Impacts of Climate Change on the Water Resources of the Kunduz River Basin, Afghanistan
Abstract
:1. Introduction
2. Study Site
2.1. Kunduz River Basin
2.2. Climate
2.3. Hydrology
3. Data and Methods
3.1. Data
3.2. Trend Analysis for Temperature, Precipitation and River Discharge
3.3. Land Cover Classification
4. Results
4.1. Change in Temperature and Precipitation
4.2. Changes in Discharge
4.3. Change in Landcover
5. Discussion
5.1. Constraints Due to Limited Data Availability
5.2. Climate Change Impacts
6. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shroder, J.; Ahmadzai, S.J. Transboundary Water Resources Climate Change and Land-Use Implications; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Hagg, W.; Hoelzle, M.; Wagner, S.; Mayr, E.; Klose, Z. Glacier and Runoff Changes in the Rukhk Catchment, Upper Amu-Darya Basin until 2050. Glob. Planet. Chang. 2013, 110, 62–73. [Google Scholar] [CrossRef] [Green Version]
- White, C.J.; Tanton, T.W.; Rycroft, D.W. The Impact of Climate Change on the Water Resources of the Amu Darya Basin in Central Asia. Water Resour. Manag. 2014, 28, 5267–5281. [Google Scholar] [CrossRef]
- Glantz, M.H. Water, Climate, and Development Issues in the Amu Darya Basin. Mitig. Adapt. Strateg. Glob. Chang. 2005, 10, 23–50. [Google Scholar] [CrossRef]
- International Federation of Red Cross and Red Crescent Societies. Emergency Plan of Action Operation Update Afghanistan: Drought and Flash Floods. 2020, Volume 2. Available online: https://www.ifrc.org (accessed on 21 September 2020).
- McSweeney, C.; New, M.; Lizcano, G. UNDP Climate Change Country Profiles Documentation. 2007. Available online: http://country-profiles.geog.ox.ac.uk/ (accessed on 21 September 2020).
- Savage, M.; Dougherty, B.; Hamza, M.; Butterfield, R.; Bharwani, S. Socio-Economic Impacts of Climate Change in Afghanistan A Report to the Department for International Development; Stockholm Environment Institute: Stockholm, Sweden, 2009; Available online: https://www.weadapt.org/sites/weadapt.org/files/legacy-new/placemarks/files/5345354491559sei-dfid-afghanistan-report-1-.pdf (accessed on 22 September 2020).
- Ghulami, M. Assessment of Climate Change Impacts on Water Resources and Agriculture in Data-Scarce Kabul Basin. Université Côte d’Azur 2018, 146. Available online: https://tel.archives-ouvertes.fr/tel-01737052 (accessed on 22 September 2020).
- Aich, V.; Akhundzadah, N.A.; Knuerr, A.; Khoshbeen, A.; Hattermann, F.; Paeth, H.; Scanlon, A.; Paton, E. Climate Change in Afghanistan Deduced from Reanalysis and Coordinated Regional Climate Downscaling Experiment (CORDEX)—South Asia Simulations. Climate 2017, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- NEPA. Second National Communication Under the United Nations Framework Convention on Climate Change (UNFCCC); National Environmental Protection Agency (NEPA): Kabul, Afghanistan, 2017; Available online: https://postconflict.unep.ch/publications/Afghanistan/Second_National_Communication_Report2018.pdf (accessed on 22 September 2020).
- UNEP. Post-Conflict Environmental Assessment Afghanistan; United Nation Environmental Program: Nairobi, Kenya, 2003; Available online: https://www.unenvironment.org/resources/assessment/afghanistan-post-conflict-environmental-assessment (accessed on 21 September 2020).
- Ahmad, M.; Wasiq, M. Water Resource Development in Northern Afghanistan and Its Implications for Amu Darya Basin; World Bank: Washington, DC, USA, 2004. [Google Scholar] [CrossRef] [Green Version]
- Parto, S.; Mihran, R. Climate Change and Food Security in Afghanistan: Evidence from Balkh, Herat, and Nangarhar. 2014. Available online: https://www.loc.gov/item/2014363278/ (accessed on 21 September 2020).
- Akmuradov, M. Environment and Security. 2011. Available online: http://www.zaragoza.es/contenidos/medioambiente/onu/1171-eng.pdf (accessed on 21 September 2020).
- Smith, T. Climate Vulnerability in Asia’s High Mountains. WWF USAID 2014, 116. Available online: https://www.climatelinks.org/resources/climate-vulnerability-asias-high-mountains (accessed on 21 September 2020).
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. Summary of the Hindu Kush Himalaya Assessment Report. 2019. Available online: https://doi.org/doi:10.1007/978-3-319-92288-1 (accessed on 21 September 2020).
