Influence of Climatic Conditions and Atmospheric Pollution on Admission to Emergency Room During Warm Season: The Case Study of Bari
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Meteorological Data
2.1.2. Pollution Data
2.1.3. Emergency Room Access Data
2.2. Method
2.2.1. Apparent Temperature Definition
2.2.2. Hot Days and Apparent Temperature Heat Wave Definition
2.2.3. Multidimensional Statistical Data Analysis
3. Results
3.1. Apparent Temperature and HD Identification
3.2. Pollution Level During HD
3.3. Access to Emergency Room During HD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AT | Apparent temperature |
ATHW | Apparent temperature heat waves |
d | Length of heat waves |
d.f. | Degree of freedom |
ENT | Ear, nose, and throat |
HD | Hot Days |
m | Mean value |
MDA | Mean value of daily access |
N | Number of examined summer days |
Ncod | Number of codes of accesses to emergency rooms |
noHD | No Hot Days |
noSD | No Summer Days |
NOX | Nitrogen oxides |
p | Significance level |
PM10 | Particulate matter with diameter less than 10 µm |
Q | Radiance |
RH | Average relative humidity |
SD | Summer Days |
sd | Standard deviation |
T | Average temperature |
VP | Vapor pressure |
WS | Wind speed |
ρ | Correlation coefficient |
References
- Balsari, S.; Dresser, C.; Leaning, J. Climate Change, Migration, and Civil Strife. Curr. Environ. Health Rep. 2020, 7, 404–414. [Google Scholar] [CrossRef]
- Castro, B.; Sen, R. Everyday Adaptation: Theorizing climate change adaptation in daily life. Glob. Environ. Change 2022, 75, 102555. [Google Scholar] [CrossRef]
- Xu, R.; Yu, P.; Liu, Y.; Chen, G.; Yang, Z.; Zhang, Y.; Wu, Y.; Beggs, P.; Zhang, Y.; Boocock, J.; et al. Climate change, environmental extremes, and human health in Australia: Challenges, adaptation strategies, and policy gaps. Lancet Reg. Health West Pac. 2023, 40, 100936. [Google Scholar] [CrossRef]
- Canturk, U.; Kulaç, S. The effects of climate change scenarios on Tilia ssp. in Turkey. Environ. Monit. Assess. 2021, 193, 771. [Google Scholar] [CrossRef] [PubMed]
- Ventura, F.; Poggi, G.M.; Vignudelli, M.; Bosi, S.; Negri, L.; Fakaros, A.; Dinelli, G. An Assessment of Proso Millet as an Alternative Summer Cereal Crop in the Mediterranean Basin. Agronomy 2022, 12, 609. [Google Scholar] [CrossRef]
- Krivoguz, D.; Bespalova, E.; Zhilenkov, A.; Degtyarev, A.; Zinchenko, E. Unveiling climate–land use and land cover interactions on the Kerch Peninsula using structural equation modeling. Climate 2024, 12, 120. [Google Scholar] [CrossRef]
- Wang, H.L.; Wu, K.; Liu, Y.M.; Sheng, B.S.; Lu, X.; He, Y.P.; Xie, J.L.; Wang, H.C.; Fan, S.J. Role of heat wave induced biogenic VOC enhancements in persistent ozone episodes formation in Pearl River Delta. J. Geophys. Res. Atmos. 2021, 126, e2020JD034317. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Luo, H.L.; Yang, S. Different mechanisms for the extremely hot central-eastern China in July-August 2022 from a Eurasian large-scale circulation perspective. Environ. Res. Lett. 2023, 181, 024023. [Google Scholar] [CrossRef]
- Gössling, S.; Neger, C.; Steiger, R.; Bell, R. Weather, climate change, and transport: A review. Nat. Hazards 2023, 118, 1341. [Google Scholar] [CrossRef]
- Kiarsi, M.; Amiresmaili, M.; Mahmoodi, M.R.; Farahmandnia, H.; Nakhaee, N.; Zareiyan, A.; Aghababaeian, H. Heat waves and adaptation: A global systematic review. J. Therm. Biol. 2023, 116, 103588. [Google Scholar] [CrossRef]
- Yadav, N.; Rajendra, K.; Awasthi, A.; Singh, C. Systematic exploration of heat wave impact on mortality and urban heat island: A review from 2000 to 2022. Urban Clim. 2023, 51, 101622. [Google Scholar] [CrossRef]
