Climate Change Induced Salinization of Drinking Water Inlets along a Tidal Branch of the Rhine River: Impact Assessment and an Adaptive Strategy for Water Resources Management
Abstract
:1. Introduction
- Sea level rise. Climate projections for The Netherlands show an estimated sea level rise of 0.15 to 0.40 m in the year 2050, and an increase of 0.25 to 0.80 m by 2085, compared to the reference year 1985 [1].
- A lower river baseflow. The regionalized climate projections indicate a potential worst case decrease of 20 percent of the annual 7-day minimum discharge for the Rhine in 2050 and a 30 percent decrease in 2085, compared to the reference year 1985 [2].
- To what extent may climate change increase the probability of salt intrusion on the Lek, limiting its quality as drinking water source?
- To what extent can salt water intrusion be reduced by diverting a higher fresh water discharge towards the Lek?
2. System Description, Methods and Materials
2.1. Northern Rhine Delta Basin (NDB) System Description
2.2. NDB-Model
2.3. Climate Projection
3. Results
3.1. Vulnerability of Drinking Water Inlets
3.2. Mitigation of Salinization through Adjusted River Water Allocation
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lenderink, G.; Beersma, J. The KNMI’14 WH, Dry Scenario for the Rhine and Meuse Basins; KNMI: De Bilt, The Netherlands, 2015. [Google Scholar]
- Sperna Weiland, F.; Hegnauer, M.; Bouaziz, L.; Beersma, J. Implications of the KNMI’14 Climate Scenarios for the Discharge of the Rhine and Meuse, Comparison with Earlier Scenario Studies; Deltares: Delft, The Netherlands, 2015. [Google Scholar]
- Klijn, F.; Ter Maat, J.; Van Velzen, E. Zoetwatervoorziening in Nederland, Landelijke Analyse Knelpunten in de 21e Eeuw; Deltares: Delft, The Netherlands, 2011. (In Dutch) [Google Scholar]
- Mens, M.; Van der Wijk, R.; Kramer, N.; Hunink, J.; de Jong, B.J.; Becker, P.; Gijsbers, P.; Ten Velden, C. Hotspotanalyses voor Het Deltaprogramma Zoetwater: Inhoudelijke Rapportage; Deltares: Delft, The Netherlands, 2018; p. 149. (In Dutch) [Google Scholar]
- Van Waterstaat, M.I. En Delta Programme—Government.nl. Available online: https://www.government.nl/topics/delta-programme (accessed on 19 February 2019).
- Van der Kooij, D. Drinkwater uit Oevergrondwater: Hydrologie, Kwaliteit en Zuivering; Mededeling; Keuringsinstituut voor Waterleidingartikelen: Nieuwegein, The Netherlands, 1985. (In Dutch) [Google Scholar]
- Kuijper, C. Analyse van Zoutmetingen in de Lek, Met Schatting Dispersiecoefficient; Deltares: Delft, The Netherlands, 2017; p. 76. (In Dutch) [Google Scholar]
- Savenije, H.H.G. Salinity and Tides in Alluvial Estuaries, 2nd completely revised ed.; version 2.5; Delft University of Technology: Delft, The Netherlands, 2012. [Google Scholar]
- Bonte, M.; Zwolsman, G. Klimaatverandering en verzoeting van de Rijn. H2O 2009, 3, 29–31. (In Dutch) [Google Scholar]
- Cunge, J.A.; Holly, F.M.; Verwey, A. Practical Aspects of Computational River Hydraulics; Pitman: Boston, MA, USA; London, UK; Melbourne, Australia, 1980; ISBN 978-0-273-08442-6. [Google Scholar]
- Rijkswaterstaat National Water Model. Available online: https://www.helpdeskwater.nl/onderwerpen/applicaties-modellen/applicaties-per/watermanagement/watermanagement/nationaal-water/technische/zoetwaterverdeling/ (accessed on 7 November 2018).
- Prinsen, G.; Sperna Weiland, F.; Ruijgh, E. The Delta Model for Fresh Water Policy Analysis in The Netherlands. Water Resour. Manag. 2015, 29, 645–661. [Google Scholar] [CrossRef]
- Hunink, J.; Hegnauer, M. Update Deltascenario’s Nationaal Water Model; Deltares: Delft, The Netherlands, 2015. (In Dutch) [Google Scholar]
- Hunink, J.; Delsman, J.; Prinsen, G.; Bos-Burgering, L.; Mulder, N.; Visser, M. Vertaling van Deltascenario’s 2017 Naar Modelinvoer voor Het Nationaal Water Model; Deltares: Delft, The Netherlands, 2018. (In Dutch) [Google Scholar]
- Deltares Nationaal Water Model—Nationaal Water Model—Deltares Public Wiki. Available online: https://publicwiki.deltares.nl/display/NW/ (accessed on 27 February 2019).
- Salt Intrusion, Technical Reference; Sobek-RE Documentation; Deltares: Delft, The Netherlands, 2012.
