Canopy Urban Heat Island and Its Association with Climate Conditions in Dubai, UAE
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Location, Population, and Climate of Dubai
2.2. Meteorological Stations and Data Analysis
2.2.1. Cluster Analysis of Climate Data
2.2.2. Canopy UHI Magnitudes
3. Results
3.1. Microclimate Analysis
3.2. Daytime and Night-Time UHI Intensity and Frequency Distribution
3.3. UHI Intensity T1–T3 and Climate Parameters Collected by Station 1
3.4. UHI Intensity T1–T3 and Climate Parameters Collected by Station 2
3.5. UHI Intensity T2–T3 and Climate Parameters Collected by Station 1
3.6. UHI Intensity T2–T3 and Climate Parameters Collected by Station 2
3.7. UHI Intensity T1–T3 and Climate Parameters Collected by Station 3
3.8. UHI Intensity T2–T3 and Climate Parameters Collected by Station 3
3.9. Correlation between UHI Intensity T1–T3 and T2–T3 and Climate Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Un.org. World’s Population Increasingly Urban with More Than Half Living in Urban Areas. Available online: https://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.html#:~:text=The%202014%20revision%20of%20the,population%20between%202014%20and%202050 (accessed on 6 June 2020).
- Santamouris, M.; Haddad, S.; Fiorito, F.; Osmond, P.; Ding, L.; Prasad, D.; Zhai, X.; Wang, R. Urban Heat Island and Overheating Characteristics in Sydney, Australia. An Analysis of Multiyear Measurements. Sustainability 2017, 9, 712. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Oke, T.R.; Johnson, G.T.; Steyn, D.G.; Watson, I.D. Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation. Bound. Layer Meteorol. 1991, 56, 339–358. [Google Scholar] [CrossRef]
- Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Santamouris, M.; Paolini, R.; Haddad, S.; Synnefa, A.; Garshasbi, S.; Hatvani-Kovacs, G.; Gobakis, K.; Yenneti, K.; Vasilakopoulou, K.; Feng, J.; et al. Heat mitigation technologies can improve sustainability in cities. An holistic experimental and numerical impact assessment of urban overheating and related heat mitigation strategies on energy consumption, indoor comfort, vulnerability and heat-related mortality and morbidity in cities. Energy Build. 2020, 217, 110002. [Google Scholar] [CrossRef]
- Santamouris, M.; Kolokotsa, D. Urban Climate Mitigation Techniques; Routledge: London, UK, 2016. [Google Scholar]
- Sasaki, Y.; Matsuo, K.; Yokoyama, M.; Sasaki, M.; Tanaka, T.; Sadohara, S. Sea breeze effect mapping for mitigating summer urban warming: For making urban environmental climate map of Yokohama and its surrounding area. Urban Clim. 2018, 24, 529–550. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Yoshikado, H.; Ooka, R.; Hayami, H.; Huang, H.; Khiem, M.V. Sea Breeze Blowing into Urban Areas: Mitigation of the Urban Heat Island Phenomenon. In Ventilating Cities: Air-flow Criteria for Healthy and Comfortable Urban Living; Springer: Dordrecht, The Netherlands, 2012; pp. 11–32. [Google Scholar] [CrossRef]
- Comstock, M.; Garrigan, C.; Pouffary, S.; Feraudy, T.d.; Halcomb, J.; Hartke, J.J.U.N.E.P. Building Design and Construction: Forging Resource Efficiency and Sustainable Development; United National Environmental Program (UNEP): Nairobi, Kenya, 2012; pp. 1–24. [Google Scholar]
- Santamouris, M. Minimizing Energy Consumption, Energy Poverty and Global and Local Climate Change in the Built Environment: Innovating to Zero: Causalities and Impacts in a Zero Concept World; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Agency, I.E.; Birol, F. World Energy Outlook 2013; International Energy Agency Paris: Paris, France, 2013. [Google Scholar]
- Wang, Y.; Du, H.; Xu, Y.; Lu, D.; Wang, X.; Guo, Z. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 2018, 631–632, 921–933. [Google Scholar] [CrossRef]
- Santamouris, M. Energy and Climate in the Urban Built Environment; CRC Press LLC: London, UK, 2001. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the buildings—past, present and future. Energy Build. 2016, 128, 617–638. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S.; Wilkinson, P. Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK. Occup. Environ. Med. 2004, 61, 893–898. [Google Scholar] [CrossRef] [Green Version]
- Baccini, M.; Biggeri, A.; Accetta, G.; Kosatsky, T.; Katsouyanni, K.; Analitis, A.; Anderson, H.; Bisanti, L.; DʼIppoliti, D.; Danova, J.; et al. Heat Effects on Mortality in 15 European Cities. Epidemiology 2008, 19, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Goggins, W.; Chan, E.Y.; Ng, E.; Ren, C.; Chen, L. Effect Modification of the Association between Short-term Meteorological Factors and Mortality by Urban Heat Islands in Hong Kong. PLoS ONE 2012, 7, e38551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzaei, P.; Haghighat, F. Approaches to study Urban Heat Island—Abilities and limitations. Build. Environ. 2010, 45, 2192–2201. [Google Scholar] [CrossRef]
- Kato, S.; Yamaguchi, Y. Estimation of storage heat flux in an urban area using ASTER data. Remote Sens. Environ. 2007, 110, 1–17. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, T.; Feng, X.; Wang, K. Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. Int. J. Remote Sens. 2009, 30, 2105–2118. [Google Scholar] [CrossRef]
- epa.gov. Heat Islands. Available online: https://www.epa.gov/heat-islands/heat-island-compendium (accessed on 12 June 2020).