- Perčič, S.; Bitenc, K.; Pohar, M.; Uršič, A.; Cegnar, T.; Hojs, A. Assessing heatwave-related deaths among older adults by diagnosis and urban/rural areas from 1999 to 2020 in Slovenia. Climate 2024, 12, 148. [Google Scholar] [CrossRef]
- Cicci, K.R.; Maltby, A.; Clemens, K.K.; Vicedo-Cabrera, A.M.; Gunz, A.C.; Lavigne, E.; Wilk, P. High temperatures and cardiovascular related morbidity: A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 11243. [Google Scholar] [CrossRef]
- Jin, J.; Xu, Z.; Cao, R.; Wang, Y.; Zeng, Q.; Pan, X.; Huang, J.; Li, G. Long-term apparent temperature, extreme temperature exposure, and depressive symptoms: A longitudinal study in China. Int. J. Environ. Res. Public Health 2023, 20, 3229. [Google Scholar] [CrossRef]
- Horváth, L.; Verzár, Z.; Csákvári, T.; Szapáry, L.; Domján, P.; Bálint, C.; Khatatbeh, H.; Ali, A.M.; Pakai, A. The impact of meteorological factors on stroke incidence in the Transdanubian Region of Hungary. Climate 2024, 12, 160. [Google Scholar] [CrossRef]
- Ragettli, M.S.; Saucy, A.; Flückiger, B.; Vienneau, D.; de Hoogh, K.; Vicedo-Cabrera, A.M.; Schindler, C.; Röösli, M. Explorative assessment of the temperature–mortality association to support health based heat warning thresholds: A national case-crossover study in Switzerland. Int. J. Environ. Res. Public Health 2023, 20, 4958. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Stafoggia, M.; de’Donato, F.; Scortichini, M.; Zafeiratou, S.; Fernandez, L.V.; Zhang, S.Q.; Katsouyanni, K.; Samoli, E.; Rao, S. Heat related cardiorespiratory mortality: Effect modification by air pollution across 482 cities from 24 countries. Environ. Int. 2023, 174, 107825. [Google Scholar] [CrossRef]
- Davis, R.E.; Novicoff, W.M. The impact of heat waves on emergency department admissions in Charlottesville, Virginia, U.S.A. Int. J. Environ. Res. Public Health 2018, 15, 1436. [Google Scholar] [CrossRef]
- Wu, W.J.; Hutton, J.; Zordan, R.; Ranse, J.; Crilly, J.; Tutticci, N.; English, T.; Currie, J. Scoping review of the characteristics and outcomes of adults presenting to the emergency department during heatwaves. Emerg. Med. Australas. 2023, 35, 903. [Google Scholar] [CrossRef]
- Shin, J.Y.; Kang, M.; Kim, K.R. Outdoor thermal stress changes in South Korea: Increasing interannual variability induced by different trends of heat and cold stresses. Sci. Total Environ. 2022, 805, 150132. [Google Scholar] [CrossRef]
- Wong, H.T.; Nguyen, T.D. The need for location specific biometeorological indexes in Taiwan. Front. Public Health 2022, 10, 927340. [Google Scholar]
- Maharana, P.; Kumar, D.; Das, S.; Tiwari, P.R.; Norgate, M.; Raman, V.A.V. Projected changes in heatwaves and its impact on human discomfort over India due to global warming under the CORDEX-CORE framework. Theor. Appl. Climatol. 2024, 155, 2775. [Google Scholar]
- Papanastasiou, D.K.; Melas, D.; Kambezidis, H.D. Air quality and thermal comfort levels under extreme hot weather. Atmos. Res. 2015, 152, 4. [Google Scholar]
- Ni, J.; Zhao, Y.; Li, B.; Liu, J.; Zhou, Y.; Zhang, P.; Shao, J.; Chen, Y.; Jin, J.; He, C. Investigation of the impact mechanisms and patterns of meteorological factors on air quality and atmospheric pollutant concentrations during extreme weather events in Zhengzhou city, Henan Province. Atmos. Pollut. Res. 2023, 14, 101932. [Google Scholar]
- Ragosta, M.; D’Emilio, M.; Casaletto, L.; Telesca, V. A statistical procedure for analyzing the behavior of air pollutants during temperature extreme events: The case study of Emilia Romagna Region (northern Italy). Appl. Sci. 2021, 11, 8266. [Google Scholar] [CrossRef]
- ARPA Puglia Data. Available online: https://www.arpa.puglia.it/pagina2839_meteo.html (accessed on 1 January 2025).
