climate Indices
2.3. Simulated Data
2.3.1. Historical Simulations
2.3.2. Future Simulations
3. Results and Discussion
3.1. Variability and Trends
3.1.1. Temperature
3.1.2. Precipitation
3.2. Climate Extremes
3.2.1. Frequency of Temperature Extremes
3.2.2. Intensity and Duration of Temperature Extremes
3.2.3. Intensity and Duration of Precipitation Extremes
3.3. Future Climate Projections
3.3.1. Temperature
3.3.2. Precipitation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Model | Institution/Country | Type | Atmospheric Resolution (lon. × lat.) Model Levels (L) |
---|---|---|---|---|
T | ACCESS 1.0 | CSIRO-BOM, Australia | AOGCM | 1.875 × 1.250 L38 |
P | CanESM2 | CCCMA, Canada | ESM | 2.810 × 2.810 L35 |
T, P | CESM1-BGC | NSF-DOE-NCAR, USA | AOGCM | 1.250 × 0.9424 L26 |
T, P | CESM1-FASTCHEM | NSF-DOE-NCAR, USA | ChemESM | 1.250 × 0.9424 L26 |
T | HadGEM2-CC | MOHC, UK | ESM | 1.875 × 1.250 L60 |
P | INM-CM4 | INM, Russia | AOGCM | 2.000 × 1.500 L21 |
T | MIROC-ESM-CHEM | MIROC, Japan | ChemESM | 2.810 × 2.810 L80 |
P | MIROC4h | MIROC, Japan | AOGCM | 0.560 × 0.560 L56 |
T, P | NorESM1-M | NCC, Norway | ESM | 2.500 × 1.8750 L26 |
T, P | CCSM4 | NCAR, USA | AOGCM | 1.250 × 0.940 L26 |
T | CMCC-CM | CMCC, Italy | AOGCM | 0.750 × 0.750 L31 |
T | EC-EARTH | EC-Earth Consortium | AOGCM | 1.125 × 1.125 L62 |
References
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Zhang, X.; Zwiers, F.; Westra, S.; Alexander, L.V. A Global, Continental, and Regional Analysis of Changes in Extreme Precipitation. J. Clim. 2020, 34, 243–258. [Google Scholar] [CrossRef]
- Cavalcanti, I.F.A.; Carril, A.F.; Penalba, O.C.; Grimm, A.M.; Menéndez, C.G.; Sanchez, E.; Chechi, A.; Sörensson, A.; Robledo, F.; Rivera, J.; et al. Precipitation extremes over La Plata Basin—review and new results from observations and climate simulations. J. Hydrol. 2015, 523, 211–230. [Google Scholar] [CrossRef]
- Carril, A.F.; Cavalcanti, I.F.A.; Menéndez, C.G.; Sörensson, A.; López-Franca, N.; Rivera, J.; Robledo, F.; Zaninelli, P.; Ambrizzi, T.; Penalba, O.; et al. Extreme events in the La Plata basin: A retrospective analysis of what we have learned during CLARIS-LPB project. Clim. Res. 2015, 68, 95–116. [Google Scholar] [CrossRef]
- Lovino, M.; García, N.; Baethgen, W. Spatiotemporal analysis of extreme precipitation events in the Northeast region of Argentina (NEA). J. Hydrol. 2014, 2, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Lovino, M.; Müller, O.; Müller, G.; Sgroi, L.; Baethgen, W. Interannual-to-multidecadal hydroclimate variability and its sectoral impacts in northeastern Argentina. Hydrol. Earth Syst. Sci. 2018, 22, 3155–3174. [Google Scholar] [CrossRef] [Green Version]
- Magrin, G.O.; Marengo, J.A.; Boulanger, J.P.; Buckeridge, M.S.; Castellanos, E.; Poveda, G.; Scarano, F.R.; Vicuña, S. Central and South America. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1499–1566. [Google Scholar]
- Barros, V.; Boninsegna, J.; Camilloni, I.; Chidiak, M.; Magrín, G.; Rusticucci, M. Climate change in Argentina: Trends, projections, impacts and adaptation. Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 151–169. [Google Scholar] [CrossRef]
- Lovino, M.; Müller, O.; Berbery, E.H.; Müller, G.V. How have daily climate extremes changed in the recent past over northeastern Argentina? Glob. Planet. Chang. 2018, 168, 78–97. [Google Scholar] [CrossRef]
- Sgroi, L.C.; Lovino, M.; Berbery, E.H.; Müller, G.V. Characteristics of droughts in Argentina’s Core Crop Region. Hydrol. Earth Syst. Sci. Discuss. 2020. In review, preprint. [Google Scholar] [CrossRef]
- Rusticucci, M.; Barrucand, M.; Collazo, S. Temperature extremes in the Argentina central region and their monthly relationship with the mean circulation and ENSO phases. Int. J. Climatol. 2017, 37, 3003–3017. [Google Scholar] [CrossRef]
