Spatio-Temporal Meteorological Drought Distribution in the Upper Cheliff Basin (Algeria) Using SPI and SPEI Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Meteorological Drought Index
- and are the SPI and SPEI at time scale i, respectively;
- σ is the standard deviation of SPI and SPEI at time scale i;
- and are the mean of SPI and SPEI at time scale i.
2.3.1. Standardized Precipitation Index (SPI)
- : transformed sum of precipitation for month i on time scale j;
- μ: mean of normalized values of p;
- σ: standard deviation of normalized values of p.
2.3.2. Standardized Precipitation Evapotranspiration Index (SPEI)
2.4. Identifying the Characteristics of Meteorological Drought Using Theory of Run Concept
2.5. Trend Analyses
3. Results
3.1. The Course of Annual SPI and SPEI Values (1982/83–2020/21)
3.2. The Monthly Variability of SPI and SPEI Values (1982/83–2020/21)
3.3. Spacial Analyses of Frequency Drought Characteristics Using SPI and SPEI Indices
3.4. Number of Events and Severity and Duration of Meteorological Droughts (Theory of Run)
3.5. Correlations Between SPI and SPEI
3.6. Trend SPI and SPEI
4. Discussion
4.1. Drought Monitoring Using the SPI and SPEI
4.2. Relationship Between SPI and SPEI
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Sun, F.; Lai, W.; Lim, W.H.; Liu, W.; Wang, T.; Wang, P. Attributing Changes in Future Extreme Droughts Based on PDSI in China. J. Hydrol. 2019, 573, 607–615. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Nohtani, M.; Ajorlo, M.; Sarhadi, M. Zoning Drought with Standardized Precipitation Index and Reconnaissance Drought Index in Sistan and Baluchestan Province, Southeastern Iran. ECOPERSIA 2018, 6, 111–119. [Google Scholar]
- Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal Drought Analysis by the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, S.; Eslamian, S.; Gheysari, M.; Gohari, A.; Kopai, S.S. Regional Frequency Analysis of Drought Severity and Duration in Karkheh River Basin, Iran Using Univariate L-Moments Method. Environ. Monit. Assess. 2022, 194, 336. [Google Scholar] [CrossRef]
- Quiring, S.M.; Papakryiakou, T.N. An Evaluation of Agricultural Drought Indices for the Canadian Prairies. Agric. For. Meteorol. 2003, 118, 49–62. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Anderegg, W.R.L.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A.; et al. Global Patterns of Drought Recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Zarei, A.R.; Shabani, A.; Moghimi, M.M. Accuracy Assessment of the SPEI, RDI and SPI Drought Indices in Regions of Iran with Different Climate Conditions. Pure Appl. Geophys. 2021, 178, 1387–1403. [Google Scholar] [CrossRef]
- Minea, I.; Iosub, M.; Boicu, D. Multi-Scale Approach for Different Type of Drought in Temperate Climatic Conditions. Nat. Hazards 2022, 110, 1153–1177. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological Drought Explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Bąk, B. Monitoring of Meteorological and Hydrological Droughts in the Vistula Basin (Poland). Environ. Monit. Assess. 2018, 190, 691. [Google Scholar] [CrossRef]
- Ozkaya, A.; Zerberg, Y. A 40-Year Analysis of the Hydrological Drought Index for the Tigris Basin, Turkey. Water 2019, 11, 657. [Google Scholar] [CrossRef]
