Assessment of Climate Change Impacts on Sea Surface Temperatures and Sea Level Rise—The Arabian Gulf
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sea Surface Temperature
2.2. Coral Reefs
2.3. Coastal Vulnerability to Anticipated Sea Level Rise
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, L.; Cao, R.; Wei, K.; Wang, W.; Chen, L. Adapting climate change challenge: A new vulnerability assessment framework from the global perspective. J. Clean. Prod. 2019, 217, 216–224. [Google Scholar] [CrossRef]
- Dong, L.; McPhaden, M.J. Interhemispheric SST Gradient Trends in the Indian Ocean prior to and during the Recent Global Warming Hiatus. J. Clim. 2016, 29, 9077–9095. [Google Scholar] [CrossRef]
- Ihara, C.; Kushnir, Y.; Cane, M.A. Warming Trend of the Indian Ocean SST and Indian Ocean Dipole from 1880 to 2004. J. Clim. 2008, 21, 2035–2046. [Google Scholar] [CrossRef]
- Arora, A.; Rao, S.A.; Chattopadhyay, R.; Goswami, T.; George, G.; Sabeerali, C.T. Role of Indian Ocean SST variability on the recent global warming hiatus. Glob. Planet. Chang. 2016, 143, 21–30. [Google Scholar] [CrossRef]
- Wang, H.; Murtugudde, R.; Kumar, A. Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO. Clim. Dyn. 2004, 47, 2481–2500. [Google Scholar] [CrossRef]
- Wang, H.; Kumar, A.; Murtugudde, R.; Narapusetty, B.; Seip, K.L. Covariations between the Indian Ocean dipole and ENSO: A modeling study. Clim. Dyn. 2019, 53, 5743–5761. [Google Scholar] [CrossRef]
- Varotsos, C.A. The global signature of the ENSO and SST-like fields. Theor. Appl. Climatol. 2013, 113, 197–204. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Franzke, C.L.; Efstathiou, M.N.; Degermendzhi, A.G. Evidence for two abrupt warming events of SST in the last century. Theor. Appl. Climatol. 2014, 116, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Varotsos, C.A.; Cracknell, A.P.; Efstathiou, M.N. The global signature of the El Niño/La Niña Southern Oscillation. Int. J. Remote Sens. 2018, 39, 5965–5977. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Van Lavieren, H.; Burt, J.; Feary, D.A.; Cavalcante, G.; Marquis, E.; Benedetti, L.; Sale, P.F. Managing the Growing Impacts of Development on Fragile Coastal and Marine Ecosystems: Lessons from the Gulf; UNU-INWEH: Hamilton, ON, Canada, 2011. [Google Scholar]
- Pous, S.; Lazure, P.; Carton, X. A model of the general circulation in the Persian Gulf and in the Strait of Hormuz: Intraseasonal to interannual variability. Cont. Shelf Res. 2015, 94, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, C.; Al-Husiani, M.; Al-Jamali, F.; Al-Yamani, F.; Baldwin, R.; Bishop, J.; Jones, D.A. The Gulf: A young sea in decline. Mar. Pollut. Bull. 2010, 60, 13–38. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, J.R.; Krupp, F.; Burt, J.A.; Feary, D.A.; Ralph, G.M.; Carpenter, K.E. Living on the edge: Vulnerability of coral-dependent fishes in the Gulf. Mar. Pollut. Bull. 2016, 105, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Naser, H. Human impacts on marine biodiversity: Macrobenthos in Bahrain. Arab. Gulf 2011, 109–126. [Google Scholar]
- Feary, D.A.; Burt, J.A.; Bartholomew, A. Artificial marine habitats in the Arabian Gulf: review of current use, benefits and management implications. Ocean Coast. Manag. 2011, 54, 742–749. [Google Scholar] [CrossRef]
- Trench, R.K. The Cell Biology of Plant-Animal Symbiosis. Annu. Rev. Plant Physiol. 1979, 30, 485–531. [Google Scholar] [CrossRef]
- Paparella, F.; Xu, C.; Vaughan, G.O.; Burt, J.A. Coral bleaching in the Persian/Arabian Gulf is modulated by summer winds. Front. Mar. Sci. 2019, 6, 205. [Google Scholar] [CrossRef]
- Wilson, S.I.M.O.N.; Fatemi, S.M.R.; Shokri, M.R.; Claereboudt, M.I.C.H.E.L. Status of coral reefs of the Persian/Arabian Gulf and Arabian Sea region, in Status of coral reefs of the World; AIMS: Townsville, Australia, 2002; pp. 53–62. [Google Scholar]
- Burt, J.A.; Feary, D.A.; Van Lavieren, H. Persian Gulf reefs: An Important asset for Climate Science in Urgent Need of Protection. Ocean Chall. 2013, 20, 49–56. [Google Scholar]