- Lovino, M.; Müller, G.V.; Sgroi, L. How has precipitation changed in the province of Santa Fe? Rev. Investig. Agropecu. RIA, 2020; 46, 226–239. Available online: http://ria.inta.gob.ar/sites/default/files/trabajosenprensa/lovino-castellano-6.pdf(accessed on 29 November 2019). (In Spanish)
- Llano, M.P.; Vargas, W. Spatial and Temporal Variability of Daily Precipitation Concentration in Southeastern South America. Int. J. Climatol. 2020, 41, 1152–1163. [Google Scholar] [CrossRef]
- INA (Instituto Nacional del Agua). Alerta Hidrológico Cuenca del Plata: Informes MENSUALES Emitidos. 2020. Available online: https://www.ina.gov.ar/alerta/index.php?seccion=2&year=2020 (accessed on 10 July 2020). (In Spanish)
- Reuters. Argentina’s Ebbing Parana River Costs Grains Sector $244 Million: Exchange. Available online: https://www.reuters.com/article/us-argentina-grains-parana/argentinas-ebbing-parana-river-costs-grains-sector-244-million-exchange-idUSKCN2263B0 (accessed on 1 August 2020).
- BCR (Bolsa de Comercio de Rosario). Río Paraná: La Bajante Más Severa en los Últimos 50 Años Representa un Costo de US$ 244 Millones Para el Complejo Agroexportador. Available online: https://bcr.com.ar/es/sobre-bcr/medios/noticias/rio-parana-la-bajante-mas-severa-en-los-ultimos-50-anos-representa-un (accessed on 30 June 2020). (In Spanish).
- NASA Earth Observatory. The Parched Paraná River. Available online: https://earthobservatory.nasa.gov/images/147031/the-parched-parana-river (accessed on 1 August 2020).
- BCR (Bolsa de Comercio de Rosario). La Bolsa de Rosario Estima en 230 Millones de Dólares las Pérdidas de Ingresos por Las Inundaciones. Available online: https://www.diarioelinforme.com.ar/2019/01/28/la-bolsa-de-rosario-estima-en-230-millones-de-dolares-las-perdidas-de-ingresos-por-las-inundaciones (accessed on 1 April 2020). (In Spanish).
- Iriondo, M.H. Climatic changes in the South American plains: Records of a continent-scale oscillation. Quat. Int. 1999, 57, 93–112. [Google Scholar] [CrossRef]
- Iriondo, M.H.; Kröhling, D.M. Los Sedimentos Eólicos del Noreste de la Llanura Pampeana (Cuaternario Superior). In Abstracts XIII Congreso Geológico Argentino (AGA); Ramos, V., Ed.; Asociación Geológica Argentina: Buenos Aires, Argentina, 1996; Volume 4, pp. 27–48. [Google Scholar]
- Iriondo, M.H.; Kröhling, D.M. Non-classical types of loess. Sediment. Geol. 2007, 202, 352–368. [Google Scholar] [CrossRef]
- PAR (Plan Ambiental Rosario). Municipalidad de Rosario. 2016. Available online: https://www.rosario.gob.ar/ArchivosWeb/libro%20PAR_10%2002.pdf (accessed on 18 May 2020). (In Spanish)
- PER (Plan Estratégico Rosario 2030). Municipalidad de Rosario. 2019. Available online: https://www.rosario.gob.ar/web/rosario-2030 (accessed on 18 May 2020). (In Spanish)
- PERM (Plan Estratégico Rosario Metropolitana). Municipalidad de Rosario. 2018. Available online: https://www.rosario.gob.ar/web/sites/default/files/perm.pdf (accessed on 18 May 2020). (In Spanish)
- World Meteorological Organization (WMO). Manual for Estimation of Probable Maximum Precipitation. In Publication No.1045; World Meteorological Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Young, K. A Three-Way Model for Interpolating for Monthly Precipitation Values. Mon. Weather Rev. 1992, 120, 2561–2569. [Google Scholar] [CrossRef]
- Eischeid, J.; Pasteris, P.; Diaz, H.; Plantico, M.; Lott, N. Creating a serially complete, national daily time series of temperature and precipitation for the western United States. J. Appl. Meteorol. 2000, 39, 1580–1591. [Google Scholar] [CrossRef]