- Thatcher, M.; Harleman, D. A mathematical model for the prediction of unsteady salinity intrusion in estuaries. In R.M. Parsons Laboratory Report; MIT: Cambridge, MA, USA, 1972. [Google Scholar]
- Rijkswaterstaat. IJking Chloridedeel ZWENDL Noordelijk Deltabekken (Stand van Zaken September 1984); Rijkswaterstaat: Rotterdam, The Netherlands, 1984. (In Dutch) [Google Scholar]
- Huismans, Y.; Buschman, F.; Wesselius, C.; Daniels, J.; Kuijper, C. Modelleren van Zoutverspreiding Met SOBEK 3 en SOBEK-RE; Deltares: Delft, The Netherlands, 2016. (In Dutch) [Google Scholar]
- Kraaijeveld, M. Een SOBEK-Model van Het Noordelijk Deltabekken; Kalibratie en Verificatie Zoutbeweging Noordrand; Rijkswaterstaat: Dordrecht, The Netherlands, 2003. (In Dutch) [Google Scholar]
- Jansen, M.H.P.; Collard, E.A. Herkalibratie van de Zoutverdeling NDB-Model Fase 2; Svasek Hydraulics: Rotterdam, The Netherlands, 2005. (In Dutch) [Google Scholar]
- Huismans, Y.; van der Wijk, R.; Fujisaki, A.; Sloff, C.J. Zoutindringing in de Rijn-Maasmonding: Knelpunten en Effectiviteit Stuurknoppen; Deltares: Delft, The Netherlands, 2018. (In Dutch) [Google Scholar]
- KNMI. KNMI Climate Scenarios. Available online: http://www.climatescenarios.nl/scenarios_summary/index.html (accessed on 7 November 2018).
- Daniels, J. Dispersion and Dynamically One-Dimensional Modeling of Salt Transport in Estuaries. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, National University of Singapore, Singapore, 2016. [Google Scholar]
Inlet | Distance to Mouth of Lek | Type of Inlet | Average Annual Extraction |
---|---|---|---|
Bergambacht | 12 km | (a) Direct (b) River bank filtration | (a) 92 Mm3 (b) 13 Mm3 |
Streefkerk (planned) | 8 km | River bank filtration | 4–6 Mm3 |
Kinderdijk | 0.5 km | River bank filtration | 6 Mm3 |
Discharge | Location | ∆C = 50 mg Cl/L | ∆C = 500 mg Cl/L | Value Used | ||
---|---|---|---|---|---|---|
m3/s | Kmin | Kmax | Kmin | Kmax | ||
2 | Kinderdijk | 25 | 65 | 30 | 80 | 55 |
Bergambacht | 25 | 65 | 30 | 80 | ||
20 | Kinderdijk | 30 | 80 | 55 | 125 | 90 |
Bergambacht | 25 | 65 | 25 | 70 | ||
40 | Kinderdijk | 35 | 90 | 70 | 150 | 110 |
Bergambacht | 25 | 65 | 25 | 70 |
Nr. | Year | Duration (days) Ref | Duration (days) Wh-dry | Time of Year |
---|---|---|---|---|
1 | 1976 | - | 152 | Jul–Dec |
2 | 1964 | - | 116 | Jul–Nov |
3 | 2003 | 1 | 110 | Aug–Dec |
4 | 1971 | 27 | 97 | Sep–Dec |
5 | 1962 | 10 | 77 | Okt–Dec |
6 | 1991 | 1 | 69 | Sep–Nov |
7 | 1990 | - | 65 | Sep–Nov |
8 | 2009 | - | 54 | Sep–Nov |
9 | 1972 | 7 | 43 | Oct–Nov |
10 | 1985 | - | 41 | Oct–Nov |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Brink, M.; Huismans, Y.; Blaas, M.; Zwolsman, G. Climate Change Induced Salinization of Drinking Water Inlets along a Tidal Branch of the Rhine River: Impact Assessment and an Adaptive Strategy for Water Resources Management. Climate 2019, 7, 49. https://doi.org/10.3390/cli7040049
van den Brink M, Huismans Y, Blaas M, Zwolsman G. Climate Change Induced Salinization of Drinking Water Inlets along a Tidal Branch of the Rhine River: Impact Assessment and an Adaptive Strategy for Water Resources Management. Climate. 2019; 7(4):49. https://doi.org/10.3390/cli7040049
Chicago/Turabian Stylevan den Brink, Matthijs, Ymkje Huismans, Meinte Blaas, and Gertjan Zwolsman. 2019. "Climate Change Induced Salinization of Drinking Water Inlets along a Tidal Branch of the Rhine River: Impact Assessment and an Adaptive Strategy for Water Resources Management" Climate 7, no. 4: 49. https://doi.org/10.3390/cli7040049
APA Stylevan den Brink, M., Huismans, Y., Blaas, M., & Zwolsman, G. (2019). Climate Change Induced Salinization of Drinking Water Inlets along a Tidal Branch of the Rhine River: Impact Assessment and an Adaptive Strategy for Water Resources Management. Climate, 7(4), 49. https://doi.org/10.3390/cli7040049