Growing Season Air mass Equivalent Temperature (TE) in the East Central USA
Abstract
:1. Introduction
2. Methods and Data
2.1. Calculation of Equivalent Temperature
2.2. Spatial Synoptic Classification
2.3. Data Analyses
3. Results and Discussions
3.1. Overall Findings
3.2. Inter-annual Variations of the Growing Season TE
3.3. Intra-seasonal Air Mass and TE Distribution
3.4. Air Mass TE and T Differences
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Pielke, R.A., Sr.; Davey, C.A.; Morgan, J. Assessing “global warming” with surface heat content. EOS Trans. 2004, 85, 210–211. [Google Scholar] [CrossRef]
- Davey, C.A.; Pielke, R.A.; Gallo, K.P. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States. Equivalent temperature as an alternative measure of heat content. Glob. Planet. Chang. 2006, 54, 19–32. [Google Scholar] [CrossRef]
- Rogers, J.C.; Wang, S.H.; Coleman, J.S.M. Evaluation of a long-term (1882–2005) equivalent temperature time series. J. Clim. 2007, 20, 4476–4485. [Google Scholar] [CrossRef] [Green Version]
- Fall, S.; Diffenbaugh, N.S.; Niyogi, D.; Pielke, R.A.; Rochon, G. Temperature and equivalent temperature over the United States (1979–2005). Int. J. Climatol. 2010, 30, 2045–2054. [Google Scholar] [CrossRef] [Green Version]
- Schoof, J.T.; Heern, Z.A.; Therrell, M.D.; Jemo, J.W.F. Assessing trends in lower tropospheric heat content in the Central USA using equivalent temperature. Int. J. Climatol. 2014, 35, 2828–2836. [Google Scholar] [CrossRef] [Green Version]
- Younger, K.; Mahmood, R.; Goodrich, G.; Pielke, R.A., Sr.; Durkee, J. Mesoscale surface equivalent temperature (TE) for East Central USA. Theor. Appl. Climatol. 2019, 136, 65–75. [Google Scholar] [CrossRef]
- Zhang, T.; Mahmood, R.; Lin, X.; Pielke, R.A., Sr. Irrigation impacts on minimum and maximum surface moist enthalpy in the Central Great Plains of the USA. Wea. Clim. Extrem. 2019, 23, 100197. [Google Scholar] [CrossRef]
- Ribera, P.; Gallego, D.; Gimeno, L.; Perez-Campos, J.F.; Garcia-Herrera, R.; Hernandez, E.; De La Torre, L.; Nieto, R.; Calvo, N. The use of equivalent temperature to analyse climate variability. Stud. Geophys. Geod. 2004, 48, 459–468. [Google Scholar] [CrossRef]
- Pielke, R.A., Sr. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys. 2001, 39, 151–177. [Google Scholar] [CrossRef]
- Ford, T.; Schoof, J.T. Oppressive heat events in Illinois related to antecedent wet soils. J. Hydrometeor. 2016, 17, 2713–2716. [Google Scholar] [CrossRef]
- Mahmood, R.; Schargorodski, M.; Foster, S.; Quilligan, A. A technical overview of the Kentucky Mesonet. J. Atmos. Oceanic. Tech. 2019, 36, 1753–1771. [Google Scholar] [CrossRef]
- Sheridan, S.C. The redevelopment of a weather-type classification scheme for North America. Int. J. Climatol. 2002, 22, 51–68. [Google Scholar] [CrossRef]