- Jamorska, I.; Kubiak-Wójcicka, K.; Krawiec, A. Dynamics of the Status of Groundwater in the Polish Lowland: The River Gwda Catchment Example. Geologos 2019, 25, 193–204. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Nagy, P.; Zeleňáková, M.; Hlavatá, H.; Abd-Elhamid, H.F. Identification of Extreme Weather Events Using Meteorological and Hydrological Indicators in the Laborec River Catchment, Slovakia. Water 2021, 13, 1413. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Owczarek, M.; Chlost, I.; Olszewska, A.; Nagy, P. Assessment of Meteorological Drought Trends in a Selected Coastal Basin Area in Poland—A Case Study. Water 2023, 15, 2836. [Google Scholar] [CrossRef]
- Simsek, O.; Yildiz-Bozkurt, S.; Gumus, V. Analysis of Meteorological Drought with Different Methods in the Black Sea Region, Turkey. Acta Geophys. 2023, 72, 1927–1943. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T. A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Ionita, M.; Scholz, P.; Chelcea, S. Assessment of Droughts in Romania Using the Standardized Precipitation Index. Nat. Hazards 2016, 81, 1483–1498. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A Review of Drought Indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Montaseri, M.; Amirataee, B. Comprehensive Stochastic Assessment of Meteorological Drought Indices. Int. J. Climatol. 2017, 37, 998–1013. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.A.; Scholz, M. Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. J. Environ. Manag. 2021, 286, 112160. [Google Scholar] [CrossRef]
- Abrar Faiz, M.; Zhang, Y.; Tian, X.; Tian, J.; Zhang, X.; Ma, N.; Aryal, S. Drought Index Revisited to Assess Its Response to Vegetation in Different Agro-Climatic Zones. J. Hydrol. 2022, 614, 128543. [Google Scholar] [CrossRef]
- Han, Z.; Huang, S.; Zhao, J.; Leng, G.; Huang, Q.; Zhang, H.; Li, Z. Long-Chain Propagation Pathways from Meteorological to Hydrological, Agricultural and Groundwater Drought and Their Dynamics in China. J. Hydrol. 2023, 625, 130131. [Google Scholar] [CrossRef]
- Mianabadi, A.; Salari, K.; Pourmohamad, Y. Drought Monitoring Using the Long-Term CHIRPS Precipitation over Southeastern Iran. Appl. Water Sci. 2022, 12, 183. [Google Scholar] [CrossRef]
- Chen, J.; Fan, Y.; Zhang, Y.; Peng, J.; Zhang, J.; Cao, C. Comprehensive Propagation Characteristics between Paired Meteorological and Hydrological Drought Events: Insights from Various Underlying Surfaces. Atmos. Res. 2024, 299, 107193. [Google Scholar] [CrossRef]
- Mavromatis, T. Drought Index Evaluation for Assessing Future Wheat Production in Greece. Int. J. Climatol. 2007, 27, 911–924. [Google Scholar] [CrossRef]
- Mavromatis, T. Use of Drought Indices in Climate Change Impact Assessment Studies: An Application to Greece. Int. J. Climatol. 2010, 30, 1336–1348. [Google Scholar] [CrossRef]
- Mavromatis, T. Changes in Exceptional Hydrological and Meteorological Weekly Event Frequencies in Greece. Clim. Change 2012, 110, 249–267. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Z.-Y.; Xu, L.-J.; Ou, C.-Q. Meteorological Drought Forecasting Based on a Statistical Model with Machine Learning Techniques in Shaanxi Province, China. Sci. Total Environ. 2019, 665, 338–346. [Google Scholar] [CrossRef]
- Aktürk, G.; Çıtakoğlu, H.; Demir, V.; Beden, N. Meteorological Drought Analysis and Regional Frequency Analysis in the Kızılırmak Basin: Creating a Framework for Sustainable Water Resources Management. Water 2024, 16, 2124. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014; ISBN 978-1-107-64165-5. [Google Scholar]
