Population-Weighted Degree-Days over Southeast Europe—Near Past Climate Evaluation and Future Projections with NEX-GDDP CMIP6 Ensemble
Abstract
:1. Introduction
2. Study Area and Used Data
2.1. Study Area, Meteorological Data and Scenarios
2.2. Population Data
3. Computation of the PHDD and PCDD
4. Results and Discussion
4.1. Near Past Climate Evaluation
4.2. Future Projections
4.3. Estimation of the Impact of the Population Factor
4.4. Trend Estimation
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IPCC | Intergovernmental Panel on Climate Change |
AR6 | Sixth Assessment Report (of the IPCC) |
SEEu | Southeast Europe |
HVAC | Heating, Ventilating, and Air-conditioning |
HDD, CDD, and EDD | Heating, Cooling, and Energy degree-days |
PW | Population-weighted |
GCM | Global Circulation Model |
MME | Multimodel ensemble |
CMIP6 | Coupled Model Intercomparison Project Phase 6 |
NEX-GDDP | NASA Earth Exchange Global Daily Downscaled Projections |
SSP | Shared Socioeconomic Pathway |
Appendix A
No. | CMIP6 Model Name | Institution/Country | Grid, Hor. Res. (Lon. × Lat.) |
---|---|---|---|
1 | ACCESS-CM2 | CSIRO-ARCCSS/Australia | 144 × 192, 1.875° × 1.25° |
2 | ACCESS-ESM1-5 | CSIRO/Australia | 192 × 145, 1.875° × 1.25° |
3 | BCC-CSM2-MR | BCC/China | 160 × 320, 1.125° × 1.125° |
4 | CanESM5 | CCCma/Canada | 64 × 128, 2.812° × 2.77° |
5 | CMCC-ESM2 | CMCC/Italy | 288 × 192, 1.25° × 0.94° |
6 | EC-Earth3 | EC-Earth-Consortium/EC-Earth consortium | 512 × 256, 0.703° × 0.703° |
7 | EC-Earth3-Veg-LR | EC-Earth-Consortium/EC-Earth consortium | 512 × 256, 0.703° × 0.703° |
8 | FGOALS-g3 | CAS/China | 180 × 80, 2° × 2.025° |
9 | GFDL-ESM4 | NOAA-GFDL/USA | 288 × 180, 1.25° × 1° |
10 | INM-CM4-8 | INM/Russia | 180 × 120, 2° × 1.5° |
11 | INM-CM5-0 | INM/Russia | 180 × 120, 2° × 1.5° |
12 | IPSL-CM6A-LR | IPSL/France | 144 × 143, 2.5° × 1.259° |
13 | KACE-1-0-G | NIMS-KMA/Republic of Korea | 199 × 144 1.875° × 1.25° |
14 | MIROC6 | MIROC/Japan | 256 × 128, 1.403° × 1.403° |
15 | MPI-ESM1-2-HR | MPI-M, DWD, DKRZ/Germany | 384 × 192, 0.939° × 0.939° |
16 | MPI-ESM1-2-LR | MPI-M, AWI, DKRZ, DWD/Germany | 192 × 96, 1.9° × 1.9° |
17 | MRI-ESM2-0 | MRI/Japan | 320 × 160, 1.125° × 1.125° |
18 | NorESM2-LM | NCC/Norway | 144 × 96, 2.5° × 1.89° |
19 | NorESM2-MM | NCC/Norway | 288 × 192, 1.25° × 0.94° |
20 | TaiESM1 | AS-RCEC/Taiwan | 288 × 192, 1.25° × 0.94° |
21 | CNRM-CM6-1 | CNRM-CERFACS/France | 128 × 64, 2.813° × 2.813° |
22 | CNRM-ESM2-1 | CNRM-CERFACS/France | 256 × 128, 1.406° × 1.406° |
23 | GISS-E2-1-G | NASA-GISS/USA | 144 × 90, 2.5° × 2° |
24 | MIROC-ES2L | MIROC/Japan | 256 × 128, 1.406° × 1.406° |
25 | UKESM1-0-LL | MOHC/UK | 192 × 144, 1.875° × 1.25° |
References
- Pérez-Andreu, V.; Aparicio-Fernández, C.; Martínez-Ibernón, A.; Vivancos, J.-L. Impact of Climate Change on Heating and Cooling Energy Demand in a Residential Building in a Mediterranean Climate. Energy 2018, 165, 63–74. [Google Scholar] [CrossRef]
- IPCC, 2023: Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Xoplaki, E.; Trigo, R.M.; García-Herrera, R.; Barriopedro, D.; D’Andrea, F.; Fischer, E.M.; Gimeno, L.; Gouveia, C.; Hernández, E.; Kuglitsch, F.G.; et al. Large-Scale Atmospheric Circulation Driving Extreme Climate Events in the Mediterranean and Its Related Impacts. In The Climate of the Mediterranean Region; Elsevier: Amsterdam, The Netherlands, 2012; pp. 347–417. [Google Scholar] [CrossRef]