- Chen, Y.; Li, W.; Deng, H.; Fang, G.; Li, Z. Changes in Central Asia’s Water Tower: Past, Present and Future. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- USGS. Conceptual Model of Water Resources in the Kabul Basin, Afghanistan. 2009. Available online: https://pubs.usgs.gov/sir/2009/5262/pdf/sir2009-5262_front_text_508_Pt1_i-32_rev111312.pdf (accessed on 21 September 2020).
- Kamal, G.M. River Basins and Watersheds of Afghanistan. 2004, pp. 1–7. Available online: http://www.nzdl.org/gsdl/collect/areu/Upload/1710/Kamal_River%20basins%20and%20watersheds2004.pdf (accessed on 22 September 2020).
- CSO. Afghanistan Statistical Yearbook; Afghanistan Islamic Republic Central Statistic Organization, 2018; Available online: https://doi.org/10.29171/azu_acku_musalsal_ha4570_6_alif2_seen22_v1391s (accessed on 21 September 2020).
- Doebrich, J.L.; Wahl, R.R.; Ludington, S.D.; Chirico, P.G.; Wandrey, C.J.; Bohannon, R.G.; Orris, G.J.; Bliss, J.D.; Wasy, A.; Younusi, M.O. Geologic and Mineral Resource Map of Afghanistan. USGS, 2006. Available online: https://mrdata.usgs.gov/catalog/cite-view.php?cite=54 (accessed on 21 September 2020).
- DABS. AFG: Multi Tranche Financing Facility for Energy Sector Development Investment Program (ESDIP)—Tranche 1. ADB, 2016. Available online: https://www.adb.org/projects/documents/multitranche-financing-facility-energy-sector-development-program-proposed-projec (accessed on 21 September 2020).
- FAO. Land Cover Atlas of the Islamic Republic of Afghanistan. 2016. Available online: http://www.fao.org/3/a-i5457e.pdf. (accessed on 21 September 2020).
- MEW. Afghanistan Water Resources Development ( AWARD ) Project—Technical and Implementation Support Consultancy (TISC) AWARD-TISC INVESTMENT PLAN FOR THE PANJ-AMU. 2013. Available online: https://afghanwaters.net/wp-content/uploads/2017/10/2013-KRB-Investment-Plan.pdf (accessed on 21 September 2020).
- Ministry of Agriculture, Irrigation and Livestock. The Islamic Republic of Afghanistan Ministry of Agriculture, Irrigation and Livestock Climate Change Scenarios for Agriculture of Afghanistan. 2017. Available online: http://www.fao.org/documents/card/en/c/08636747-610a-4690-b588-97171b0cb4e5/ (accessed on 21 September 2020).
- Afghanistan Meteorological Department. Available online: http://www.amd.gov.af/ (accessed on 13 February 2020).
- Afghanistan, W.V. World Vision Afghanistan Annual Report 2019. Available online: https://reliefweb.int/report/afghanistan/world-vision-afghanistan-annual-report-2019 (accessed on 21 September 2020).
- Favre, R.; Kamal, G.M. Watershed Atlas of Afghanistan, Working Document For Planners. 2004. Available online: http://www.cawater-info.net/afghanistan/pdf/afg_wat_atlas_part_1_2.pdf (accessed on 21 September 2020).
- Cressey, G.B.; Michel, A.A. The Kabul, Kunduz, and Helmand Valleys and the National Economy of Afghanistan: A Study of Regional Resources and the Comparative Advantages of Development. Geogr. Rev. 1960, 50, 609. [Google Scholar] [CrossRef]
- Ministry of Energy and Water. Hydrological Year Book; Islamic Republic Ministry of Energy and Water archive: Kabul, Afghanistan, 2018. Available online: https://www.loc.gov/item/lcwaN0015932/ (accessed on 21 September 2020).
- U.S. Geological Survey. Landsat—Earth Observation Satellites. 2016. Available online: https://doi.org/10.3133/fs20153081 (accessed on 22 September 2020).
- McLeod, A.I. Kendall Rank Correlation and Mann-Kendall Trend Test. 2011, p. 12. Available online: https://cran.r-project.org/web/packages/Kendall/Kendall.pdf (accessed on 22 September 2020).
- Yue, S.; Pilon, P. A Comparison of the Power of the t Test, Mann-Kendall and Bootstrap Tests for Trend Detection. Hydrol. Sci. J. 2004, 49, 21–37. [Google Scholar] [CrossRef]
- Mazza, A.; Punzo, A. R Package: DBKGrad. 2015, p. 12. Available online: https://rdrr.io/cran/DBKGrad/ (accessed on 22 September 2020).