- Knight, D.B.; Davis, R.E.; Sheridan, S.C.; Hondula, D.M.; Sitka, L.J.; Deaton, M.; Lee, T.R.; Gawtry, S.D.; Stenger, P.J.; Mazzei, F.; et al. Increasing frequencies of warm and humid air masses over the conterminous United States from 1948 to 2005. Geophys. Res. Lett. 2008, 35, L10702. [Google Scholar] [CrossRef] [Green Version]
- Bolton, D. The computation of equivalent potential temperature. Mon. Wea. Rev. 1980, 108, 1046–1053. [Google Scholar] [CrossRef] [Green Version]
- Kalkstein, L.S.; Nichols, M.C.; Barthel, C.D.; Greene, J.S. A new spatial synoptic classification: Application to air-mass analysis. Int. J. Climatol. 1996, 16, 983–1004. [Google Scholar] [CrossRef]
- Walford, N. Practical Statistics for Geographers and Earth Scientists; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; p. 211. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: San Diego, CA, USA, 2011; pp. 215–236. [Google Scholar]
- Scheitlin, K.N.; Dixon, P.G. Diurnal temperature range variability due to land cover and air mass types in the Southeast. J. Appl. Meteorol. Climatol. 2010, 49, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Na-Yemeh, D.Y. Synoptic Atmospheric Conditions, Land Cover, and Equivalent Temperature Variations in Kentucky. Master’s Thesis, Western Kentucky University, Bowling Green, KY, USA, 2017. [Google Scholar]
- Wendland, W.M.; Bryson, R.A. Northern Hemisphere airstream regions. Mon. Wea. Rev. 1981, 109, 255–270. [Google Scholar] [CrossRef]
County | Site ID | LATITUDE | LONGITUDE | ELEVATION (m) | SSC |
---|---|---|---|---|---|
Barren | MROK | 37.01328 | −86.106 | 212 | BNA |
Calloway | MRRY | 36.61261 | −88.336 | 173 | PAH |
Campbell | HHTS | 39.01997 | −84.475 | 225 | CVG |
Fulton | HCKM | 36.57108 | −89.159 | 105 | PAH |
Hardin | CCLA | 37.67939 | −85.979 | 227 | SDF |
Hopkins | ERLN | 37.26764 | −87.481 | 180 | EVV |
Jackson | OLIN | 37.35629 | −83.971 | 402 | LEX |
Mason | WSHT | 38.62369 | −83.808 | 277 | LEX |
Ohio | HTFD | 37.45732 | −86.855 | 164 | EVV |
Warren | FARM | 36.92669 | −86.465 | 170 | BNA |
Effect | SS | DF | MS | F | p-Value |
---|---|---|---|---|---|
Model | 17,099.31 | 5 | 3419.86 | 35.19 | 0.001 |
Error | 15,451.14 | 159 | 97.18 | ||
Total | 32,550.45 | 164 | 198.48 |
Source | Mean Square | F | p-Value |
---|---|---|---|
Corrected Model | 2138.91 | 49.14 | 0.001 |
Intercept | 363,404.55 | 8349.15 | 0.001 |
Season | 5944.46 | 136.57 | 0.001 |
Air mass | 7327.07 | 168.34 | 0.001 |
Season Air mass | 164.14 | 3.77 | 0.001 |
Air Mass Types | Year | Early (°C) | Mid (°C) | Late (°C) |
---|---|---|---|---|
DM | 2010 | 31 | 52 | 47 |
2011 | 33 | 55 | 46 | |
2012 | 35 | 48 | 46 | |
2013 | 32 | 51 | 47 | |
