A Review of Ocean Dynamics in the North Atlantic: Achievements and Challenges
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Observations
3.2. Extending the Time Series
3.3. Methods for Extending the North Atlantic Instrumental Recordings
3.4. Methods for Verifying Time Series Extensions
3.5. Ocean Cycles
3.6. Methods to Identify Ocean Oscillations and Their Lead—Lag Relations
3.7. Understanding and Explaining
3.8. Effects on Regional and Local Climate
3.9. Effects on Regional or Local Ecosystems
3.10. Predictions
3.11. Relations between the NAO, the AMO, and the AMOC.
3.12. Relations between Ocean Dynamics in the North Atlantic and Ocean Dynamics in other Regions
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Trouet, V.; Esper, J.; Graham, N.E.; Baker, A.; Scourse, J.; Frank, D.C. Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly. Science 2009, 324, 78–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P.D.; Jonsson, T.; Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 1997, 17, 1433–1450. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nunez, A.M.; Trimble, P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef] [Green Version]
- Rayner, N.A.; Parker, D.E.; Horton, E.; Folland, C.K.; Alexander, L.V.; Rowell, D.; Kent, E.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Caesar, L.; Rahmstorf, S.; Robinson, A.; Feulner, G.; Saba, V. Observed fingerprints of weakening Atlantic Ocean overturning circulation. Nature 2018, 556, 191–196. [Google Scholar] [CrossRef]
- Cook, E.R.; Kushnir, Y.; Smerdon, J.E.; Williams, A.P.; Anchukaitis, K.J.; Wahl., E.R. A Euro-Mediterranean tree-ring reconstruction of the winter NAO index since 910CE. Clim. Dyn. 2019, 53, 1567–1580. [Google Scholar] [CrossRef]
- Luterbacher, J.; Xoplaki, E.; Dietrich, D.; Rickli, R.; Jacobeit, J.; Beck, C.; Gyalistras, D.; Schmutz, C.; Wanner, H. Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim. Dyn. 2002, 18, 545–561. [Google Scholar] [CrossRef]
- Gray, S.T.; Graumlich, L.J.; Betancourt, J.L.; Pederson, G.T. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 AD. Geophys. Res. Lett. 2004, 31, L12205. [Google Scholar] [CrossRef]
- Knight, J.R.; Allan, R.J.; Folland, C.K.; Vellinga, M.; Mann, M.E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 2005, 32, L20708. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.; Hellstrom, J.C.; Kelly, B.F.J.; Mariethoz, G.; Trouet, V. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Sci. Rep. 2015, 5, 10307. [Google Scholar] [CrossRef] [Green Version]
- Woollings, T.; Franzke, C.; Hodson, D.L.R.; Dong, B.; Barnes, E.A.; Raible, C.C.; Pinto, J.G. Contrasting interannual and multidecadal NAO variability. Clim. Dyn. 2015, 45, 539–556. [Google Scholar] [CrossRef] [Green Version]
- Seip, K.L.; Gron, O. Atmospheric and Ocean Dynamics May Explain Cycles in Oceanic Oscillations. Climate 2019, 7, 77. [Google Scholar] [CrossRef] [Green Version]
- Privalsky, V.; Yushkov, V. Getting It Right Matters: Climate Spectra and Their Estimation. Pure Appl. Geophys. 2018, 175, 3085–3096. [Google Scholar]
- Mann, M.E.; Steinman, B.A.; Miller, S.K. Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seip, K.L.; Grøn, Ø.; Wang, H. The North Atlantic oscillations: cycle times for the NAO, the AMO and the AMOC. Climate 2019, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Seip, K.L.; Grøn, Ø. On the statistical nature of distinct cycles in global warming variables. Clim. Dyn. 2019, 52, 7329–7337. [Google Scholar] [CrossRef]
- Mazzarella, A.; Scafetta, N. Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change. Theor. Appl. Climatol. 2012, 107, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Delworth, T.L.; Zeng, F.; Zhang, L.; Vecchi, G.A.; Yang, X.; Zhang, R. The Central Role of Ocean Dynamics in Connecting the North Atlantic Oscillation to the Extratropical Component of the Atlantic Multidecadal Oscillation. J. Clim. 2017, 30, 3789–3805. [Google Scholar] [CrossRef]