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Ned. Acad. Wetensch. Proc. 1950, 53, 386–392. [Google Scholar]
- Sen, P. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The Influence of Autocorrelation on the Ability to Detect Trend in Hydrological Series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Bronaugh, D.; Werner, A. Package “Zyp”. 2015, p. 9. Available online: http://cran.nexr.com/web/packages/zyp/zyp.pdf (accessed on 22 September 2020).
- Boehmke, B.; Greenwell, B. Random Forests. 2001, 5–32. In Data Science—Was Ist das Eigentlich?! Springer: Berlin/Heidelberg, Germany, 2001; pp. 5–32. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-Cover Mapping Using Random Forest Classification and Incorporating NDVI Time-Series and Texture: A Case Study of Central Shandong. Int. J. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Practical Guidelines for Choosing GLCM Textures to Use in Landscape Classification Tasks over a Range of Moderate Spatial Scales. Int. J. Remote Sens. 2017. [Google Scholar] [CrossRef]
- Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise. IEEE Trans. Geosci. Remote Sens. 1995. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Coops, N.C.; Wulder, M.A.; Gillanders, S.; Schroeder, T.A.; Nelson, T. Estimation of Insect Infestation Dynamics Using a Temporal Sequence of Landsat Data. Remote Sens. Environ. 2008. [Google Scholar] [CrossRef]
- IDB. Index: Green Optimized Soil Adjusted Vegetation Index. 2020, p. 2020. Available online: https://www.indexdatabase.de/db/i-single.php?id=29 (accessed on 21 September 2020).
- Bouzekri, S.; Lasbet, A.A.; Lachehab, A. A New Spectral Index for Extraction of Built-Up Area Using Landsat-8 Data. J. Indian Soc. Remote Sens. 2015. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, X. Use of Normalized Difference Bareness Index in Quickly Mapping Bare Areas from TM/ETM+. Int. Geosci. Remote Sens. Symp. 2005, 3, 1666–1668. [Google Scholar] [CrossRef]
- ESA. Land Cover CCI Product User Guide 2.5; UCL-Geomatics: Belgium, 2017; Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf (accessed on 22 September 2020).
- Long-Term Climate Change: Projections, Commitments and Irreversibility; Cambridge University Press: Cambridge, UK, 2013. [CrossRef]
- WMO. Guide to Climatological Practices; WMO: Geneva, Switzerland, 2011. [Google Scholar] [CrossRef]
- Unger-Shayesteh, K.; Vorogushyn, S.; Farinotti, D.; Gafurov, A.; Duethmann, D.; Mandychev, A.; Merz, B. What Do We Know about Past Changes in the Water Cycle of Central Asian Headwaters? A Review. Glob. Planet. Chang. 2013, 110, 4–25. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. Global-Scale Hydrological Response to Future Glacier Mass Loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Afghanistan Development Update; World Bank: Washington, DC, USA, 2018; Available online: http://documents1.worldbank.org/curated/en/985851533222840038/pdf/Afghanistan-development-update.pdf (accessed on 22 September 2020).
- UNEP. Building Adaptive Capacity and Resilience to Climate Change in Afghanistan (LDCF), Baseline Assessment Report; UNEP: Kabul, Afghanistan, 2014; Available online: http://wedocs.unep.org/bitstream/handle/20.500.11822/22232/Adaptive_capacity_Afghanistan.pdf?sequence=1&isAllowed=y (accessed on 21 September 2020).
- Jawid, A.; Khadjavi, M. Adaptation to Climate Change in Afghanistan: Evidence on the Impact of External Interventions. Econ. Anal. Policy 2019, 64, 64–82. [Google Scholar] [CrossRef]
- Najmuddin, O.; Deng, X.; Siqi, J. Scenario Analysis of Land Use Change in Kabul River Basin—A River Basin with Rapid Socio-Economic Changes in Afghanistan. Phys. Chem. Earth 2017, 101, 121–136. [Google Scholar] [CrossRef]
- Najmuddin, O.; Deng, X.; Bhattacharya, R. The Dynamics of Land Use/Cover and the Statistical Assessment of Cropland Change Drivers in the Kabul River Basin, Afghanistan. Sustainability 2018, 10, 423. [Google Scholar] [CrossRef] [Green Version]
- Přívara, A.; Přívarová, M. Nexus between Climate Change, Displacement and Conflict: Afghanistan Case. Sustainability 2019, 11, 5586. [Google Scholar] [CrossRef] [Green Version]
- Khairandish, E.; Mishra, S.K.; Lohani, A.K. Modeling on Long-Term Land Use Change Detection Analysis of Kabul River Basin, Afghanistan by Using Geospatial Techniques. Model. Earth Syst. Environ. 2020. [Google Scholar] [CrossRef]
- Global Water Partnership; International Network of Basin Organization. A Handbook for Integrated Water Resources Management in Basins; Global Water Partnership and International Network of Basin Organization, 2009; Volume 74. Available online: https://www.inbo-news.org/IMG/pdf/GWP-INBOHandbookForIWRMinBasins.pdf (accessed on 22 September 2020).