2014 | 33 | 49 | 46 | |
Mean | 33 | 51 | 47 | |
DP | 2010 | 30 | - | - |
2011 | 26 | - | 31 | |
2012 | 18 | - | 26 | |
2013 | 22 | 46 | 43 | |
2014 | 22 | 43 | 36 | |
Mean | 24 | 45 | 34 | |
DT | 2010 | 40 | 60 | 55 |
2011 | 53 | 65 | 50 | |
2012 | 51 | 59 | 52 | |
2013 | 43 | - | - | |
2014 | 41 | - | 51 | |
Mean | 46 | 61 | 52 | |
MM | 2010 | 50 | 66 | 58 |
2011 | 40 | 61 | 60 | |
2012 | 40 | 62 | 59 | |
2013 | 46 | 59 | 60 | |
2014 | 53 | 57 | 56 | |
Mean | 46 | 61 | 59 | |
MP | 2010 | 32 | - | 40 |
2011 | 30 | - | 40 | |
2012 | 26 | - | 54 | |
2013 | 29 | 55 | - | |
2014 | 26 | 48 | 45 | |
Mean | 29 | 52 | 45 | |
MT | 2010 | 52 | 68 | 66 |
2011 | 54 | 67 | 58 | |
2012 | 53 | 66 | 63 | |
2013 | 50 | 64 | 62 | |
2014 | 52 | 63 | 64 | |
Mean | 52 | 66 | 63 |
2010 | 2011 | ||||||||||
SSC | Frequency | Mean | Max | Min | Median | SSC | Frequency | Mean | Max | Min | Median |
DM | 50 | 45 | 66 | 25 | 46 | DM | 46 | 46 | 64 | 19 | 49 |
DP | 4 | 34 | 46 | 25 | 33 | DP | 10 | 32 | 52 | 24 | 28 |
DT | 16 | 51 | 69 | 30 | 56 | DT | 5 | 63 | 67 | 58 | 64 |
MM | 12 | 51 | 70 | 34 | 51 | MM | 20 | 54 | 74 | 38 | 53 |
MP | 3 | 32 | 37 | 28 | 30 | MP | 7 | 36 | 44 | 30 | 36 |
MT | 89 | 67 | 81 | 41 | 69 | MT | 79 | 66 | 80 | 45 | 67 |
2012 | 2013 | ||||||||||
SSC | Frequency | Mean | Max | Min | Median | SSC | Frequency | Mean | Max | Min | Median |
DM | 61 | 43 | 67 | 19 | 43 | DM | 34 | 44 | 61 | 21 | 46 |
DP | 8 | 26 | 34 | 18 | 27 | DP | 22 | 34 | 56 | 12 | 35 |
DT | 33 | 57 | 69 | 58 | 41 | DT | 2 | 35 | 44 | 27 | 35 |
MM | 16 | 52 | 66 | 35 | 54 | MM | 43 | 54 | 69 | 32 | 55 |
MP | 1 | 23 | 23 | 23 | 23 | MP | 6 | 28 | 57 | 16 | 23 |
MT | 52 | 62 | 75 | 44 | 63 | MT | 71 | 60 | 70 | 37 | 62 |
2014 | |||||||||||
SSC | Frequency | Mean | Max | Min | Median | ||||||
DM | 45 | 45 | 62 | 22 | 46 | ||||||
DP | 23 | 38 | 53 | 11 | 44 | ||||||
DT | 3 | 39 | 44 | 32 | 41 | ||||||
MM | 15 | 60 | 69 | 52 | 61 | ||||||
MP | 6 | 32 | 45 | 25 | 29 | ||||||
MT | 74 | 60 | 74 | 32 | 63 |
1 May 2010 | 1 May 2011 | ||||||||
Station | Moisture content % | TE | Diff (TE-T) | Air mass | Station | Moisture content % | TE | Diff (TE-T) | Air mass |
Barren | 9.08 | 48 | 29 | Moist Moderate | Barren | 8.36 | 45 | 27 | Moist Tropical |
Calloway | 10.11 | 52 | 33 | Moist Moderate | Calloway | 9.08 | 46 | 20 | Moist Moderate |
Campbell | 8.58 | 46 | 27 | Moist tropical | Campbell | 8.25 | 45 | 26 | Moist Tropical |
Fulton | 10.75 | 56 | 35 | Moist Moderate | Fulton | 9.06 | 46 | 29 | Moist Moderate |
Hardin | 9.02 | 47 | 29 | Moist Moderate | Hardin | 8.82 | 46 | 28 | Moist Moderate |
Hopkins | 9.55 | 49 | 31 | Moist Moderate | Hopkins | 9.06 | 46 | 29 | Moist Moderate |
Jackson | 8.45 | 45 | 27 | Moist Moderate | Jackson | 7.52 | 41 | 24 | Moist Tropical |