- Wu, T.W.; Hu, A.; Gao, F.; Zhang, J.; Meehl, G.A. New insights into natural variability and anthropogenic forcing of global/regional climate evolution. Npj Clim. Atmos. Sci. 2019, 2, 18. [Google Scholar] [CrossRef]
- Haskins, R.K.; Oliver, K.I.C.; Jackson, L.C.; Wood, R.A.; Drijfhout, S.S. Temperature domination of AMOC weakening due to freshwater hosing in two GCMs. Clim. Dyn. 2019, 54, 273–286. [Google Scholar]
- Imbrie, J.; Berger, A.; Boyle, E.A.; Clemens, S.C.; Duffy, A.; Howard, W.R.; Kukla, G.; Kutzbach, J.; Martinson, D.G.; Mcintyre, A.; et al. On the Structure and Origin of Major Glaciation Cycles 2. The 100,000-Year Cycle. Paleoceanography 1993, 8, 699–735. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Wu, L.X.; Yang, Y.; Geng, T.; Cai, W.J.; Gan, B.L.; Chen, Z.H.; Jing, Z.; Wang, G.J.; Ma, X.H. The Pacific Decadal Oscillation less predictable under greenhouse warming. Nat. Clim. Chang. 2020, 10, 30–34. [Google Scholar] [CrossRef]
- Little, C.M.; Hu, A.X.; Hughes, C.W.; McCarthy, G.D.; Piecuch, C.G.; Ponte, R.M.; Thomas, M.D. The Relationship Between US East Coast Sea Level and the Atlantic Meridional Overturning Circulation: A Review. J. Geophys. Res. Oceans 2019, 124, 6435–6458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kestin, T.S.; Karoly, D.J.; Yang, J.I.; Rayner, N.A. Time-frequency variability of ENSO and stochastic simulations. J. Clim. 1998, 11, 2258–2272. [Google Scholar] [CrossRef]
- Clement, A.; Bellomo, K.; Murphy, L.N.; Cane, M.A.; Mauritsen, T.; Radel, G.; Stevens, B. The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science 2015, 350, 320–324. [Google Scholar]
- Chen, H.G.; Shen, J.Y.; Chen, W.H.; Wu, C.Y.; Huang, C.S.; Yi, Y.Y.; Qian, J.C. The Bivariate Empirical Mode Decomposition and Its Contribution to Grinding Chatter Detection. Appl. Sci. 2017, 7, 145. [Google Scholar] [CrossRef]
- Wang, L.; Ting, M.; Kushner, P.J. A robust empirical seasonal prediction of winter NAO and surface climate. Sci. Rep. 2017, 7, 279. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W. Decadal Trends in the North-Atlantic Oscillation—Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 2010, 79, 231–244. [Google Scholar] [CrossRef]
- Birkel, S.D.; Mayewski, P.A.; Maasch, K.A.; Kurbatov, A.V.; Lyon, B. Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation. Npj Clim. Atmos. Sci. 2018, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tatli, H.; Menteş, Ş.S. Detrended cross-correlation patterns between North Atlantic oscillation and precipitation. Theor. Appl. Climatol. 2019, 138, 387–397. [Google Scholar] [CrossRef]
- Mosedale, T.J.; Stephenson, D.B.; Collins, M.; Mills, T.C. Granger causality of coupled climate processes: Ocean feedback on the North Atlantic oscillation. J. Clim. 2006, 19, 1182–1194. [Google Scholar] [CrossRef]
- Seip, K.L.; McNown, R. The timing and accuracy of leading and lagging business cycle indicators: a new approach. Int. J. Forecast. 2007, 22, 277–287. [Google Scholar] [CrossRef]
- Seip, K.L.; Grøn, Ø. Cycles in oceanic teleconnections and global temperature change. Theor. Appl. Climatol. 2018, 136, 985–1000. [Google Scholar] [CrossRef]
- Robson, J.; Ortega, P.; Sutton, R. A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci. 2016, 9, 513–517. [Google Scholar] [CrossRef]
- Watson, A.J.; Schuster, U.; Bakker, D.C.E.; Bates, N.R.; Corbiere, A.; Gonzalez-Devila, M.; Friedrich, T.; Hauck, J.; Heinze, C.; Johannessen, T.; et al. Tracking the Variable North Atlantic Sink for Atmospheric CO2. Science 2009, 326, 1391–1393. [Google Scholar] [CrossRef]