- Telesca, V.; Castronuovo, G.; Favia, G.; Marranchelli, C.; Pizzulli, V.A.; Ragosta, M. Effects of Meteo Climatic Factors on Hospital Admissions for Cardiovascular Diseases in the City of Bari, Southern Italy. Healthcare 2023, 11, 690. [Google Scholar] [CrossRef]
- Elferchichi, A.; Giorgio, G.A.; Lamaddalena, N.; Ragosta, M.; Telesca, V. Variability of temperature and its impact on reference evapotranspiration: The test case of the Apulia Region (Southern Italy). Sustainability 2017, 9, 2337. [Google Scholar] [CrossRef]
- ARPA Puglia Data. Available online: https://www.arpa.puglia.it/pagina2795_aria.html (accessed on 1 January 2025).
- Steadman, R.G. A universal scale of Apparent Temperature. J. Clim. Appl. Meteorol. 1984, 23, 1674. [Google Scholar]
- Sung, H.M.; Lee, J.H.; Kim, J.U.; Shim, S.; Chung, C.Y.; Byun, Y.H. Changes in Thermal Stress in Korea Using Climate Based Indicators: Present. Day and Future Projections from 1 km High Resolution Scenarios. Int. J. Environ. Res. Public Health 2023, 20, 6694. [Google Scholar] [CrossRef]
- Liu, Z.; Shen, L.; Yan, C.; Du, J.; Li, Y.; Zhao, H. Analysis of the Influence of Precipitation and Wind on PM2.5 and PM10 in the Atmosphere. Adv. Meteorol. 2020, 2020, 5039613. [Google Scholar]
- Nagy, G.; Kovács, R.; Szőke, S.; Bökfi, K.A.; Gurgenidze, T.; Sahbeni, G. Characteristics of pollutants and their correlation to meteorological conditions in Hungary applying regression analysis. IDŐJÁRÁS Quart. J. Hung. Meteorol. Serv. 2020, 124, 113. [Google Scholar]
- Nieratschker, M.; Haas, M.; Lucic, M.; Pichler, F.; Brkic, F.F.; Parzefall, T.; Riss, D.; Liu, D.T. Fluctuations in emergency department visits related to acute otitis media are associated with extreme meteorological conditions. Front. Public Health 2023, 11, 1153111. [Google Scholar]
- Kam, S.; Hwang, B.J.; Parker, E.R. The impact of climate change on atopic dermatitis and mental health comorbidities: A review of the literature and examination of intersectionality. Int. J. Dermatol. 2023, 62, 449. [Google Scholar] [PubMed]
- Haas, M.; Lucic, M.; Pichler, F.; Lein, A.; Brkic, F.F.; Riss, D.; Liu, D.T. Meteorological extremes and their impact on tinnitus-related emergency room visits: A time-series analysis. Eur. Arch. Oto-Rhino-Laryngol. 2023, 280, 3997. [Google Scholar]
- Parker, E.R.; Mo, J.; Goodman, R.S. The dermatological manifestations of extreme weather events: A comprehensive review of skin disease and vulnerability. J. Clim. Change Health 2022, 8, 100162. [Google Scholar]