Mason | 8.36 | 45 | 27 | Moist Tropical | Mason | 7.91 | 44 | 25 | Moist Tropical |
Ohio | 9.61 | 49 | 31 | Moist Moderate | Ohio | 8.84 | 46 | 28 | Moist Moderate |
Warren | 9.37 | 49 | 30 | Moist Moderate | Warren | 8.86 | 47 | 28 | Moist Tropical |
1 May 2012 | 1 May 2013 | ||||||||
Station | Moisture content % | TE | Diff (TE-T) | Air mass | Station | Moisture content % | TE | Diff (TE-T) | Air mass |
Barren | 10.19 | 56 | 34 | Moist tropical | Barren | 8.19 | 47 | 26 | Moist Tropical |
Calloway | 9.67 | 56 | 32 | Moist Tropical | Calloway | 7.85 | 46 | 25 | Moist Tropical |
Campbell | 9.55 | 50 | 31 | Moist Tropical | Campbell | 6.47 | 42 | 20 | Dry Tropical |
Fulton | 9.44 | 56 | 31 | Moist Tropical | Fulton | 7.93 | 45 | 25 | Moist Tropical |
Hardin | 9.62 | 54 | 31 | Moist Tropical | Hardin | 7.41 | 43 | 23 | Dry Tropical |
Hopkins | 9.82 | 56 | 32 | Moist Tropical | Hopkins | 7.49 | 45 | 24 | Dry moderate |
Jackson | 9.60 | 53 | 31 | Moist Tropical | Jackson | 6.83 | 40 | 21 | Dry Moderate |
Mason | 9.94 | 53 | 32 | Moist Tropical | Mason | 7.19 | 45 | 23 | Dry Tropical |
Ohio | 9.46 | 54 | 31 | Moist Tropical | Ohio | 7.50 | 45 | 24 | Dry Moderate |
Warren | 10.08 | 56 | 33 | Moist Tropical | Warren | 8.02 | 46 | 26 | Moist Tropical |
1 May 2014 | |||||||||
Station | Moisture content % | TE | Diff (TE-T) | Air mass | |||||
Barren | 4.55 | 26 | 14 | Dry Moderate | |||||
Calloway | 4.63 | 25 | 14 | Dry Polar | |||||
Campbell | 3.83 | 23 | 11 | Dry Moderate | |||||
Fulton | 4.44 | 26 | 13 | Dry Polar | |||||
Hardin | 4.45 | 25 | 13 | Dry Moderate | |||||
Hopkins | 4.43 | 25 | 13 | Dry Polar | |||||
Jackson | 4.72 | 25 | 14 | Dry Polar | |||||
Mason | 4.55 | 25 | 14 | Dry Moderate | |||||
Ohio | 4.54 | 25 | 14 | Dry Polar | |||||
Warren | 4.62 | 26 | 14 | Dry Moderate |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na-Yemeh, D.; Mahmood, R.; Goodrich, G.; Younger, K.; Cary, K.; Durkee, J. Growing Season Air mass Equivalent Temperature (TE) in the East Central USA. Climate 2020, 8, 95. https://doi.org/10.3390/cli8090095
Na-Yemeh D, Mahmood R, Goodrich G, Younger K, Cary K, Durkee J. Growing Season Air mass Equivalent Temperature (TE) in the East Central USA. Climate. 2020; 8(9):95. https://doi.org/10.3390/cli8090095
Chicago/Turabian StyleNa-Yemeh, Dolly, Rezaul Mahmood, Gregory Goodrich, Keri Younger, Kevin Cary, and Joshua Durkee. 2020. "Growing Season Air mass Equivalent Temperature (TE) in the East Central USA" Climate 8, no. 9: 95. https://doi.org/10.3390/cli8090095
APA StyleNa-Yemeh, D., Mahmood, R., Goodrich, G., Younger, K., Cary, K., & Durkee, J. (2020). Growing Season Air mass Equivalent Temperature (TE) in the East Central USA. Climate, 8(9), 95. https://doi.org/10.3390/cli8090095