River Gauge Stations | |||||||
---|---|---|---|---|---|---|---|
Station Name | Lat. | Long. | Elevation (m) | Drainage Area (km2) | Record Period | Record Period | N° Years |
Doab | 35.2666667 | 67.9833333 | 1468 | 5005 | 1968–1979 | 2009–2018 | 22 |
Puli-Khumri | 35.9333333 | 68.7166667 | 639 | 17405 | 1950–1968 | 2009–2018 | 29 |
Char-Dara | 36.7000000 | 68.8333333 | 401 | 24820 | 1964–1980 | 2007–2018 | 29 |
Kulokh-Tepa | 36.9833333 | 68.3000000 | 320 | 37100 | 1966–1980 | 2014–2018 | 20 |
Meteorological Stations | |||||||
North Salang | 35.4528396 | 68.9852142 | 3400 | Met-Station | 1960–1978 | 2010–2019 | 29 |
Taliqan | 36.6333333 | 69.7166667 | 991 | 4110 | 1969–1978 | 2010–2019 | 20 |
Trend Mean Annual Temperature | Trend Mean Annual Spring Temperature (MAM) | Trend Mean Annual Summer Temperature (JJA) 1969–2019 | Trend Mean Annual Autumn Temperature (SON) 1969–2019 | Trend Mean Annual Winter Temperature (DJF) | Trend Precipitation 1960–2019 | |
---|---|---|---|---|---|---|
North Salang | 1960–2019: +1.45 °C | 1960–2019: +1.66 °C | 1960–2019: +1.69 °C | 1960–2019: +1.8 °C | 1961–2019: +1 °C | −412.56 mm (−35.02%) |
Talaqin | 1969–2019: +2.73 °C | 1969–2019: +2.56 °C | 1969–2019: +2.87 °C | 1969–2019: +2.0 °C | 1970–2019: +3.68 °C | −26.03 mm (−57.73%) |
Gauging Station | Trend Mean Annual Discharge | Trend Maximum Annual Discharge | Trend Minimum Annual Discharge |
---|---|---|---|
Doab | +7.95 m3/s (+103.12%) | +24.5 (+62.74%) | +2.98 m3/s (+143.27%) |
Puli-Khumri | +5.38 m3/s (+7.86%) | −82.46 m3/s (−23.45%) | +11.39 m3/s (+53.34%) |
Chahar Dara | −9.57 m3/s (−18.40%) | −125.53 m3/s (−43.05%) | −5.98 m3/s (−46.36%) |
Kulokh Tepa | −27.46 (−25.30%) (significant at α = 0.1) | −334.61 (−58.51%) | −15.47 (−66.20%) |
Class Name | Landcover Area km2(1992) | Landcover Area km2 (2019) | Change in % |
---|---|---|---|
Rainfed agriculture | 6382 | 4461 | −30.1 |
Irrigated agriculture | 2064 | 2377 | +15.2 |
Mosaic Vegetation | 12,847 | 12,488 | −2.8 |
Forest, tree | 464 | 973 | +109.7 |
Shrubland | 1859 | 3602 | +93.8 |
Grassland/Rangeland | 9942 | 7361 | −26 |
Urban | 266 | 548 | +106 |
Bare land | 4964 | 5877 | +18.4 |
Water | 174 | 249 | +43.1 |
Snow/Glacier | 994 | 668 | −32.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhundzadah, N.A.; Soltani, S.; Aich, V. Impacts of Climate Change on the Water Resources of the Kunduz River Basin, Afghanistan. Climate 2020, 8, 102. https://doi.org/10.3390/cli8100102
Akhundzadah NA, Soltani S, Aich V. Impacts of Climate Change on the Water Resources of the Kunduz River Basin, Afghanistan. Climate. 2020; 8(10):102. https://doi.org/10.3390/cli8100102
Chicago/Turabian StyleAkhundzadah, Noor Ahmad, Salim Soltani, and Valentin Aich. 2020. "Impacts of Climate Change on the Water Resources of the Kunduz River Basin, Afghanistan" Climate 8, no. 10: 102. https://doi.org/10.3390/cli8100102
APA StyleAkhundzadah, N. A., Soltani, S., & Aich, V. (2020). Impacts of Climate Change on the Water Resources of the Kunduz River Basin, Afghanistan. Climate, 8(10), 102. https://doi.org/10.3390/cli8100102