- Ghil, M.; Allen, M.; Dettinger, M.; Ide, K.; Kondrashov, D.; Mann, M.; Robertson, A.; Saunders, A.; Tian, Y.; Varadi, F.; et al. Advanced spectral methods for climatic time series. Rev. Geophys. 2002, 40, 3-1–3-41. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006; p. 627. [Google Scholar]
- Allen, M.R.; Smith, L.A. Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise. J. Clim. 1996, 9, 3373–3404. [Google Scholar] [CrossRef]
- Trenberth, K. The Definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2777. [Google Scholar] [CrossRef] [Green Version]
- NOAA/NWS/CPC; Oceanic Niño Index (ONI). NOAA National Weather Service, Center for Climate Prediction. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 21 April 2020).
- Berri, G.J.; Bianchi, E.; Müller, G.V. El Niño and La Niña influence on mean river flows of southern South America in the 20th century. Hydrol. Sci. J. 2019, 64, 900–909. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Zwiers, F.W.; Zhang, X. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation, WMO-TD; No. 1500/WCDMP-No. 72; World Meteorological Organization: Geneva, Switzerland, 2009; p. 52. [Google Scholar]
- Donat, M.; Alexander, L.; Yang, H.; Durre, I.; Vose, R.; Caesar, J. Global land-based datasets for monitoring climatic extremes. Bull. Am. Meteorol. Soc. 2013, 94, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.; Stouffer, R.; Meehl, G. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.; Edmonds, J.; Hibbard, K.; Manning, M.; Rose, S.; van Vuuren, D.; Carter, T.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Lovino, M.; Müller, O.; Berbery, E.H.; Müller, G.V. Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina. Int. J. Climatol. 2018, 38, e1158–e1175. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.; Chandler, R.; Kendon, E.; Widmann, M.; Brienen, S.; Rust, H.; Sauter, T.; Themel, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Widmann, M.; Bretherton, C.S.; Salathé, E.P. Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J. Clim. 2003, 16, 799–816. [Google Scholar] [CrossRef]
- Engen-Skaugen, T. Refinement of dynamically downscaled precipitation and temperature scenarios. J. Clim. 2007, 84, 365–382. [Google Scholar] [CrossRef]
- Casanueva, A.; Frías, M.D.; Herrera, S.; San-Martín, D.; Zaninovic, K.; Gutiérrez, J.M. Statistical downscaling of climate impact indices: Testing the direct approach. J. Clim. 2014, 127, 547–560. [Google Scholar] [CrossRef]
- Doyle, M.E. Observed and simulated changes in precipitation seasonality in Argentina. Int. J. Climatol. 2019, 40, 1716–1737. [Google Scholar] [CrossRef]
- Virji, H. A preliminary study of Summer time tropospheric circulation patterns over South America estimated from cloud winds. Mon. Weather Rev. 1981, 109, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Berbery, E.H.; Collini, E.A. Springtime precipitation and water vapor flux over southeastern South America. Mon. Weather Rev. 2000, 128, 1328–1346. [Google Scholar] [CrossRef]
- Nogués-Paegle, J.; Mechoso, C.; Fu, R.; Berbery, E.H.; Winston, C.; Chen, T.C.; Cook, K.; Diaz, A.; Enfield, D.; Ferreira, R.; et al. Progress in Pan American CLIVAR research: Understanding the south American monsoon. Meteor Forschung 2002, 27, 3–32. [Google Scholar]
- Laing, A.G.; Fritch, J.M. The large-scale environments of the global populations of mesoscale convective complexes. Mon. Weather Rev. 2000, 128, 2756–2776. [Google Scholar] [CrossRef]
- Müller, G.; Nuñez, M.; Seluchi, M. Relationship between ENSO cycles and frost events within the Pampa Húmeda region. Int. J. Climatol. 2000, 20, 1619–1637. [Google Scholar] [CrossRef]
- Vera, C.; Vigliarolo, P.K.; Berbery, E.H. Cold season synoptic scale waves over subtropical South America. Mon. Weather Rev. 2002, 130, 684–699. [Google Scholar] [CrossRef]