- Guallart, E.F.; Schuster, U.; Fajar, N.M.; Legge, O.; Brown, P.; Pelejero, C.; Messias, M.J.; Calvo, E.; Watson, A.; Rios, A.F.; et al. Trends in anthropogenic CO2 in water masses of the Subtropical North Atlantic Ocean. Prog. Oceanogr. 2015, 131, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.; Prowe, A.E.F.; Lima, I.D.; Doney, S.C.; Wanninkhof, R.; Greatbatch, R.J.; Schuster, U.; Corbiere, A. Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades. Glob. Biogeochem. Cycles 2008, 22, GB4027. [Google Scholar] [CrossRef] [Green Version]
- Gruber, N.; Clement, D.; Carter, B.R.; Feely, R.A.; van Heuven, S.; Hoppema, M.; Ishii, M.; Key, R.M.; Kozyr, A.; Lauvset, S.K.; et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 2019, 363, 1193–1199. [Google Scholar]
- Landschutzer, P.; Gruber, N.; Bakker, D.C.E. Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 2016, 30, 1396–1417. [Google Scholar]
- Goris, N.; Tjiputra, J.F.; Olsen, A.; Schwinger, J.; Lauvset, S.K.; Jeansson, E. Constraining Projection-Based Estimates of the Future North Atlantic Carbon Uptake. J. Clim. 2018, 31, 3959–3978. [Google Scholar] [CrossRef]
- Khatiwala, S.; Schmittner, A.; Muglia, J. Air-sea disequilibrium enhances ocean carbon storage during glacial periods. Sci. Adv. 2019, 5, eaaw4981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, R.T.; Hodson, D.L.R. Atlantic Ocean forcing of North American and European summer climate. Science 2005, 309, 115–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, R.; Muller, W.A.; Baehr, J.; Bader, J. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating. Clim. Dyn. 2017, 48, 3547–3563. [Google Scholar] [CrossRef] [Green Version]
- Rousi, E.; Rust, H.W.; Ulbrich, U.; Anagnostopoulou, C. Implications of Winter NAO Flavors on Present and Future European Climate. Climate 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.Y.; Tung, K.K. Global surface warming enhanced by weak Atlantic overturning circulation. Nature 2018, 559, 387–391. [Google Scholar] [CrossRef]
- Wei, M.; Qiao, F.; Guo, Y.; Deng, J.; Song, Z.; Shu, Q.; Yang, X. Quantifying the importance of interannual, interdecadal and multidecadal climate natural variabilities in the modulation of global warming rates. Clim. Dyn. 2019, 53, 6715–6727. [Google Scholar]
- Hughes, K.M.; Dransfeld, L.; Johnson, M.P. Climate and stock influences on the spread and locations of catches in the northeast Atlantic mackerel fishery. Fish. Oceanogr. 2015, 24, 540–552. [Google Scholar] [CrossRef]
- Faillettaz, R.; Beaugrand, G.; Goberville, E.; Kirby, R.R. Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci. Adv. 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Beaugrand, G.; Reid, P.C. Relationships between North Atlantic salmon, plankton, and hydroclimatic change in the Northeast Atlantic. Ices J. Mar. Sci. 2012, 69, 1549–1562. [Google Scholar] [CrossRef] [Green Version]
- Drinkwater, K.F.; Kristiansen, T. A synthesis of the ecosystem responses to the late 20th century cold period in the northern North Atlantic. Ices J. Mar. Sci. 2018, 75, 2325–2341. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; O’Malley, R.T.; Siegel, D.A.; McClain, C.R.; Sarmiento, J.L.; Feldman, G.C.; Milligan, A.J.; Falkowski, P.G.; Letelier, R.M.; Boss, E.S. Climate-driven trends in contemporary ocean productivity. Nature 2006, 444, 752–755. [Google Scholar]
- Cushing, D.H. Plankton Production and Year-Class Strength in Fish Populations—An Update of the Match Mismatch Hypothesis. Adv. Mar. Biol. 1990, 26, 249–293. [Google Scholar]