- Hereher, M.E. Effect of land use/cover change on land surface temperatures-The Nile Delta, Egypt. J. Afr. Earth Sci. 2017, 126, 75–83. [Google Scholar] [CrossRef]
- Etheridge, D.M.; Steele, L.P.; Langenfelds, R.L.; Francey, R.J.; Barnola, J.M.; Morgan, V.I. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. Atmos. 1996, 101, 4115–4128. [Google Scholar] [CrossRef] [Green Version]
- Scafetta, N. Climate change and its causes, a discussion about some key issues. arXiv 2010, arXiv:1003.1554. [Google Scholar]
- Church, J.A.; White, N.J.; Konikow, L.F.; Domingues, C.M.; Cogley, J.G.; Rignot, E.; Velicogna, I. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, S.; Meisner, C. Climate Change and Sea Level Rise: A Review of the Scientific Evidence; Environment department papers; no. 118; Climate change series; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Bouttes, N.; Gregory, J.M.; Lowe, J.A. The reversibility of sea level rise. J. Clim. 2013, 26, 2502–2513. [Google Scholar] [CrossRef] [Green Version]
- Beckley, B.D.; Lemoine, F.G.; Luthcke, S.B.; Ray, R.D.; Zelensky, N.P. A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Harper, J.T.; O’Neel, S.J.S. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 2008, 321, 1340–1343. [Google Scholar] [CrossRef] [PubMed]
- Tol, R.S.; Bohn, M.; Downing, T.E.; Guillerminet, M.L.; Hizsnyik, E.; Kasperson, R.; Pfeifle, G. Adaptation to Five Metres of Sea Level Rise. J. Risk Res. 2006, 9, 467–482. [Google Scholar] [CrossRef] [Green Version]
- Kilpatrick, K.A.; Podestá, G.; Walsh, S.; Williams, E.; Halliwell, V.; Szczodrak, M.; Evans, R. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 2015, 165, 27–41. [Google Scholar] [CrossRef]
- Bouali, M.; Sato, O.T.; Polito, P.S. Temporal trends in sea surface temperature gradients in the South Atlantic Ocean. Remote Sens. Environ. 2017, 194, 100–114. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. J. Geophys. Res. Ocean. 2000, 3, 9–23. [Google Scholar]
- Kozlov, I.; Dailidienė, I.; Korosov, A.; Klemas, V.; Mingėlaitė, T. MODIS-based sea surface temperature of the Baltic Sea Curonian Lagoon. J. Mar. Syst. 2014, 129, 157–165. [Google Scholar] [CrossRef]
- Ghanea, M.; Moradi, M.; Kabiri, K.; Mehdinia, A. Investigation and validation of MODIS SST in the northern Persian Gulf. Adv. Space Res. 2016, 57, 127–136. [Google Scholar] [CrossRef]
- Carlson, D.F.; Yarbro, L.A.; Scolaro, S.; Poniatowski, M.; McGee-Absten, V.; Carlson, P.R., Jr. Sea surface temperatures and seagrass mortality in Florida Bay: spatial and temporal patterns discerned from MODIS and AVHRR data. Remote Sens. Environ. 2018, 208, 171–188. [Google Scholar] [CrossRef]
- Burt, J.; Al-Harthi, S.; Al-Cibahy, A. Long-term impacts of coral bleaching events on the world’s warmest reefs. Mar. Environ. Res. 2011, 72, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Mukul, M.; Srivastava, V.; Jade, S.; Mukul, M. Uncertainties in the shuttle radar topography mission (SRTM) Heights: Insights from the indian Himalaya and Peninsula. Sci. Rep. 2017, 7, 41672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hereher, M.E. Vulnerability of the Nile Delta to sea level rise: an assessment using remote sensing. Geomat. Nat. Hazards Risk 2010, 1, 315–321. [Google Scholar] [CrossRef]
- Djouder, F.; Boutiba, M. Vulnerability assessment of coastal areas to sea level rise from the physical and socioeconomic parameters: case of the Gulf Coast of Bejaia, Algeria. Arab. J. Geosci. 2017, 10, 299. [Google Scholar] [CrossRef]
- Ben-Hasan, A.; Christensen, V. Vulnerability of the marine ecosystem to climate change impacts in the Arabian Gulf—an urgent need for more research. Glob. Ecol. Conserv. 2019, 17, e00556. [Google Scholar] [CrossRef]
- Riegl, B.M.; Purkis, S.J. Coral reefs of the Gulf: adaptation to climatic extremes in the world’s hottest sea, in Coral reefs of the Gulf; Springer: Dordrecht, The Netherlands, 2012; pp. 1–4. [Google Scholar]
- Vaughan, G.O.; Burt, J.A. The changing dynamics of coral reef science in Arabia. Mar. Pollut. Bull. 2016, 105, 441–458. [Google Scholar] [CrossRef]