- Lazzarini, M.; Molini, A.; Marpu, P.; Ouarda, T.M.J.; Ghedira, H. Urban climate modifications in hot desert cities: The role of land cover, local climate, and seasonality. Geophys. Res. Lett. 2015, 42, 9980–9989. [Google Scholar] [CrossRef] [Green Version]
- Lazzarini, M.; Marpu, P.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sens. Environ. 2013, 130, 136–152. [Google Scholar] [CrossRef]
- Charabi, Y.; Bakhit, A. Assessment of the canopy urban heat island of a coastal arid tropical city: The case of Muscat, Oman. Atmos. Res. 2011, 101, 215–227. [Google Scholar] [CrossRef]
- Radhi, H.; Fikry, F.; Sharples, S. Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain. Landsc. Urban Plan. 2013, 113, 47–61. [Google Scholar] [CrossRef]
- Al-Sallal, K.; Al-Rais, L. Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai. Renew. Energy 2012, 38, 40–49. [Google Scholar] [CrossRef]
- u.ae/en. about-the-uae/the-seven-emirates/dubai. Available online: https://u.ae/en/about-the-uae/the-seven-emirates/dubai (accessed on 23 May 2020).
- dsc.gov.ae. Themes > Population and Vital Statistics. Available online: https://www.dsc.gov.ae/en-us/Themes/Pages/Population-and-Vital-Statistics.aspx?Theme=42&year=2014#DSC_Tab1 (accessed on 20 March 2020).
- weatherspark.com. Average Weather at Dubai International Airport United Arab Emirates. Available online: https://weatherspark.com/y/148889/Average-Weather-at-Dubai-International-Airport-United-Arab-Emirates-Year-Round (accessed on 20 March 2020).
- ncm.ae. Radar UAE. Available online: https://www.ncm.ae/en#!/Radar_UAE_Merge/26 (accessed on 23 March 2020).
- dubaidxbairport.com. Dubai International Airport. Available online: https://www.dubaidxbairport.com/ (accessed on 27 March 2020).
- cnbc.com. Dubai International Airport Installs 15,000 Solar Panels. Available online: https://www.cnbc.com/2019/07/17/dubai-international-airport-installs-15000-solar-panels.html (accessed on 27 March 2020).
- fscloudport.com. Al Maktoum International Airport (OMDW). Available online: http://www.fscloudport.com/atk/fscp.nsf/c9482105febd1beb802583bb006e932b/5f8ee3f40129ce9b802583bb006ec4f7?OpenDocument (accessed on 1 April 2020).
- dsc.gov.ae. Population Bulletin Emirate of Dubai 2018. Available online: https://www.dsc.gov.ae/Publication/Population%20Bulletin%20Emirate%20of%20Dubai%202018.pdf (accessed on 3 April 2020).
- thenational.ae. Dubai Ruler launches Marmoom Desert Conservation Reserve. Available online: https://www.thenational.ae/uae/environment/dubai-ruler-launches-marmoom-desert-conservation-reserve-1.696015 (accessed on 3 April 2020).
- citypopulation.de. UAE: Division of Dubai. Available online: https://www.citypopulation.de/en/uae/dubai/admin/ (accessed on 10 June 2020).