- Tsesmelis, D.E.; Karavitis, C.A.; Oikonomou, P.D.; Alexandris, S.; Kosmas, C. Assessment of the Vulnerability to Drought and Desertification Characteristics Using the Standardized Drought Vulnerability Index (SDVI) and the Environmentally Sensitive Areas Index (ESAI). Resources 2018, 8, 6. [Google Scholar] [CrossRef]
- Myronidis, D.; Fotakis, D.; Ioannou, K.; Sgouropoulou, K. Comparison of Ten Notable Meteorological Drought Indices on Tracking the Effect of Drought on Streamflow. Hydrol. Sci. J. 2018, 63, 2005–2019. [Google Scholar] [CrossRef]
- Mathbout, S.; Lopez-Bustins, J.A.; Martin-Vide, J.; Bech, J.; Rodrigo, F.S. Spatial and Temporal Analysis of Drought Variability at Several Time Scales in Syria during 1961–2012. Atmos. Res. 2018, 200, 153–168. [Google Scholar] [CrossRef]
- Soydan Oksal, N.G. Comparative Analysis of the Influence of Temperature and Precipitation on Drought Assessment in the Marmara Region of Turkey: An Examination of SPI and SPEI Indices. J. Water Clim. Change 2023, 14, 3096–3111. [Google Scholar] [CrossRef]
- Aschale, T.M.; Cancelliere, A.; Palazzolo, N.; Buonacera, G.; Peres, D.J. Analysis of the Spatiotemporal Trends of Standardized Drought Indices in Sicily Using ERA5-Land Reanalysis Data (1950–2023). Water 2024, 16, 2593. [Google Scholar] [CrossRef]
- Bouguerra, H.; Derdous, O.; Tachi, S.E.; Hatzaki, M.; Abida, H. Spatiotemporal Investigation of Meteorological Drought Variability over Northern Algeria and Its Relationship with Different Atmospheric Circulation Patterns. Theor. Appl. Clim. 2024, 155, 1507–1518. [Google Scholar] [CrossRef]
- Habibi, B.; Meddi, M.; Torfs, P.J.J.F.; Remaoun, M.; Van Lanen, H.A.J. Characterisation and Prediction of Meteorological Drought Using Stochastic Models in the Semi-Arid Chéliff–Zahrez Basin (Algeria). J. Hydrol. Reg. Stud. 2018, 16, 15–31. [Google Scholar] [CrossRef]
- Merabti, A.; Darouich, H.; Paredes, P.; Meddi, M.; Pereira, L.S. Assessing Spatial Variability and Trends of Droughts in Eastern Algeria Using SPI, RDI, PDSI, and MedPDSI—A Novel Drought Index Using the FAO56 Evapotranspiration Method. Water 2023, 15, 626. [Google Scholar] [CrossRef]
- Fellag, M.; Achite, M.; Wałęga, A. Spatial-Temporal Characterization of Meteorological Drought Using the Standardized Precipitation Index. Case study in Algeria. Acta Sci. Polonorum. Form. Circumiectus 2021, 20, 19–31. [Google Scholar] [CrossRef]
- Messis, M.S.; Mebarki, A.; Merabti, A. Mapping of Annual and Frequency Rainfall in the Cheliff Catchment Area (Northwestern Algeria). Geomat. Landmanag. Landsc. 2024, 2, 67–83. [Google Scholar] [CrossRef]
- WMO. Standardized Precipitation Index User Guide; WMO: Geneva, Switzerland, 2012; ISBN 978-92-63-11091-6. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Guttman, N.B. On the Sensitivity of Sample L Moments to Sample Size. J. Clim. 1994, 7, 1026–1029. [Google Scholar] [CrossRef]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A Calculation Algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Hallouz, F.; Meddi, M.; Mahé, G.; Ali Rahmani, S.; Karahacane, H.; Brahimi, S. Analysis of Meteorological Drought Sequences at Various Timescales in Semi-Arid Climate: Case of the Cheliff Watershed (Northwest of Algeria). Arab. J. Geosci. 2020, 13, 280. [Google Scholar] [CrossRef]