- Coles, S.L.; Riegl, B.M. Thermal tolerances of reef corals in the Gulf: A review of the potential for increasing coral survival and adaptation to climate change through assisted translocation. Mar. Pollut. Bull. 2013, 72, 323–332. [Google Scholar] [CrossRef]
- Al-Rashidi, T.B.; El-Gamily, H.I.; Amos, C.L.; Rakha, K.A. Sea surface temperature trends in Kuwait bay, Arabian Gulf. Nat. Hazards 2009, 50, 73–82. [Google Scholar] [CrossRef]
- Burt, J.A.; Paparella, F.; Al-Mansoori, N.; Al-Mansoori, A.; Al-Jailani, H. Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs 2019, 38, 567–589. [Google Scholar] [CrossRef]
- Al-Saleh, Y.M.; Vidican, G.; Natarajan, L.; Theeyattuparampil, V.V. Carbon capture, utilisation and storage scenarios for the Gulf Cooperation Council region: A Delphi-based foresight study. Futures 2012, 44, 105–115. [Google Scholar] [CrossRef]
- Uddin, S.; Gevao, B.; Al-Ghadban, A.N.; Nithyanandan, M.; Al-Shamroukh, D. Acidification in Arabian Gulf—Insights from pH and temperature measurements. J. Environ. Monit. 2012, 14, 1479–1482. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.L.; Paytan, A.; Rahav, E.; Levy, O.; Silverman, J.; Barzel, O.; Bar-Zeev, E. Impact of brine and antiscalants on reef-building corals in the Gulf of Aqaba–Potential effects from desalination plants. Water Res. 2018, 144, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Sale, P.F.; Feary, D.A.; Burt, J.A.; Bauman, A.G.; Cavalcante, G.H.; Drouillard, K.G.; Van Lavieren, H. The growing need for sustainable ecological management of marine communities of the Persian Gulf. Ambio 2011, 40, 4–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, A.E.; Chilingarian, G.V. Subsidence over producing oil and gas fields, and gas leakage to the surface. J. Pet. Sci. Eng. 1993, 9, 239–250. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Pirooz, M.D.; Zaker, N.H.; Yalciner, A.C. Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean. Nat. Hazards 2009, 48, 229–243. [Google Scholar] [CrossRef]
- El-Hussain, I.; Omira, R.; Al-Habsi, Z.; Baptista, M.A.; Deif, A.; Mohamed, A.M.E. Probabilistic and deterministic estimates of near-field tsunami hazards in northeast Oman. Geosci. Lett. 2018, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lambeck, K. Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth Planet. Sci. Lett. 1996, 142, 43–57. [Google Scholar] [CrossRef]
Zone | Winter | Spring | Summer | Fall | Annual |
---|---|---|---|---|---|
A | 0.69 | 0.93 | 0.78 | 0.47 | 0.71 |
B | 0.47 | 0.65 | 0.53 | 0.74 | 0.56 |
C | 0.5 | 0.87 | 0.6 | 0.37 | 0.56 |
D | 0.52 | 0.88 | 0.83 | 0.38 | 0.61 |
E | 0.47 | -0.39 | 0.36 | 0.14 | 0.11 |
F | 0.3 | -0.27 | 0.29 | 0.23 | 0.11 |
G | 0.2 | -0.04 | 0.22 | 0.09 | 0.08 |
Zone | Winter | Spring | Summer | Fall | Annual |
---|---|---|---|---|---|
A | 0.32 | 0.04 | 0.02 | 0.38 | 0.01 |
B | 0.26 | 0.17 | 0.03 | 0.03 | 0.00 |
C | 0.25 | 0.01 | 0.01 | 0.24 | 0.00 |
D | 0.17 | 0.03 | 0.02 | 0.20 | 0.00 |
E | 0.14 | 0.38 | 0.13 | 0.45 | 0.55 |
F | 0.29 | 0.44 | 0.12 | 0.22 | 0.49 |
G | 0.32 | 0.89 | 0.54 | 0.70 | 0.57 |
Country\Elevation | 1 m | 2 m | 3 m |
---|---|---|---|
Iraq | 1912.9 | 5293.6 | 9328.7 |
Kuwait | 160.3 | 334.7 | 481.9 |
KSA | 613.9 | 1401.4 | 2216.5 |
Bahrain | 20.5 | 50.3 | 88.6 |
Qatar | 147.2 | 362.4 | 620.0 |
UAE | 269.9 | 628.3 | 1110.4 |
Oman | 2.6 | 5.2 | 8.4 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hereher, M.E. Assessment of Climate Change Impacts on Sea Surface Temperatures and Sea Level Rise—The Arabian Gulf. Climate 2020, 8, 50. https://doi.org/10.3390/cli8040050
Hereher ME. Assessment of Climate Change Impacts on Sea Surface Temperatures and Sea Level Rise—The Arabian Gulf. Climate. 2020; 8(4):50. https://doi.org/10.3390/cli8040050
Chicago/Turabian StyleHereher, Mohamed E. 2020. "Assessment of Climate Change Impacts on Sea Surface Temperatures and Sea Level Rise—The Arabian Gulf" Climate 8, no. 4: 50. https://doi.org/10.3390/cli8040050
APA StyleHereher, M. E. (2020). Assessment of Climate Change Impacts on Sea Surface Temperatures and Sea Level Rise—The Arabian Gulf. Climate, 8(4), 50. https://doi.org/10.3390/cli8040050