Code | Code |
---|---|
1—Coma | 18—ENT disorders |
2—Acute neurological syndrome | 19—Obstetric gynecological sym/disorders |
3—Other neurological sym/disorders | 20—Dermatological sym/disorders |
4—Abdominal pain | 21—Odontostomalogical sym/disorders |
5—Chest pain | 22—Urological sym/disorders |
6—Dyspnea | 23—Other sym/disorders |
7—Precordial pain | 24—Medical legal examination |
8—Shock | 25—Social diseases |
9—Non traumatic hemorrhage | 26—Fall from height |
10—Trauma | 27—Burns and scalds |
11—Intoxication | 28—Psychiatric disorder |
12—Fever | 29—Pulmonary/respiratory pathologies |
13—Allergic reaction | 30—Violent acts |
14—Cardiac arrhythmia | 31—Self harm acts |
15—Hypertension | 98—Dehydration |
16—Psychomotor agitation | 99—Animal Bite |
17—Ophthalmological sym/disorders |
AT (°C) | HD Rank | Risk Levels | Classification | Health Problems |
---|---|---|---|---|
28–31 | HD1 | Slight | Caution | Fatigue possible with prolonged exposure. |
32–34 | HD2 | Moderate | Extreme Caution | Sunstroke, heat cramps and heat exhaustion are likely with continued physical activity. |
35–39 | HD3 | Strong | Danger | Sunstroke, heat cramps and heat exhaustion are possible. Heat stroke is likely with continued physical activity. |
≥40 | HD4 | Extreme | Extreme Danger | Heat stroke is highly likely and imminent. |
Year | N | Tm ± ΔTm (°C) | Range T (°C) | RHm ± ΔRHm (%) | Q ± ΔQ (W/m2) | WSm ± ΔWSm (m/s) | Range WSmax (m/s) |
---|---|---|---|---|---|---|---|
2013 | 116 | 25 ± 3 | 17.5–32.0 | 62 ± 8 | 264 ± 60 | 3.2 ± 1.7 | 4.4–19.6 |
2014 | 122 | 24 ± 2 | 18.0–29.5 | 64 ± 9 | 276 ± 64 | 3.2 ± 1.6 | 4.7–31.8 |
2015 | 115 | 26 ± 3 | 18.6–31.0 | 62 ± 10 | 281 ± 65 | 3.2 ± 1.8 | 2.5–14.7 |
2016 | 121 | 24 ± 3 | 19.2–30.4 | 67 ± 8 | 270 ± 65 | 3.4 ± 1.7 | 3.0–24.9 |
2013 | 2014 | 2015 | 2016 | ||
---|---|---|---|---|---|
noHD | No Risk | 78 days (67%) | 107 days (88%) | 63 days (54%) | 91 days (75%) |
HD1 | Slight | 38 days (33%) | 15 days (12%) | 48 days (42%) | 30 days (25%) |
HD2 | Moderate | 0 | 0 | 4 (4%) | 0 |
HD3 | Strong | 0 | 0 | 0 | 0 |
HD4 | Extreme | 0 | 0 | 0 | 0 |
ATHW | 3 | 1 | 3 | 3 | |
d1 = 7 days | d1 = 5 days | d1 = 28 days | d1 = 5 days | ||
d2 = 17 days | d2 = 12 days | d2 = 7 days | |||
d3 = 5 days | d3 = 5 days | d3 = 12 days |
Year | June | July | August | September | |