- Mebarki, A.; Assaba, M.; Laborde, J.-P.; Rezak, S. Du Bilan Hydrologique Au Bilan Hydrique: Modélisation et Synthèse Cartographique Sur l’Algérie Du Nord. In Proceedings of the Le 5e Colloque International sur Ressources en Eau et Développement Durable (CIREDD), Blida, Algérie, 24 February 2013; Volume LJEE N° 21 et 22, pp. 412–416. [Google Scholar]
- Rezak, S.; Laborde, J.-P.; Errih, M. Validation d’un Modèle Numérique de Terrain Adapté à La Modélisation Hydrologique Régionale Sur l’Algérie Du Nord. Hydrol. Sci. J. 2012, 57, 928–941. [Google Scholar] [CrossRef]
- ANRH. Carte Des Évapotranspirations Potentielles du Nord Del’algérie Au1/500 000 (2 Feuilles, Notice De 42p); Alger, I.N.C.T., Ed.; Agence Nationale des Ressources Hydrauliques: Blida, Algeria, 2002. [Google Scholar]
- Mebarki, A.; Laborde, J.-P. Synthèse Cartographique Des Bilans Hydriques de l’Algérie Du Nord Par Modèle Distribué. In Proceedings of the Eau et Climat au Maghreb, Réseau eau et Climat, Normandy, France, 1 March 2014; Volume 2, pp. 163–174. [Google Scholar]
- ONS. Armature Urbaine RGPH 2008/Les Principaux Résultats De L’exploitation Exhaustive; Office National des Statistiques: Alger, Algeria, 2011; p. 214. [Google Scholar]
- ONID. Bilan D’Exploitation 2020; Office National d’Irrigation et de Drainage: Alger, Algeria, 2020. [Google Scholar]
- Tsendbazar, N.; Herold, M.; Tarko, A.; Linlin, L.; Lesiv, M.; Fritz, S.; Maus, V. Copernicus Global Land Service: Land Cover 100 m: Version 3 Globe 2015–2019: Validation Report; Copernicus Global Land Operations—Lot 1; Zenodo: Geneve, Switzerland, 2020. [Google Scholar]
- Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1950 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Berks, UK, 2019. [Google Scholar] [CrossRef]
- Rahman, K.U.; Ejaz, N.; Shang, S.; Balkhair, K.S.; Alghamdi, K.M.; Zaman, K.; Khan, M.A.; Hussain, A. A Robust Integrated Agricultural Drought Index under Climate and Land Use Variations at the Local Scale in Pakistan. Agric. Water Manag. 2024, 295, 108748. [Google Scholar] [CrossRef]
- Palazzolo, N.; Peres, D.J.; Bonaccorso, B.; Cancelliere, A. A Probabilistic Analysis of Drought Areal Extent Using SPEI-Based Severity-Area-Frequency Curves and Reanalysis Data. Water 2023, 15, 3141. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Beguería, M.S. Package ‘Spei’. Calculation of the Standardised Precipitation-Evapotranspiration Index. 2023. Available online: https://CRAN.R-project.org/package=SPEI (accessed on 19 April 2024).
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993. [Google Scholar]
- Kubiak-Wójcicka, K.; Pilarska, A.; Kamiński, D. The Analysis of Long-Term Trends in the Meteorological and Hydrological Drought Occurrences Using Non-Parametric Methods—Case Study of the Catchment of the Upper Noteć River (Central Poland). Atmosphere 2021, 12, 1098. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Pilarska, A.; Kamiński, D. Meteorological Drought in the Upper Noteć Catchment Area (Central Poland) in the Light of NDVI and SPI Indicators. Appl. Water Sci. 2024, 14, 180. [Google Scholar] [CrossRef]
- Bąk, B.; Kubiak-Wójcicka, K. Impact of Meteorological Drought on Hydrological Drought in Toruń (Central Poland) in the Period of 1971–2015. J. Water Land Dev. 2017, 32, 3–12. [Google Scholar] [CrossRef]