- Lionello, P.; Abrantes, F.; Congedi, L.; Dulac, F.; Gacic, M.; Gomis, D.; Goodess, C.; Hoff, H.; Kutiel, H.; Luterbacher, J.; et al. Introduction: Mediterranean Climate–Background Information. In The Climate of the Mediterranean Region; Elsevier: Amsterdam, The Netherlands, 2012; pp. xxxv–xc. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Messeri, A.; Messeri, G.; Betti, G.; Orlandini, S.; Raschi, A.; Maracchi, G. Increasing Heatwave Hazards in the Southeastern European Union Capitals. Atmosphere 2017, 8, 115. [Google Scholar] [CrossRef]
- Planton, S.; Driouech, F.; Rhaz, K.E.; Lionello, P. Sub-Chapter 1.2.2. The Climate of the Mediterranean Regions in the Future Climate Projections. In The Mediterranean Region Under Climate Change; IRD: Marseille, France, 2016; pp. 83–91. [Google Scholar] [CrossRef]
- Pangsy-Kania, S.; Biegańska, J.; Flouros, F.; Sokół, A. Heating and Cooling Degree-Days vs Climate Change in Years 1979–2021. Evidence from the European Union and Norway. Econ. Environ. 2024, 88, 619. [Google Scholar] [CrossRef]
- Mehregan, M.; Naminezhad, A.; Vakili, S.; Delpisheh, M. Building Energy Model Validation and Estimation Using Heating and Cooling Degree Days (HDD–CDD) Based on Accurate Base Temperature. Energy Sci. Eng. 2022, 10, 3638–3649. [Google Scholar] [CrossRef]
- Gesangyangji, G.; Holloway, T.; Vimont, D.J.; Acker, S.J. Future Changes in State-Level Population-Weighted Degree Days in the U.S. Environ. Res. Lett. 2024, 19, 034029. [Google Scholar] [CrossRef]
- Petri, Y.; Caldeira, K. Impacts of Global Warming on Residential Heating and Cooling Degree-Days in the United States. Sci. Rep. 2015, 5, 2427. [Google Scholar] [CrossRef]
- Buonocore, J.J.; Salimifard, P.; Magavi, Z.; Allen, J.G. Inefficient Building Electrification Will Require Massive Buildout of Renewable Energy and Seasonal Energy Storage. Sci. Rep. 2022, 12, 11931. [Google Scholar] [CrossRef]
- Lyu, J.; Ono, T.; Sato, A.; Hagishima, A.; Tanimoto, J. Seasonal Variation of Residential Cooling Use Behaviour Derived from Energy Demand Data and Stochastic Building Energy Simulation. J. Build. Eng. 2022, 49, 104067. [Google Scholar] [CrossRef]
- Mastrucci, A.; van Ruijven, B.; Byers, E.; Poblete-Cazenave, M.; Pachauri, S. Global Scenarios of Residential Heating and Cooling Energy Demand and CO2 Emissions. Clim. Change 2021, 168, 14. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; Füssel, H.; McCormick, N.; Vogt, J.V.; Dosio, A. Global Population-weighted Degree-day Projections for a Combination of Climate and Socio-economic Scenarios. Int. J. Climatol. 2021, 41, 5447–5464. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.; Barbosa, P. European Degree-day Climatologies and Trends for the Period 1951–2011. Int. J. Climatol. 2014, 35, 25–36. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Barbosa, P.; Dosio, A.; McCormick, N.; Bigano, A.; Füssel, H. Changes of Heating and Cooling Degree-days in Europe from 1981 to 2100. Int. J. Climatol. 2017, 38, e191–e208. [Google Scholar] [CrossRef]
