Temporal and Spatial Ozone Distribution over Egypt
Abstract
:1. Introduction
2. Methodology
2.1. AIRS Sensor
2.2. MERRA-2 Model Data
3. Results
3.1. Temporal Trend
3.2. Spatial Distribution
4. Conclusions and Future Works
Conflicts of Interest
References
- Kiehl, J.T.; Schneider, T.L.; Portmann, R.W.; Solomon, S. Climate forcing due to tropospheric and stratospheric ozone. J. Geophys. Res. 1999, 104, 31239–31254. [Google Scholar] [CrossRef]
- Rex, M.; von der Salawitch, R.J.P.; Gathen, N.R.; Harris, P.; Chipperfield, M.; Naujokat, B. Arctic ozone loss and climate change. Geophys. Res. Lett. 2004, 31, L04116. [Google Scholar] [CrossRef]
- Kerr, J.B.; McElroy, C.T. Total ozone measurements made with the Brewer ozone spectrophotometer during STOIC. J. Geophys. Res. 1989, 100, 9225–9230. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Chronpoulos, G.J.; Katsiki, S.; Sakellariou, N.K. Further evidence of the role of air-pollution on solar ultraviolet-radiation reaching the ground. Int. J. Remote Sens. 1995, 16, 1883–1886. [Google Scholar] [CrossRef]
- Alexandris, D.; Varotsos, C.; Kondratyev, K.Y.; Chronopoulos, G. On the altitude dependence of solar effective UV. Phys. Chem. Earth Part C Sol. Terr. Planet. Sci. 1999, 24, 515–517. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Protection Against Exposure to Ultraviolet Radiation; Technical Report WHO/EHG #17; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- Kondratyev, K.Y.; Varotsos, C.A. Global total ozone dynamics—Impact on surface solar ultraviolet radiation variability and ecosystems. Environ. Sci. Pollut. Res. 1996, 3, 205. [Google Scholar] [CrossRef] [PubMed]
- Fioletov, V.E.; McArthur, L.; Kerr, J.E.; Wardle, D.I. Long-term variations of UV-Birradiance over Canada estimated from Brewer observations and derived from ozone and pyranometer measurements. J. Geophys. Res. 2001, 106, 2307–2309. [Google Scholar] [CrossRef]
- Frederick, J.E.; Manner, V.W.; Booth, C.R. Inter-annual variability in solar ultraviolet irradiance over decadal time scales at latitude 55 south. Photochem. Photobiol. 2001, 74, 771–779. [Google Scholar] [CrossRef]
- Molina, M.J.; Rowland, F.S. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature 1974, 249, 810–812. [Google Scholar] [CrossRef]
- Farman, J.C.; Gardiner, B.G.; Shanklin, J.D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 1985, 315, 207–210. [Google Scholar] [CrossRef]
- Stolarski, R.S.; Krueger, A.J.; Schoeberl, M.R.; McPeters, R.D.; Newman, P.A.; Alpert, J.C. Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature 1986, 322, 808–811. [Google Scholar] [CrossRef]
- Harris, N.R.P.; Ancellet, J.; Bishop, L.; Hofmann, D.J.; Kerr, J.B.; McPeters, R.D.; Prendez, W.J.; Randel, J.; Staehelin, B.H.; Subbaraya, A. Trends in stratospheric and free tropospheric ozone. J. Geophys. Res. 1997, 102, 1571–1590. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: Global Ozone Research and Monitoring Project; Technical Report 50; WMO: Geneva, Switzerland, 2006. [Google Scholar]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: Global Ozone Research and Monitoring Project; Report No. 52; WMO: Geneva, Switzerland, 2011. [Google Scholar]
- Ochoa-Hueso, R.; Munzi, S.; Alonso, R.; Arróniz-Crespo, M.; Avila, A.; Bermejo, V.; Bobbink, R.; Branquinho, C.; Concostrina-Zubiri, L.; Cruz, C. Ecological Impacts of Atmospheric Pollution and Interactions with Climate Change in Terrestrial Ecosystems of the Mediterranean Basin: Current Research and Future Directions. Environ. Pollut. 2017, 227, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, E.; de Marco, A.; Beddows, D.C.S.; Harrison, R.M.; Manning, W.J. Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environ. Pollut. 2014, 192, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Proietti, C.; Anav, A.; de Marco, A.; Sicard, P.; Vitalea, M. A multi-sites analysis on the ozone effects on Gross Primary Production of European forests. Sci. Total Environ. 2016, 556, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Alessandro, A.; Alessandra, D.; Elena, P. Projected global tropospheric ozone impacts on vegetation under different emission and climate scenarios. Atmos. Chem. Phys. Discuss. 2017, 1–34. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Malley, C.S.; Smith, L.; Wells, B.; Hazucha, M.; Simon, H.; Naik, V.; Mills, G.; Schultz, M.G.; Paoletti, E.; et al. Tropospheric Ozone Assessment Report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem. Sci. Anth. 2018, 6, 28. [Google Scholar] [CrossRef]
- David, W.F.; Michaela, I. Twenty Questions and Answers about the Ozone Layer. 2014. Available online: http://www.atmos.umd.edu/~rjs/class/spr2017/readings/WMO_Ozone_2010_QAs.pdf (accessed on 29 May 2018).