- Berri, G.J.; Bertossa, G. The influence of the tropical and subtropical Atlantic and Pacific Oceans on precipitation variability over Southern Central South America on seasonal time scales. Int. J. Climatol. 2004, 24, 415–435. [Google Scholar] [CrossRef]
- Penalba, O.; Rivera, J. Precipitation response to El Niño/La Niña events in Southern South America-emphasis in regional drought occurrences. Adv. Geosci. 2016, 42, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Barros, V.; Silvestri, G. The relation between sea surface temperature at the subtropical South-Central Pacific and precipitation in southeastern South America. J. Clim. 2002, 15, 251–267. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Alexander, L.V.; Donat, M.G. Development of an updated global land in situ- based data set of temperature and precipitation extremes: HadEX3. J. Geophys. Res. Atmos. 2020, 125, e2019JD032263. [Google Scholar] [CrossRef]
- Rusticucci, M. Observed and simulated variability of extreme temperature events over South America. Atmos. Res. 2017, 106, 1–17. [Google Scholar] [CrossRef]
- Collazo, S.; Barrucand, M.; Rusticucci, M. Summer seasonal predictability of warm days in Argentina: Statistical model approach. Theor. Appl. Climatol. 2019, 138, 1853–1876. [Google Scholar] [CrossRef]
- Collazo, S.; Barrucand, M.; Rusticucci, M. Variability and predictability of winter cold nights in Argentina. Weather Clim. Extrem. 2019, 26, 100236. [Google Scholar] [CrossRef]
- Fernández-Long, M.; Müller, G.; Beltrán-Przekurat, A.; Scarpati, O. Long-term and recent changes in temperature-based agroclimatic indices in Argentina. Int. J. Climatol. 2013, 33, 1673–1686. [Google Scholar] [CrossRef]
- Alexander, L.; Zhang, X.; Peterson, T.; Caesar, J.; Gleason, B.; Klein Tank, A.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.; Alexander, L.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.; Willett, K.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Lu, C.; Sun, Y.; Zhang, X. Multimodel detection and attribution of changes in warm and cold spell durations. Environ. Res. Lett. 2018, 13, 074013. [Google Scholar] [CrossRef]
- Skansi, M.; Brunet, M.; Sigró, J.; Aguilar, E.; Arevalo Groening, J.; Bentancur, O.; Castellón Geier, Y.; Correa Amaya, R.; Jácome, H.; Malheiros Ramos, A.; et al. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob. Planet. Chang. 2013, 100, 295–307. [Google Scholar] [CrossRef]
- Scardilli, A.; Llano, M.; Vargas, W. Temporal analysis of precipitation and rain spells in Argentinian centenary reference stations. Theor. Appl. Climatol. 2015, 127, 339–360. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; IPCC: Geneva, Switzerland, 2012. [Google Scholar]
- Donat, M.; Lowry, A.; Alexander, L.; O’Gorman, P.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.; Fischer, E. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Llopart, M.; Simões Reboita, M.; Porfírio da Rocha, R. Assessment of multi-model climate projections of water resources over South America CORDEX domain. Clim. Dyn. 2019, 54, 99–116. [Google Scholar] [CrossRef]
- Menéndez, C.; Zaninelli, P.; Carril, A.; Sánchez, E. Hydrological Cycle, Temperature, and Land Surface−Atmosphere Interaction in the La Plata Basin during Summer: Response to Climate Change. Clim. Res. 2016, 68, 231–241. [Google Scholar] [CrossRef]
- Paik, S.; Min, S.K.; Zhang, X.; Donat, M.G.; King, A.D.; Sun, Q. Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation. Geophys. Res. Lett. 2020, 47, e2019GL086875. [Google Scholar] [CrossRef]
- Thaler, V.M. A Multivariate Assessment of Climate Change Projections over South America Using CMIP5. Master’s Thesis, Portland State University, Portland, OR, USA, 17 June 2020. Paper 5550. Available online: https://archives.pdx.edu/ds/psu/33659 (accessed on 18 November 2020).