- Badescu, V.; Zamfir, E. Degree-Days, Degree-Hours and Ambient Temperature Bin Data from Monthly-Average Temperatures (Romania). Energy Convers. Manag. 1999, 40, 885–900. [Google Scholar] [CrossRef]
- Cartalis, C.; Synodinou, A.; Proedrou, M.; Tsangrassoulis, A.; Santamouris, M. Modifications in Energy Demand in Urban Areas as a Result of Climate Changes: An Assessment for the Southeast Mediterranean Region. Energy Convers. Manag. 2001, 42, 1647–1656. [Google Scholar] [CrossRef]
- Matzarakis, A.; Balafoutis, C. Heating Degree-days over Greece as an Index of Energy Consumption. Int. J. Climatol. 2004, 24, 1817–1828. [Google Scholar] [CrossRef]
- Büyükalaca, O.; Bulut, H.; Yılmaz, T. Analysis of Variable-Base Heating and Cooling Degree-Days for Turkey. Appl. Energy 2001, 69, 269–283. [Google Scholar] [CrossRef]
- Yildiz, I.; Sosaoglu, B. Spatial Distributions of Heating, Cooling, and Industrial Degree-Days in Turkey. Theor. Appl. Climatol. 2007, 90, 249–261. [Google Scholar] [CrossRef]
- Janković, A.; Podraščanin, Z.; Djurdjevic, V. Future Climate Change Impacts on Residential Heating and Cooling Degree Days in Serbia. Időjárás 2019, 123, 351–370. [Google Scholar] [CrossRef]
- Ürge-Vorsatz, D.; Khosla, R.; Bernhardt, R.; Chan, Y.C.; Vérez, D.; Hu, S.; Cabeza, L.F. Advances Toward a Net-Zero Global Building Sector. Annu. Rev. Environ. Resour. 2020, 45, 227–269. [Google Scholar] [CrossRef]
- Kennard, H.; Oreszczyn, T.; Mistry, M.; Hamilton, I. Population-Weighted Degree-Days: The Global Shift between Heating and Cooling. Energy Build. 2022, 271, 112315. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 2. Future Climate Projections. J. Geoph. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Merrifield, A.L.; Brunner, L.; Lorenz, R.; Medhaug, I.; Knutti, R. An Investigation of Weighting Schemes Suitable for Incorporating Large Ensembles into Multi-Model Ensembles. Earth Syst. Dyn. 2020, 11, 807–834. [Google Scholar] [CrossRef]
- Herger, N.; Abramowitz, G.; Knutti, R.; Angélil, O.; Lehmann, K.; Sanderson, B.M. Selecting a Climate Model Subset to Optimise Key Ensemble Properties. Earth Syst. Dyn. 2018, 9, 135–151. [Google Scholar] [CrossRef]
- Tebaldi, C.; Debeire, K.; Eyring, V.; Fischer, E.; Fyfe, J.; Friedlingstein, P.; Knutti, R.; Lowe, J.; O’Neill, B.; Sanderson, B.; et al. Climate Model Projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 2021, 12, 253–293. [Google Scholar] [CrossRef]
- Chervenkov, H.; Slavov, K. NEX-GDDP Multimodel Ensemble vs. E-OBS—Evaluation of the Extreme Temperatures and Precipitation over Southeast Europe: Historical Comparison. Atmosphere 2022, 13, 581. [Google Scholar] [CrossRef]
- Chervenkov, H.; Malcheva, K. Extreme Heat Events over Southeast Europe Based on NEX-GDDP Ensemble: Present Climate Evaluation and Future Projections. Atmosphere 2023, 14, 1000. [Google Scholar] [CrossRef]
- Chervenkov, H.; Ivanov, V.; Gadzhev, G.; Ganev, K.; Melas, D. Degree-Day Climatology over Central and Southeast Europe for the Period 1961–2018—Evaluation in High Resolution. Cybern. Inf. Technol. 2020, 20, 166–174. [Google Scholar] [CrossRef]