- Pittman, J.V.; Pan, L.L.; Wei, J.C.; Irion, F.W.; Liu, X.; Maddy, E.S.; Barnet, C.D.; Chance, K.; Gao, R.-S. Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements. J. Geophys. Res. 2009, 114, D24109. [Google Scholar] [CrossRef]
- Fetouh, Y.A.; El Askary, H.; El Raey, M.; Allali, M.; Sprigg, W.A.; Kafatos, M. Annual Patterns of Atmospheric Pollutions and Episodes over Cairo Egypt. Adv. Meteorol. 2013, 2013, 984853. [Google Scholar] [CrossRef]
- Badawy, A.; Basset, H.A.; Eid, M. Spatial and Temporal Variations of Total Column Ozone over Egypt. J. Earth Atmos. Sci. 2017, 2, 1–16. [Google Scholar]
- Güsten, H.; Heinrich, G.; Weppner, J.; Abdel-Aal, M.M.; Abdel-Hay, F.A.; Ramadan, A.B.; Tawfik, F.S.; Ahmed, D.M.; Hassan, G.K.Y.; Cvitašd, T.; et al. Ozone formation in the greater Cairo area. Sci. Total Environ. 1994, 155, 285–295. [Google Scholar] [CrossRef]
- Güsten, H.; Heinrich, G.; Monnich, D.; Sprung, D.; Weppner, J.; BakrRamadan, A.; El-Din, M.R.M.E.; Ahmed, D.M.; Hassan, G.K.Y. On-line measurements of ozone surface fluxes: Part II; surface-level ozone fluxes onto the Sahara desert. Atmos. Environ. 1996, 30, 911–918. [Google Scholar] [CrossRef]
- Weigel, H.J.; Adaros, G.; Jäger, H.J. An open top chamber study with filtered and non-filtered air to evaluate effects of air pollutants on crops. Environ. Pollut. 1987, 47, 231–244. [Google Scholar] [CrossRef]
- De Temmerman, L.; Vandermeiren, K.; Guns, M. Effects of air filtration on spring wheat grown in open-top chambers at a rural site. I. Effect on growth, yield and dry matter portioning. Environ. Pollut. 1992, 77, 1–5. [Google Scholar] [CrossRef]
- Schenone, G.; Botteschi, G.; Fumagali, I.; Montinaro, F. Effects of ambient air pollution in opentop chambers on bean (Phaseolus vulgaris L.) I. Effects on growth and yield. New Phytol. 1992, 122, 689–697. [Google Scholar] [CrossRef]
- Schenone, G.; Fumagali, I.; Mignanego, L.; Montinaro, F.; Soldatini, G.F. Effects of ambient air pollution in open-top chambers on bean (Phaseolus vulgaris L.). II. Effects on photosynthesis and stomatal conductance. New Phytol. 1994, 126, 309–331. [Google Scholar] [CrossRef]
- Hassan, I.A. Physiological and biochemical response of potato (Solanum tuberosum L. Cv. Kara) to O3 and antioxidant chemicals: Possible roles of antioxidant enzymes. Ann. Appl. Biol. 2006, 146, 134–142. [Google Scholar] [CrossRef]
- Hassan, I.A. Interactive effects of O3 and CO2 on growth, physiology of potato (Solanum tuberosum L.). World J. Environ. Sustain. Dev. 2010, 7, 1–12. [Google Scholar]
- Heagle, A.S.; Philbeck, R.B.; Rogers, H.H.; Letchworth, M.B. Dispersing and monitoring O3 in open-top field chambers for plant-effects studies. Phytopathology 1979, 69, 15–20. [Google Scholar] [CrossRef]
- Pande, P.C.; Mansfield, T.A. Responses of spring barely to SO2 and NO2 pollution. Environ. Pollut. 1985, 38, 87–97. [Google Scholar] [CrossRef]
- Schenone, G.; Lorenzini, G. Effects of regional air pollution on crops in Italy. Agric. Ecosyst. Environ. 1992, 38, 55–66. [Google Scholar] [CrossRef]
- Ali, E.A. Damage to plants due to industrial pollution and their use as bioindicators in Egypt. Environ. Pollut. 1993, 81, 251–255. [Google Scholar] [CrossRef]