- Camilloni, I.; Barrucand, M. Temporal variability of the Buenos Aires, Argentina, urban heat island. Theor. Appl. Climatol. 2011, 107, 47–58. [Google Scholar] [CrossRef]
- von Glasow, R.; Jickells, T.; Baklanov, A.; Carmichael, G.; Church, T.; Gallardo, L.; Hughes, C.; Kanakidou, M.; Liss, P.; Mee, L.; et al. Megacities and Large Urban Agglomerations in the Coastal Zone: Interactions Between Atmosphere, Land, and Marine Ecosystems. AMBIO 2012, 42, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Yoshikado, H. Numerical Study of the Daytime Urban Effect and Its Interaction with the Sea Breeze. J. Appl. Meteorol. (1988–2005) 1992, 31, 1146–1164. [Google Scholar]
- Dandou, A.; Tombrou, M.; Soulakellis, N. The Influence of the City of Athens on the Evolution of the Sea-Breeze Front. Bound. Layer Meteorol. 2008, 131, 35–51. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D.N. On the impact of urban climate on the energy consumption of buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Sakaida, K.; Egoshi, A.; Kuramochi, M. Effects of Sea Breezes on Mitigating Urban Heat Island Phenomenon: Vertical Observation Results in the Urban Center of Sendai. Jpn. Prog. Climatol. 2011, 11–16. [Google Scholar]
- Erell, E.; Williamson, T. Intra-urban differences in canopy layer air temperature at a mid-latitude city. Int. J. Climatol. 2007, 27, 1243–1255. [Google Scholar] [CrossRef]
- Anibaba, B.W.; Durowoju, O.S.; Adedeji, O.I. Assessing the Significance of Meteorological Parameters to the Magnitude of Urban Heat Island (Uhi). Ann. Univ. Oradea, Geogr. Ser. 2019, 29, 30–39. [Google Scholar] [CrossRef]
- Ganbat, G.; Han, J.-Y.; Ryu, Y.-H.; Baik, J.-J. Characteristics of the urban heat island in a high-altitude metropolitan city, Ulaanbaatar, Mongolia. Asia-Pac. J. Atmos. Sci. 2013, 49, 535–541. [Google Scholar] [CrossRef]
- Li, D.; Sun, T.; Liu, M.; Wang, L.; Gao, Z. Changes in Wind Speed under Heat Waves Enhance Urban Heat Islands in the Beijing Metropolitan Area. J. Appl. Meteorol. Climatol. 2016, 55, 2369–2375. [Google Scholar] [CrossRef]
- Alonso, M.S.; Fidalgo, M.R.; Labajo, J.L. The urban heat island in Salamanca (Spain) and its relationship to meteorological parameters. Clim. Res. 2007, 34, 39–46. [Google Scholar] [CrossRef]
- Sundborg, Å. Local Climatological Studies of the Temperature Conditions in an Urban Area. Tellus 1950, 2, 222–232. [Google Scholar] [CrossRef]
- Papanikolaou, N.M.; Livada, I.; Santamouris, M.; Niachou, K. The Influence of Wind Speed on Heat Island Phenomena in Athens, Greece. Int. J. Vent. 2008, 6, 337–348. [Google Scholar] [CrossRef]
- Sheng, L.; Tang, X.; You, H.; Gu, Q.; Hu, H. Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China. Ecol. Indic. 2017, 72, 738–746. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Liu, W.; Ji, C.; Zhong, J.; Jiang, X.; Zheng, Z. Temporal characteristics of the Beijing urban heat island. Theor. Appl. Climatol. 2006, 87, 213–221. [Google Scholar] [CrossRef]
- Skoulika, F.; Santamouris, M.; Kolokotsa, D.; Boemi, N. On the thermal characteristics and the mitigation potential of a medium size urban park in Athens, Greece. Landsc. Urban Plan. 2014, 123, 73–86. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Flocas, H.A.; Santamouris, M.; Helmis, C.G. Application of Neural Networks to the Simulation of the Heat Island over Athens, Greece, Using Synoptic Types as a Predictor. J. Appl. Meteorol. (1988–2005) 2002, 41, 519–527. [Google Scholar] [CrossRef]
- Santamouris, M. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ. 2015, 512–513, 582–598. [Google Scholar] [CrossRef]
- Schatz, J.; Kucharik, C. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environ. Res. Lett. 2015, 10, 094024. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Baik, J.-J. Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theor. Appl. Climatol. 2010, 100, 227–237. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Baik, J.-J. Maximum Urban Heat Island Intensity in Seoul. J. Appl. Meteorol. (1988–2005) 2002, 41, 651–659. [Google Scholar] [CrossRef]