Temperature-Based Indices | ||||
Index | Index Name | Index Definition | Unit | |
Frequency | TX90p | Warm days | Percentage of annual days when TXij > TXin90 | % of days |
TX10p | Cold days | Percentage of annual days when TXij < TXin10 | % of days | |
TN90p | Warm nights | Percentage of annual days when TNij > TNin90 | % of days | |
N10p | Cold nights | Percentage of annual days when TNij < TNin10 | % of days | |
SU25 | Summer days | Annual number of days when TXij > 25 °C | days | |
TR | Tropical nights | Annual number of days when TNij > 20 °C | days | |
FD | Frost days | Annual number of days when TXij < 0 °C | days | |
Intensity | TXx | Warmest maximum temp | Maximum annual value of daily max. temp. | °C |
TXn | Minimum maximum temp | Minimum annual value of daily max. temp. | °C | |
TNx | Maximum minimum temp | Maximum annual value of daily min. temp. | °C | |
TNn | Coldest minimum temp | Minimum annual value of daily min. temp. | °C | |
Duration | WSDI | Warm spell duration indicator | Annual number of days with at least 6 consecutive days with TXij > Txin90 | days |
CSDI | Cold spell duration indicator | Annual number of days with at least 6 consecutive days with TNij < TNin10 | days | |
Precipitation-Based Indices | ||||
Intensity | RX1day | Max 1-day precipitation | Amount of maximum annual 1-day precipitation | mm |
RX5day | Max 5-day precipitation | Amount of maximum annual 5-consecutive-day precipitation | mm | |
SDII | Simple daily intensity index | Total annual precipitation divided by the number of wet days (i.e., precipitation ≥ 1 mm) | mm/day | |
Duration | CDD | Consecutive dry days | Maximum annual number of consecutive dry days (i.e., precipitation < 1 mm) | days |
CWD | Consecutive wet days | Maximum annual number of consecutive wet days (i.e., precipitation ≥ 1 mm) | days |
ENSO | Summer Excess/Deficit | Autumn Excess/Deficit | Winter Excess/Deficit | Spring Excess/Deficit |
---|---|---|---|---|
Before 1950 | 1920/1943 | 1913, 1914, 1926, 1933, 1938, 1947/ | 1914, 1922, 1940, 1949/1916, 1920, 1933, 1935, 1937, 1944, 1948 | 1911, 1919, 1933, 1939/1916, 1917, 1949 |
After 1950 | ||||
EN | 1977, 2010, 2016/ | 1966, 1969/ | 1965, 1972, 2002, 2015/ | 1972, 2002/ |
LN | 1956, 1971, 1976, 1984, 2009, 2012/2018 | 2000/ | 1973, 2000/ | 2000/1974, 1999 |
Ne | 1961/2013 | 1959, 2007/ | 1959/1995, 1996, 2008 | 1978, 1990, 2001, 2012/1966 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, G.V.; Lovino, M.A.; Sgroi, L.C. Observed and Projected Changes in Temperature and Precipitation in the Core Crop Region of the Humid Pampa, Argentina. Climate 2021, 9, 40. https://doi.org/10.3390/cli9030040
Müller GV, Lovino MA, Sgroi LC. Observed and Projected Changes in Temperature and Precipitation in the Core Crop Region of the Humid Pampa, Argentina. Climate. 2021; 9(3):40. https://doi.org/10.3390/cli9030040
Chicago/Turabian StyleMüller, Gabriela V., Miguel A. Lovino, and Leandro C. Sgroi. 2021. "Observed and Projected Changes in Temperature and Precipitation in the Core Crop Region of the Humid Pampa, Argentina" Climate 9, no. 3: 40. https://doi.org/10.3390/cli9030040
APA StyleMüller, G. V., Lovino, M. A., & Sgroi, L. C. (2021). Observed and Projected Changes in Temperature and Precipitation in the Core Crop Region of the Humid Pampa, Argentina. Climate, 9(3), 40. https://doi.org/10.3390/cli9030040