- Dizengremel, P.; Le Thiec, D.; Bagard, M.; Jolivet, Y. Ozone risk assessment for plants: Central role of metabolism-dependent changes in reducing power. Environ. Pollut. 2008, 156, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Dizengremel, P.; Le Thiec, D.; Hasenfratz-Sauderm, M.P.; Vaultier, M.N.; Bagard, M.; Jolivet, Y. Metabolic-dependent changes in plant cell redox power after ozone exposure. Plant Biol. 2009, 11, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Dizengremel, P.; Vaultier, M.N.; Le Thiec, D.; Cabane, M.; Bagard, M.; Gerant, D.; Joëlle, G.; Allah Dghim, A.; Richet, N.; Afif, D.; et al. Phosphoenolpyruvate is at the crossroads of leaf metabolic responses to ozone stress. New Phytol. 2012, 195, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Gould, R.P.; Mansfield, T.A. Effects of SO2 and NO2 on growth and translocation in winter wheat. J. Exp. Bot. 1988, 39, 389–399. [Google Scholar] [CrossRef]
- Hassan, I.A. Interactive effects of salinity and ozone pollution on photosynthesis, stomatal conductance, growth, and assimilate partitioning of wheat (Triticum aestivum L.). Photosynthetica 2004, 42, 111–118. [Google Scholar] [CrossRef]
- Hatata, M.; Badr, R.; Ibrahim, M.; Hassan, I.A. Effects of O3 and CO2 on growth, yield and physiology of wheat (Triticum aestivum L.). Curr. World Environ. 2013, 8, 421–429. [Google Scholar]
- Peleijel, H.; Skärby, L.; Wallin, G.; Sellden, G. Effects of grain quality of spring wheat exposed to O3 in OTCs. In The European Communities on Open-Top Chambers, Results on Agricultural Crops 1987–1988; Air Pollution Rept.; Bonte, J., Mathy, P., Eds.; CEC: Brussels, Belgium, 1989; pp. 73–89. [Google Scholar]
- Fuhrer, J.; Lehnherr, B.; Tschannen, W.; Moeri, P.B.; Shariat-Madari, H. Effects of O3 on the grain composition of spring wheat grown in open-top field chambers. Environ. Pollut. 1990, 65, 181–192. [Google Scholar] [CrossRef]
- Vandermeiren, K.; De Temmerman, L.; Staquet, A.; Baeten, H. Effects of air filtration on spring wheat grown in open-top field chambers at a rural site. II. Effects on mineral portioning, sulphur and nitrogen metabolism and on grain quality. Environ. Pollut. 1992, 77, 7–14. [Google Scholar] [CrossRef]
- Hassan, I.A. Air pollution in Alexandria region, Egypt. II: Effect of regional air pollution on growth and yield of bean (Phaseolus vulgaris L. cv. Giza 6). In Proceedings of the 6th Egyptian Botanical Conference, Cairo, Egypt, 24–26 November 1998; Volume 3, pp. 469–479. [Google Scholar]
- Lorenzini, G.; Nali, C.; Panicucci, A. Surface ozone in Pisa (Italy): A six-year study. Atmos. Environ. 1994, 28, 3155–3164. [Google Scholar] [CrossRef]
- Hassan, I.A. Air pollution in Alexandria region, Egypt. I. An investigation of air quality. Int. J. Environ. Educ. Inf. 1999, 18, 67–78. [Google Scholar]
- Hassan, I.A.; Ashmore, M.R.; Bell, J.N.B. Effects of O3 on the stomatal behaviour of Egyptian verities of radish (Raphanus sativus L. cv. Baladey) and turnip (Brassica rapa L. cv. Sultani). New Phytol. 1994, 128, 243–249. [Google Scholar] [CrossRef]
- Hassan, I.A.; Ashmore, M.R.; Bell, J.N.B. Effect of ozone on radish and turnip under Egyptian field conditions. Environ. Pollut. 1995, 89, 107–114. [Google Scholar] [CrossRef]