---|---|---|---|---|---|
St1—Caldarola | 2013 | 23 | 28 | 27 | 25 |
2014 | 23 | 22 | 21 | 20 | |
2015 | 24 | 31 | 24 | 27 | |
2016 | 24 | 25 | 21 | 22 | |
St2—Carbonara | 2013 | 14 | 11 | 20 | 32 |
2014 | 35 | 31 | 32 | 32 | |
2015 | 25 | 30 | 28 | 29 | |
2016 | 24 | 25 | 22 | 23 | |
St3—CUS | 2013 | 16 | 19 | 18 | 15 |
2014 | 17 | 17 | 20 | 15 | |
2015 | 20 | 27 | 28 | 28 | |
2016 | 15 | 19 | 21 | 20 | |
St4—Kennedy | 2013 | 20 | 25 | 25 | 19 |
2014 | 24 | 18 | 20 | 20 | |
2015 | 22 | 29 | 23 | 25 | |
2016 | 21 | 24 | 20 | 20 |
Year | June | July | August | September | |
---|---|---|---|---|---|
St1—Caldarola | 2013 | 36 | 38 | 33 | 43 |
2014 | 40 | 35 | 33 | 41 | |
2015 | 31 | 44 | 42 | 61 | |
2016 | 35 | 32 | 29 | 50 | |
St2—Carbonara | 2013 | 26 | 24 | 19 | 24 |
2014 | 22 | 16 | 16 | 21 | |
2015 | 31 | 32 | 26 | 26 | |
2016 | 26 | 25 | 19 | 30 | |
St3—CUS | 2013 | 29 | 28 | 34 | 33 |
2014 | 25 | 19 | 19 | 31 | |
2015 | 21 | 34 | 19 | 29 | |
2016 | 23 | 24 | 20 | 30 | |
St4—Kennedy | 2013 | 17 | 18 | 19 | 25 |
2014 | 24 | 17 | 29 | 24 | |
2015 | 31 | 43 | 30 | 33 | |
2016 | 26 | 28 | 24 | 35 |
Year | m (PM10) | sd (PM10) | m (NOX) | sd (NOX) | |
---|---|---|---|---|---|
2013 | SD (116 days) | 21.8 | 7.0 | 27.6 | 17.9 |
HD1 (38 days) | 25.3 Δm% = +16% p = 0.01 | 6.2 | 30.1 | 20.8 | |
noHD (78 days) | 20.2 | 6.8 | 26.5 | 16.3 | |
2014 | SD (122 days) | 20.9 | 8.9 | 25.7 | 14.9 |
HD1 (15 days) | 28.5 Δm% = +36% p = 0.01 | 7.8 | 26.6 | 16.4 | |
noHD (107 days) | 20.2 | 8.7 | 25.6 | 14.7 | |
2015 | SD (115 days) | 26.7 | 12.1 | 33.0 | 20.5 |
HD1 + HD2 (52 days) | 34.3 Δm% = +28% p = 0.01 | 13.4 | 37.3 Δm% = +13% p = 0.01 | 23.8 | |
noHD (63 days) | 21.0 Δm% = −21% p = 0.01 | 7.4 | 29.9 Δm% = −9% p = 0.01 | 17.1 | |
2016 | SD (121 days) | 21.1 | 7.0 | 28.3 | 19.1 |
HD1 (30 days) | 24.1 Δm% = +14% p = 0.01 | 5.0 | 29.1 | 17.1 | |
noHD (91 days) | 20.1 | 7.3 | 28.0 | 19.7 |
Year | Date | m (PM10) | m (NOX) | ||
---|---|---|---|---|---|
2013 | SD | 21.8 | 27.6 | ||
d1 | 7 days | 17–23 June | 26.3 | 36.5 | |
d2 | 17 days | 24 July–9 August | 27.1 | 31.6 | |
d3 | 5 days | 11–15 August | 20.5 | 21.2 | |
2014 | SD | 20.9 | 25.7 | ||
d1 | 5 days | 10–14 August | 26.7 | 28.4 | |
2015 | SD | 26.7 | 33.0 | ||
d1 | 28 days | 14 July–10 August | 29.4 | 35.2 | |
d2 | 12 days | 25 August–5 September | 31.3 | 39.4 | |
d3 | 5 days | 15–19 September | 50.6 | 47.0 | |
2016 | SD | 21.1 | 28.3 | ||