- Tømte, O.; Seip, K.L.; Christophersen, N. Evidence That Loss in Predictability Increases with Weakening of (Metabolic) Links to Physical Forcing Functions in Aquatic Ecosystems. Oikos 1998, 82, 325–332. [Google Scholar] [CrossRef]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.H.; Deyle, E.; Fogarty, M.; Munch, S. Detecting Causality in Complex Ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Seip, K.L.; Pleym, H. Competition and predation in a seasonal world. Verh. Internat. Verein. Limnol. 2000, 27, 823–827. [Google Scholar] [CrossRef]
- Seip, K.L. Doers tax reduction have an effect on gross domestic product? An empirical investigation. J. Policy Model. 2019, 41, 1128–1143. [Google Scholar] [CrossRef]
- Knutti, R.; Stocker, T.F.; Joos, F.; Plattner, G.K. Probabilistic climate change projections using neural networks. Clim. Dyn. 2003, 21, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Foster, G.L.; Royer, D.L.; Lunt, D.J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 2017, 8, 14845. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Delworth, T.L.; Rosati, A.; Anderson, W.G.; Dixon, K.W.; Lee, H.C.; Zeng, F.R. Sensitivity of the North Atlantic Ocean Circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model. J. Geophys. Res. Ocean. 2011, 116, 12024. [Google Scholar] [CrossRef] [Green Version]
- Hollis, C.J.; Taylor, K.W.R.; Handley, L.; Pancost, R.D.; Humber, M.; Creech, J.B.; Hines, B.R.; Erica, M.C.A.; Morgans, H.E.G.; Crampton, J.S.; et al. Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models. Earth Planet. Sci. Lett. 2012, 349, 53–56. [Google Scholar] [CrossRef]
- Lunt, D.J.; Elderfield, H.; Pancost, R.; Ridgwell, A.; Foster, G.L.; Haywood, A.; Kiehl, J.; Sagoo, N.; Shields, C.; Stone, E.J.; et al. Warm climates of the past-a lesson for the future? Philos. Trans. R. Soc. a-Math. Phys. Eng. Sci. 2013, 371, 20130146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gastineau, G.; D’Andrea, F.; Frankignoul, C. Atmospheric response to the North Atlantic Ocean variability on seasonal to decadal time scales. Clim. Dyn. 2013, 40, 2311–2330. [Google Scholar] [CrossRef]
- O’Reilly, C.H.; Huber, M.; Woollings, T.; Zanna, L. The signature of low-frequency oceanic forcing in the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2016, 43, 2810–2818. [Google Scholar] [CrossRef] [Green Version]
- Trenary, L.; Delsole, T. Does the Atlantic Multidecadal Oscillation Get Its Predictability from the Atlantic Meridional Overturning Circulation? J. Clim. 2016, 29, 5267–5280. [Google Scholar] [CrossRef]
- Cassou, C.; Kushnir, Y.; Hawkins, E.; Pirani, A.; Kucharski, F.; Kang, I.S.; Caltabiano, N. Decadal Climate Variability and Predictability: Challenges and Opportunities. Bull. Am. Meteorol. Soc. 2018, 99, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.P.; Delworth, T.L.; Zeng, F.R. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean. Clim. Dyn. 2017, 48, 2065–2085. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Z.Y.; Zhang, R.; Delworth, T.L. On the observed relationship between the Pacific Decadal Oscillation and the Atlantic Multi-decadal Oscillation. J. Oceanogr. 2011, 67, 27–35. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seip, K.L. A Review of Ocean Dynamics in the North Atlantic: Achievements and Challenges. Climate 2020, 8, 49. https://doi.org/10.3390/cli8040049
Seip KL. A Review of Ocean Dynamics in the North Atlantic: Achievements and Challenges. Climate. 2020; 8(4):49. https://doi.org/10.3390/cli8040049
Chicago/Turabian StyleSeip, Knut Lehre. 2020. "A Review of Ocean Dynamics in the North Atlantic: Achievements and Challenges" Climate 8, no. 4: 49. https://doi.org/10.3390/cli8040049
APA StyleSeip, K. L. (2020). A Review of Ocean Dynamics in the North Atlantic: Achievements and Challenges. Climate, 8(4), 49. https://doi.org/10.3390/cli8040049