- Hassan, I.A.; Basahi, J.M.; Ismail, I.; Habbebullah, T. Spatial distribution and temporal variation in ambient ozone and its associated NOx in the atmosphere of Jeddah City. Saudi Arab. Aerosol. Air Qual. 2013, 13, 1712–1722. [Google Scholar] [CrossRef]
- Velissariou, D.; Gimeno, B.S.; Badiani, M.; Fumagalli, I.; Davison, A.W. Records of O3 visible injury in the ECE Mediterranean region. In Critical Levels for Ozone in Europe: Testing and Finalizing the Concept; UN-ECE Workshop Report; Kärelampi, L., Skärby, L., Eds.; University of Kuopio: Kuopio, Finland, 1996; pp. 343–350. [Google Scholar]
- Gimeno, B.S.; Bermejo, V.; Reinert, R.A.; Zheng, Y.; Barnes, J.D. Adverse effects of ambient ozone on watermelon yield and physiology at a rural site in Eastern Spain. New Phytol. 1999, 144, 245–260. [Google Scholar] [CrossRef]
- Pellegrini, E.; Carucci, M.G.; Campanella, A.; Lorenzini, G.; Nali, C. Ozone stress in Melissa officinalis plants assessed by photosynthetic function. Environ. Exp. Bot. 2011, 73, 94–101. [Google Scholar] [CrossRef]
- Madkour, S.A.; Laurence, J.A. Egyptian plant species as new ozone indicators. Environ. Pollut. 2002, 120, 339–353. [Google Scholar] [CrossRef]
- AIRS/AMSU/HSB Version 6 Data Release User Guide, Jet Propulsion Laboratory; Version 1.2.1.; California Institute of Technology: Pasadena, CA, USA, 2005.
- AIRS Science Team/Joao TexeiraAIRS/Aqua L3 Monthly Standard Physical Retrieval (AIRS+AMSU) 1 Degree × 1 Degree V006; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2013. [CrossRef]
- Rajab, J.M.; MatJafri, M.Z.; Lim, H.S.; Abdullah, K. Daily distribution Map of Ozone (O3) from AIRS over Southeast Asia. Energy Res. J. 2010, 2, 158–164. [Google Scholar] [CrossRef]
- Bosilovich, M.; Akella, S.; Coy, L.; Cullather, R.; Draper, C.; Gelaro, R.; Kovach, R.; Liu, Q.; Molod, A.; Norris, P.; et al. MERRA-2: Initial Evaluation of the Climate; NASA/TM–2015–104606; National Aeronautics and Space Administration (NASA): Greenbelt, MD, USA, 2015; Volume 43, p. 139. [Google Scholar]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G. MERRA—NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Susskind, J.; Barnet, C.; Blaisdell, J.; Iredell, L.; Keita, F.; Kouvaris, L.; Molnar, G.; Chahine, M. Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover. J. Geophys. Res. 2006, 111, D09S17. [Google Scholar] [CrossRef]
- Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Barnet, C.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J.; Zhou, L.; et al. AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Am. Meteorol. Soc. 2006, 87, 911–926. [Google Scholar] [CrossRef]
- Aumann, H.H.; Chahine, M.T.; Gautier, C.; Goldberg, M.D.; Kalnay, E.; McMillin, L.M.; Revercomb, H.; Rosenkranz, P.W.; Smith, W.L.; Susskind, J.; et al. AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 253–264. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Lucchesi, R.; Suarez, M. MERRA-2: File Specification GMAO Office Note No. 9 (Version 1.1). 2016. Available online: http://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf (accessed on 20 June 2016).