d1 | 5 days | 1–5 July | 22.7 | 31.4 | |
d2 | 7 days | 8–14 July | 27.2 | 30.0 | |
d3 | 12 days | 21 July–1 August | 23.4 | 28.3 |
2013 | 2014 | 2015 | 2016 | |
---|---|---|---|---|
MDAy | 208 | 221 | 206 | 195 |
MDASD | 230 +11% | 233 +5% | 215 +4% | 199 +2% |
MDAHD | 242 +16% | 240 +9% | 225 +9% | 197 +1% |
MDAy | MDASD | MDAHD | ||
---|---|---|---|---|
ENT disorders | 2013 | 12 | 16 (+33%) | 21 (+75%) |
2014 | 13 | 15 (+15%) | 19 (+46%) | |
2015 | 11 | 15 (+36%) | 18 (+64%) | |
2016 | 10 | 12 (+20%) | 13 (+30%) | |
Dermatological sym/disorders | 2013 | 11 | 14 (+27%) | 16 (+45%) |
2014 | 11 | 14 (+27%) | 16 (+45%) | |
2015 | 10 | 13 (+30%) | 13 (+30%) | |
2016 | 9 | 11 (+22%) | 11 (+22%) |
Pollutants | Date | St1-Caldarola | St2-Carbonara | St3-CUS | St4-Kennedy |
---|---|---|---|---|---|
PM10 | 9 August 2013 | 39 | 13 | 23 | 36 |
10 August 2013 | 20 | 8 | 12 | 19 | |
11 August 2013 | 21 | 13 | 12 | 20 | |
5 July 2016 | 22 | 21 | 10 | 21 | |
6 July 2016 | 25 | 29 | 16 | 24 | |
7 July 2016 | 25 | 25 | 25 | 20 | |
8 July 2016 | 31 | 31 | 27 | 24 | |
NOX | 9 August 2013 | 40 | 17 | 24 | 21 |
10 August 2013 | 30 | 18 | 13 | 17 | |
11 August 2013 | 18 | 12 | 6 | 11 | |
5 July 2016 | 24 | 28 | 10 | 26 | |
6 July 2016 | 41 | 32 | 25 | 34 | |
7 July 2016 | 33 | 33 | 23 | 12 | |
8 July 2016 | 37 | 37 | 31 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Emilio, M.; Iudice, E.; Riccio, P.; Ragosta, M. Influence of Climatic Conditions and Atmospheric Pollution on Admission to Emergency Room During Warm Season: The Case Study of Bari. Climate 2025, 13, 67. https://doi.org/10.3390/cli13040067
D’Emilio M, Iudice E, Riccio P, Ragosta M. Influence of Climatic Conditions and Atmospheric Pollution on Admission to Emergency Room During Warm Season: The Case Study of Bari. Climate. 2025; 13(4):67. https://doi.org/10.3390/cli13040067
Chicago/Turabian StyleD’Emilio, Mariagrazia, Enza Iudice, Patrizia Riccio, and Maria Ragosta. 2025. "Influence of Climatic Conditions and Atmospheric Pollution on Admission to Emergency Room During Warm Season: The Case Study of Bari" Climate 13, no. 4: 67. https://doi.org/10.3390/cli13040067
APA StyleD’Emilio, M., Iudice, E., Riccio, P., & Ragosta, M. (2025). Influence of Climatic Conditions and Atmospheric Pollution on Admission to Emergency Room During Warm Season: The Case Study of Bari. Climate, 13(4), 67. https://doi.org/10.3390/cli13040067