- Bayer Altin, T.; Altin, B.N. Response of Hydrological Drought to Meteorological Drought in the Eastern Mediterranean Basin of Turkey. J. Arid. Land 2021, 13, 470–486. [Google Scholar] [CrossRef]
- Li, L.; Zhao, L.; Ge, J.; Yang, P.; Wu, F. Investigating Drought Propagation Time, Relationship, and Drivers in Perennial River Basins of China. Water 2022, 14, 2812. [Google Scholar] [CrossRef]
- Merabti, A.; Meddi, M.; Martins, D.S.; Pereira, L.S. Comparing SPI and RDI Applied at Local Scale as Influenced by Climate. Water Resour. Manag. 2018, 32, 1071–1085. [Google Scholar] [CrossRef]
- Habibi, B.; Meddi, M. Meteorological Drought Hazard Analysis of Wheat Production in the Semi-Arid Basin of Cheliff–Zahrez Nord, Algeria. Arab. J. Geosci. 2021, 14, 1045. [Google Scholar] [CrossRef]
- Zerouali, B.; Chettih, M.; Abda, Z.; Mesbah, M.; Santos, C.A.G.; Brasil Neto, R.M.; Da Silva, R.M. Spatiotemporal Meteorological Drought Assessment in a Humid Mediterranean Region: Case Study of the Oued Sebaou Basin (Northern Central Algeria). Nat. Hazards 2021, 108, 689–709. [Google Scholar] [CrossRef]
- WMO. Manuel Des Indicateurs et Indices de Sécheresse; OMM: Genève, Switzerland, 2016; ISBN 978-92-63-21173-6. [Google Scholar]
- Guttman, N.B. Comparing the Palmer Drought Index and the Standardized Precipitation Index. J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Subedi, M.R.; Xi, W.; Edgar, C.B.; Rideout-Hanzak, S.; Hedquist, B.C. Assessment of Geostatistical Methods for Spatiotemporal Analysis of Drought Patterns in East Texas, USA. Spat. Inf. Res. 2019, 27, 11–21. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, Z.; Liu, L.; Liu, S. A Global Perspective on Propagation from Meteorological Drought to Hydrological Drought during 1902–2014. Atmos. Res. 2022, 280, 106441. [Google Scholar] [CrossRef]
- Meresa, H.; Zhang, Y.; Tian, J.; Abrar Faiz, M. Understanding the Role of Catchment and Climate Characteristics in the Propagation of Meteorological to Hydrological Drought. J. Hydrol. 2023, 617, 128967. [Google Scholar] [CrossRef]
- Berhail, S.; Katipoğlu, O.M. Comparison of the SPI and SPEI as Drought Assessment Tools in a Semi-Arid Region: Case of the Wadi Mekerra Basin (Northwest of Algeria). Theor. Appl. Clim. 2023, 154, 1373–1393. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 1998, 300, 05109. [Google Scholar]
- Yevjevich, V.M. Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 1967. [Google Scholar]
- Mishra, A.K.; Singh, V.P.; Desai, V.R. Drought Characterization: A Probabilistic Approach. Stoch. Environ. Res. Risk Assess. 2009, 23, 41–55. [Google Scholar] [CrossRef]
- Krige, D.G. A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand. J. Chem. Metal. Min. Soc. S. Afr. 1951, 52, 119–139. [Google Scholar]
- Golden Software, LLC. Surfer, Version 28; Golden Software, LLC: Golden, CO, USA, 2024. Available online: https://www.goldensoftware.com.
- Willmott, C.J.; Matsuura, K. On the Use of Dimensioned Measures of Error to Evaluate the Performance of Spatial Interpolators. Int. J. Geogr. Inf. Sci. 2006, 20, 89–102. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Mitchell, J.F.B. The “Greenhouse” Effect and Climate Change. Rev. Geophys. 1989, 27, 115. [Google Scholar] [CrossRef]