- Levelt, P.F.; van den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Waters, J.W.; Froidevaux, L.; Harwood, R.S.; Jarnot, R.F.; Pickett, H.M.; Read, W.G.; Siegel, P.H.; Cofield, R.E.; Filipiak, M.J.; Walch, M.J.; et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1075–1092. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suarez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Zhao, B.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- McCarty, W.; Coy, L.; Gelaro, R.; Huang, A.; Merkova, D.; Smith, E.; Meta, S.; Wargan, K. MERRA-2 Input Observations: Summary and Assessment; NASA/TM–2016–104606; NASA: Greenbelt, MD, USA, 2016; Volume 46, p. 64. [Google Scholar]
- Wargan, K.; Labow, G.; Frith, S.; Pawson, S.; Livesey, N.; Partyka, G. Evaluation of the ozone fields in NASA’s MERRA-2 reanalysis. J. Clim. 2017, 30, 2961–2988. [Google Scholar] [CrossRef] [PubMed]
- Wargan, K.; Pawson, S.; Olsen, M.A.; Witte, J.C.; Douglass, A.R.; Ziemke, J.R.; Strahan, S.E.; Nielsen, J.E. The global structure of uppertroposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of EOS Aura data. J. Geophys. Res. Atmos. 2015, 120, 2013–2036. [Google Scholar] [CrossRef]
- Cooper, O.R.; Parrish, D.D.; Ziemke, J.; Balashov, N.V.; Cupeiro, M.; Galbally, I.E.; Gilge, S.; Horowitz, L.; Jensen, N.R.; Lamarque, J.-F.; et al. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anth. 2014, 2, 29. [Google Scholar] [CrossRef]
- Cracknell, A.P.; Varotsos, C.A. Ozone depletion over Scotland as derived from Nimbus-7 TOMS measurements. Int. J. Remote Sens. 1994, 15, 2659–2668. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 163–171. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Duncan, B.N.; West, J.J.; Yoshida, Y.; Fiore, A.M.; Ziemke, J.R. The influence of European pollution on ozone in the Near East and northern Africa. Atmos. Chem. Phys. 2008, 8, 2267–2283. [Google Scholar] [CrossRef]
- Berntsen, T.K.; Isaksen, I.S.A.; Myhre, G.; Fuglestvedt, J.S.; Stordal, F.; Larsen, T.A.; Freckleton, R.S. Shine Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing. J. Geophys. Res. 1997, 102, 28101–28126. [Google Scholar] [CrossRef]
- Schwartz, J. Air pollution and hospital admissions for respiratory disease. Epidemiology 1996, 7, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W.; Pope, C.A.; Xu, X.P.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.; Speizer, F. An association between air-pollution and mortality in 6 United States cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
AIRS | MERRA-2 | |
---|---|---|
Max | 321.4 (July 2012) | 303.4 (April 2011) |
Min | 253.8 (February 2013) | 248.6 (February 2013) |
Average | 294.5 | 277.8 |
Variance | 272.4 | 142.4 |
Std. Deviation | 16.5 | 11.93 |
Logistic | Lognormal | Normal | Weibull | |
---|---|---|---|---|
AIRS | 0.095 (2) | 0.111 (4) | 0.108 (3) | 0.087 (1) |
MERRA-2 | 0.048 (2) | 0.053 (3) | 0.047 (1) | 0.055 (4) |
AIRS | |||||
---|---|---|---|---|---|