- Yoshikado, H.; Tsuchida, M. High Levels of Winter Air Pollution under the Influence of the Urban Heat Island along the Shore of Tokyo Bay. J. Appl. Meteorol. 1996, 35, 1804–1813. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Simpson, R. Effect Of A Heat Island On The Meteorology Of A Complex Urban Airshed. Boun. Layer Meteorol. 2001, 100, 487–506. [Google Scholar] [CrossRef]
- Freitas, E.; Rozoff, C.; Cotton, W.; Dias, P.S. Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil. Bound. Layer Meteorol. 2006, 122, 43–65. [Google Scholar] [CrossRef]
- Ackerman, B. Temporal March of the Chicago Heat Island. J. Clim. Appl.Meteorol. 1985, 24, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Montávez, J.P.; Rodríguez, A.; Jiménez, J.I. A study of the Urban Heat Island of Granada. J. R. Meteorol. Soc. 2000, 20, 899–911. [Google Scholar] [CrossRef]
- Camilloni, I.s.; Barros, V. On the Urban Heat Island Effect Dependence on Temperature Trends. Clim. Chang. 1997, 37, 665–681. [Google Scholar] [CrossRef]
Weather Station No. | Weather Station Name | Latitude (°N) | Longitude (°E) | Station Elevation (m) | Surrounding Area | Population Density (pop./km2) |
---|---|---|---|---|---|---|
1 | Dubai International Airport | 25°15′10″ | 55°21′52″ | 19 | Urban | Medium (3611) |
2 | Al Maktoum International Airport | 24°55′06″ | 55°10′32″ | 52 | Suburban | Medium/Low (825) |
3 | Saih Al Salem | 24°49′39″ | 55°18′43″ | 80 | Rural | Low (7) |
Cluster No. | Wind Direction (°) | Directions Specification | No. of Measurements Dubai Airport | No. of Measurements Al Maktoum Airport |
---|---|---|---|---|
1 | 260–330 | The sea | 13,689 | 13,305 |
2 | 70–140 | The desert | 7873 | 7805 |
3 | 200–260 | Coastal area | 4407 | 4067 |
4 | 140–200 | The desert | 8848 | 9320 |
5 | 330–20 | The sea | 4298 | 4862 |
6 | 20–70 | Coastal area | 4709 | 4465 |
Weather Station No. | Weather Station Name | Weather Parameters | Max Value | Min Value | Average Value | Standard Deviation |
---|---|---|---|---|---|---|
1 | Dubai International Airport | Temperature dry (°C) | 48.6 | 12.3 | 29.6 | 6.6 |
Relative humidity (%) | 100 | 4 | 50 | 18.0 | ||
Wind speed (km/h) | 63 | 0 | 13 | 6.5 | ||
2 | Al Maktoum International Airport | Temperature dry (°C) | 48.5 | 7.1 | 28.0 | 7.8 |
Relative humidity (%) | 100 | 2 | 53 | 22.7 | ||
Wind speed (km/h) | 67 | 0 | 14 | 7.9 | ||
3 | Saih Al Salem | Temperature dry (°C) | 50.8 | 4.7 | 28.3 | 8.9 |
Relative humidity (%) | 100 | 1 | 48 | 26.0 | ||
Wind speed (km/h) | 67 | 0 | 10 | 7.0 |
Value Discretion | UHI Intensity T1–T3 (°C) | Daytime UHI Intensity T1–T3 (°C) (6 a.m.–9 p.m.) | Night-time UHI Intensity T1–T3 (°C) (9 p.m.–6 a.m.) | UHI Intensity T2–T3 (°C) | Daytime UHI Intensity T2–T3 (°C) (6 a.m.–9 p.m.) | Night-time UHI Intensity T2–T3 (°C) (9 p.m.–6 a.m.) |
---|---|---|---|---|---|---|
Maximum value | 11.5 | 11.3 | 11.5 | 13.0 | 11.7 | 13.0 |
Minimum value | −12.8 | −12.8 | −5.4 | −13.5 | −13.5 | −9.9 |
Average value | 1.3 | −0.4 | 4.6 | −0.3 | −1.1 | 1.3 |
Median value | 1.7 | −0.7 | 4.6 | −0.2 | −1.3 | 1.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, A.; Pignatta, G.; Topriska, E.; Santamouris, M. Canopy Urban Heat Island and Its Association with Climate Conditions in Dubai, UAE. Climate 2020, 8, 81. https://doi.org/10.3390/cli8060081
Mohammed A, Pignatta G, Topriska E, Santamouris M. Canopy Urban Heat Island and Its Association with Climate Conditions in Dubai, UAE. Climate. 2020; 8(6):81. https://doi.org/10.3390/cli8060081
Chicago/Turabian StyleMohammed, Afifa, Gloria Pignatta, Evangelia Topriska, and Mattheos Santamouris. 2020. "Canopy Urban Heat Island and Its Association with Climate Conditions in Dubai, UAE" Climate 8, no. 6: 81. https://doi.org/10.3390/cli8060081
APA StyleMohammed, A., Pignatta, G., Topriska, E., & Santamouris, M. (2020). Canopy Urban Heat Island and Its Association with Climate Conditions in Dubai, UAE. Climate, 8(6), 81. https://doi.org/10.3390/cli8060081