- Daufresne, M.; Lengfellner, K.; Sommer, U. Global Warming Benefits the Small in Aquatic Ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12788–12793. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Poudel, B.; Dahal, D.; Banjara, M.; Kalra, A. Assessing Meteorological Drought Patterns and Forecasting Accuracy with SPI and SPEI Using Machine Learning Models. Forecasting 2024, 6, 1026–1044. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.-J.; Jang, K.; Chun, J.-H. Drought Monitoring Based on Vegetation Type and Reanalysis Data in Korea. Atmosphere 2021, 12, 170. [Google Scholar] [CrossRef]
- Bougara, H.; Hamed, K.B.; Borgemeister, C.; Tischbein, B.; Kumar, N. A comparative assessment of meteorological drought in the Tafna basin, Northwestern Algeria. J. Water Land Dev. 2022, 78–93. [Google Scholar] [CrossRef]
- Hamarash, H.; Hamad, R.; Rasul, A. Meteorological Drought in Semi-Arid Regions: A Case Study of Iran. J. Arid. Land 2022, 14, 1212–1233. [Google Scholar] [CrossRef]
- Kartal, V. Assessment of Drought Using Different Tests and Drought Indices in Elazig, Turkey. Water Sci. Technol. 2023, 88, 1767–1794. [Google Scholar] [CrossRef] [PubMed]
- Bettahar, A.; Şener, Ş. Analysis of Meteorological Drought Indices in the Wadi Righ Area (Southern Algeria). Sustain. Water Resour. Manag. 2022, 8, 152. [Google Scholar] [CrossRef]
- Ziari, A.; Medjerab, A. Impact of Drought in Northeastern Algeria: Comparative Study of the SPI and SPEI Índices. Rev. De Gestão Soc. E Ambient. 2024, 18, e06591. [Google Scholar] [CrossRef]
- Balia, B.; Habibi, B.; Bouthiba, A. Statistical Analysis of Climatic Drought Indices as a Decision-Making Tool in Irrigation Matters—Case of Citrus Orchards in Middle and Upper Cheliff (Algeria). Arab. J. Geosci. 2024, 17, 272. [Google Scholar] [CrossRef]
- Taibi, S. Analyse Du Régime Climatique au Nord De l’algerie. Ph.D. Thesis, École Nationale Supérieure Agronomique, Alger, Algérie, 2011. [Google Scholar]
- Amiar, S.; Bouanani, A.; Baba-Hamed, K.; Belarbi, H. Variabilité Pluviométrique Dans Le Bassin Versant Du Haut et Moyen Cheliff. Rev. Des Sci. De L’eau 2020, 32, 337–347. [Google Scholar] [CrossRef]
- Li, L.; She, D.; Zheng, H.; Lin, P.; Yang, Z.-L. Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. J. Hydrometeorol. 2020, 21, 1513–1530. [Google Scholar] [CrossRef]
- Zeroual, A.; Assani, A.A.; Meddi, M. Combined Analysis of Temperature and Rainfall Variability as They Relate to Climate Indices in Northern Algeria over the 1972–2013 Period. Hydrol. Res. 2017, 48, 584–595. [Google Scholar] [CrossRef]
- Choutri, I.; Hussien, A. Exploratory Analysis of Algeria Meteorological Drought Using SPI and SPEI. Open Access Libr. J. 2024, 11, 1–27. [Google Scholar] [CrossRef]
- ONID. Bilan D’exploitation 2021, Plan D’action 2022; Office National d’Irrigation et de Drainage: Alger, Algeria, 2021. [Google Scholar]
N° | Station | Longitude (Decimal Degrees) | Latitude (Decimal Degrees) | Elevation Z (m) | Average Annual Rainfall P (mm) | Coefficient of Variability Cv (%) | Average Annual Air Temperature T (°C) |
---|---|---|---|---|---|---|---|
01 | El Khemis (ITGC) | 2.23 | 36.16 | 289 | 401.41 | 27.95 | 18.57 |
02 | Derrag | 2.39 | 35.91 | 1150 | 527.40 | 28.80 | 14.96 |
03 | Zoubiria Mongorno | 2.85 | 36.11 | 932 | 490.33 | 28.24 | 16.42 |
04 | Ghrib | 2.56 | 36.17 | 435 | 450.79 | 29.17 | 17.68 |
05 | Medea Secteur | 2.75 | 36.27 | 935 | 626.24 | 27.02 | 15.81 |