Max. | Min. | Average | Variance | Std. Deviation | |
January | 291.1 (2005) | 259.1 (2013) | 276.4 | 109.5 | 10.4 |
February | 299.8 (2007) | 253.8 (2013) | 279.8 | 153.1 | 12.3 |
March | 301.9 (2011) | 278.8 (2013) | 291.4 | 48.2 | 6.9 |
April | 317.1 (2011) | 293.7 (2008) | 304.5 | 52.8 | 7.2 |
May | 316.1 (2005) | 299.8 (2008) | 308.6 | 32.4 | 5.6 |
June | 314.5 (2013) | 303.3 (2016) | 310.5 | 12.5 | 3.5 |
July | 321.4 (2012) | 307.1 (2016) | 314.1 | 18.2 | 4.2 |
August | 314.9 (2012) | 305.4 (2005) | 310.1 | 11.03 | 3.3 |
September | 305.7 (2015) | 290.8 (2016) | 300.5 | 17.9 | 4.2 |
October | 295.6 (2006) | 280.2 (2010) | 286.9 | 17.8 | 4.2 |
November | 286.4 (2011) | 264.4 (2008) | 277.7 | 57.7 | 7.6 |
December | 284.5 (2015) | 256.9 (2007) | 269.8 | 66.9 | 8.1 |
MERRA-2 | |||||
---|---|---|---|---|---|
Max. | Min. | Average | Variance | Std. Deviation | |
January | 278.1 (2005) | 250.8 (2013) | 268.5 | 70.7 | 8.4 |
February | 286.4 (2010) | 248.6 (2013) | 271.2 | 124.5 | 11.2 |
March | 291.3 (2012) | 271.3 (2013) | 281.9 | 46.4 | 6.8 |
April | 303.5 (2011) | 280.1 (2008) | 291.8 | 52.9 | 7.3 |
May | 299.5 (2005) | 286.2 (2008) | 293.7 | 17.4 | 4.2 |
June | 295.7 (2015) | 282.6 (2008) | 288.4 | 12.6 | 3.5 |
July | 289.6 (2015) | 279.3 (2011) | 284.2 | 10.3 | 3.2 |
August | 286.5 (2015) | 276.6 (2011) | 280.5 | 8.2 | 2.8 |
September | 281.6 (2015) | 270.9 (2016) | 275.6 | 7.2 | 2.6 |
October | 275.6 (2015) | 262.7 (2010) | 267.8 | 16.0 | 4.0 |
November | 274.7 (2011) | 253.5 (2016) | 263.7 | 53.9 | 64.9 |
December | 276.4 (2015) | 250.7 (2005) | 261.1 | 7.3 | 8.1 |
AIRS | |||||
---|---|---|---|---|---|
Max. | Min. | Average | Variance | Std. Deviation | |
DJF | 287.2 (2006) | 261.6 (2012) | 275.7 | 60.3 | 7.7 |
MAM | 307.2 (2011) | 293.2 (2013) | 302.1 | 23.64033 | 4.8 |
JJA | 317.0 (2012) | 306.1 (2016) | 312.1 | 9.3971 | 3.1 |
SON | 294.4 (2006) | 283.1 (2005) | 288.6 | 13.4 | 3.6 |
MERRA-2 | |||||
DJF | 276.6 (2006) | 254.2 (2012) | 267.6 | 56.6 | 7.5 |
MAM | 294.7 (2014) | 279.2 (2008) | 289.4 | 26.2 | 5.1 |
JJA | 290.6 (2015) | 280.3 (2011) | 284.4 | 8.6 | 2.9 |
SON | 275.8 (2015) | 262.5 (2016) | 269.6 | 12.7 | 3.5 |
p-Value | Significant Trend | |
---|---|---|
DJF-AIRS | 0.5 | No Trend |
MAM-AIRS | 0.5 | |
JJA-AIRS | 0.6 | |
SON-AIRS | 0.19 | |
DJF-MERRA-2 | 0.27 | |
MAM-MERRA-2 | 0.32 | |
JJA-MERRA-2 | 0.38 | |
SON-MERRA-2 | 0.27 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Tahan, M. Temporal and Spatial Ozone Distribution over Egypt. Climate 2018, 6, 46. https://doi.org/10.3390/cli6020046
El-Tahan M. Temporal and Spatial Ozone Distribution over Egypt. Climate. 2018; 6(2):46. https://doi.org/10.3390/cli6020046
Chicago/Turabian StyleEl-Tahan, Muhammed. 2018. "Temporal and Spatial Ozone Distribution over Egypt" Climate 6, no. 2: 46. https://doi.org/10.3390/cli6020046
APA StyleEl-Tahan, M. (2018). Temporal and Spatial Ozone Distribution over Egypt. Climate, 6(2), 46. https://doi.org/10.3390/cli6020046