06 | Bordj El Amir AEK | 2.27 | 35.87 | 1080 | 405.50 | 27.53 | 15.43 |
07 | Theniet El Had | 2.03 | 35.87 | 1150 | 537.25 | 24.94 | 15.28 |
08 | Tarik Ibn Ziad | 2.14 | 35.99 | 660 | 424.16 | 26.92 | 17.00 |
09 | Deurdeur Bge | 2.24 | 36.00 | 575 | 395.57 | 37.21 | 16.98 |
10 | El Khemis ANRH | 2.21 | 36.26 | 300 | 402.13 | 25.61 | 17.37 |
11 | Toutia Hassania | 1.92 | 35.95 | 850 | 414.03 | 18.58 | 16.72 |
Land Use | Area (km2) | % |
---|---|---|
Shrubland | 1027.36 | 21.47 |
Herbaceous vegetation | 682.75 | 14.27 |
Cropland | 1998.00 | 41.76 |
Built up | 67.90 | 1.42 |
Bare/sparse vegetation | 71.43 | 1.49 |
Water bodies | 12.16 | 0.25 |
Herbaceous wetland | 1.23 | 0.03 |
Forests | 923.47 | 19.30 |
Station | Index | Time Scale (Months) | 1 | 3 | 6 | 9 | 12 | |
---|---|---|---|---|---|---|---|---|
Derrag | SPI | E | 48 | 34 | 23 | 20 | 15 | |
D max | 3 | 9 | 9 | 13 | 12 | |||
S max | 5.8 | 17.4 | 19.93 | 18.75 | 17.64 | |||
Date of S max | ti | Jan-00 | Feb-83 | Apr-83 | Nov-87 | Jan-02 | ||
te | Mar-00 | Oct-83 | Dec-83 | Nov-88 | Dec-02 | |||
SPEI | E | 62 | 33 | 21 | 20 | 14 | ||
D max | 4 | 7 | 11 | 16 | 19 | |||
S max | 5.33 | 11.92 | 17.83 | 24.34 | 29.51 | |||
Date of S max | ti | May-94 | Mar-00 | Oct.-20 | May-20 | Feb-20 | ||
te | Aug-94 | Sep-00 | Aug-21 | Aug-21 | Aug-21 | |||
Khemis ITGC | SPI | E | 49 | 40 | 28 | 19 | 19 | |
D max | 3 | 6 | 11 | 10 | 20 | |||
S max | 5.69 | 9.39 | 22.65 | 23.62 | 38.21 | |||
Date of S max | ti | Nov-15 | Mar-94 | Oct-93 | Nov-93 | May-93 | ||
te | Dec-15 | Aug-94 | Aug-94 | Aug-94 | Dec-94 | |||
SPEI | E | 52 | 28 | 24 | 19 | 18 | ||
D max | 4 | 8 | 9 | 12 | 15 | |||
S max | 10.51 | 12.91 | 16.85 | 19.68 | 24.39 | |||
Date of S max | ti | May-21 | Nov-93 | Dec-93 | Jan-00 | Feb-00 | ||
te | Aug-21 | Jun-94 | Aug-94 | Dec-00 | Apr-01 | |||
Theniet El Had | SPI | E | 49 | 32 | 28 | 19 | 15 | |
D max | 4 | 10 | 11 | 12 | 12 | |||
S max | 6.80 | 21.62 | 23.79 | 26.15 | 22.86 | |||
Date of S max | ti | Oct-06 | Feb-83 | Apr-83 | May-83 | Aug-83 | ||
te | Nov-06 | Nov-83 | Dec-83 | Apr-84 | May-84 | |||
SPEI | E | 48 | 33 | 29 | 22 | 24 | ||
D max | 4 | 6 | 8 | 10 | 12 | |||
S max | 10.57 | 10.33 | 13.15 | 16.02 | 19.63 | |||
Date of S max | ti | May-21 | Jul-20 | May-83 | Feb-00 | Jan-02 | ||
te | Aug-21 | Dec-20 | Dec-83 | Nov-00 | Dec-02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messis, M.-S.; Kubiak-Wójcicka, K.; Mebarki, A.; Merabti, A. Spatio-Temporal Meteorological Drought Distribution in the Upper Cheliff Basin (Algeria) Using SPI and SPEI Indices. Climate 2025, 13, 123. https://doi.org/10.3390/cli13060123
Messis M-S, Kubiak-Wójcicka K, Mebarki A, Merabti A. Spatio-Temporal Meteorological Drought Distribution in the Upper Cheliff Basin (Algeria) Using SPI and SPEI Indices. Climate. 2025; 13(6):123. https://doi.org/10.3390/cli13060123
Chicago/Turabian StyleMessis, Mohamed-Sadek, Katarzyna Kubiak-Wójcicka, Azeddine Mebarki, and Abdelaaziz Merabti. 2025. "Spatio-Temporal Meteorological Drought Distribution in the Upper Cheliff Basin (Algeria) Using SPI and SPEI Indices" Climate 13, no. 6: 123. https://doi.org/10.3390/cli13060123
APA StyleMessis, M.-S., Kubiak-Wójcicka, K., Mebarki, A., & Merabti, A. (2025). Spatio-Temporal Meteorological Drought Distribution in the Upper Cheliff Basin (Algeria) Using SPI and SPEI Indices. Climate, 13(6), 123. https://doi.org/10.3390/cli13060123