- Ivanov, V.; Chervenkov, H.; Gadzhev, G.; Ganev, K. Degree-days and agro-meteorological Indices in the Projected Future Climate over Southeast Europe. In Proceedings of the SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings, Online, 1–5 December 2020. [Google Scholar] [CrossRef]
- Chervenkov, H.; Gadzhev, G.; Ivanov, V.; Ganev, K. Degree-Days and Agro-Meteorological Indices in CMIP5 RCP8.5 Future Climate—Results for Central and Southeast Europe. In Environmental Protection and Disaster Risks; Springer: Cham, Switzerland, 2021; pp. 19–30. [Google Scholar] [CrossRef]
- Thrasher, B.; Wang, W.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA Global Daily Downscaled Projections, CMIP6. Sci. Data 2022, 9, 262. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, D.P.; Zhu, J.; Mearns, L.O.; Snyder, M.A.; Czajkowski, K.P.; Feng, J.; Harrison, P. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Clim. Change 2004, 62, 189–216. [Google Scholar] [CrossRef]
- Park, T.; Hashimoto, H.; Wang, W.; Thrasher, B.; Michaelis, A.R.; Lee, T.; Brosnan, I.G.; Nemani, R.R. What Does Global Land Climate Look Like at 2 °C Warming? Earth’s Futur. 2023, 11, e2022EF003330. [Google Scholar] [CrossRef]
- Rao, K.K.; Al Mandous, A.; Al Ebri, M.; Al Hameli, N.; Rakib, M.; Al Kaabi, S. Future Changes in the Precipitation Regime over the Arabian Peninsula with Special Emphasis on UAE: Insights from NEX-GDDP CMIP6 Model Simulations. Sci. Rep. 2024, 14, 151. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Jiao, D.; Yang, X.; Cui, Z.; Zhang, H.; Wang, Y. Evaluation of NEX-GDDP-CMIP6 in Simulation Performance and Drought Capture Utility over China–Based on DISO. Hydro. Res. 2023, 54, 703–721. [Google Scholar] [CrossRef]
- Jiang, F.; Wen, S.; Gao, M.; Zhu, A. Assessment of NEX-GDDP-CMIP6 Downscale Data in Simulating Extreme Precipitation over the Huai River Basin. Atmosphere 2023, 14, 1497. [Google Scholar] [CrossRef]
- Airiken, M.; Li, S.; Abulaiti, A.; Wang, Y.; Zhang, L. Prediction of Extreme Climate on the Tibetan Plateau Based on NEX-GDDP-CMIP6. Hum. Ecol. Risk Assess. 2023, 29, 1261–1275. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional Climate Modeling on European Scales: A Joint Standard Evaluation of the EURO-CORDEX RCM Ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef]
- Center For International Earth Science Information Network-CIESIN-Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11. 2018. Available online: https://cmr.earthdata.nasa.gov/search/concepts/C1597158029-SEDAC.html (accessed on 1 November 2024). [CrossRef]
- Gao, J. Global 1-Km Downscaled Population Grids, SSP-Consistent Projections and Base Year, v1.01 (2000–2100). 2020. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/TLJ99B (accessed on 5 November 2024). [CrossRef]
- Schulzweida, U. CDO User Guide. 2020. Available online: https://zenodo.org/records/5614769 (accessed on 1 March 2024).
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Ass. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. I, II, III. Nederl. Akad. Wetensch. Proc. 1950, 53, 173. [Google Scholar]
Condition | HDD= | CDD= |
---|---|---|
Tmax ≤ Tbase (uniformly cold day) | Tbase − Tmean | 0 (No cooling is required) |
Tmean ≤ Tbase < Tmax (mostly cold day) | (Tbase − Tmin)/2 − (Tmax − Tbase)/4 | (Tmax − Tbase)/4 |
Tmin < Tbase < Tmean (mostly warm day) | (Tbase − Tmin)/4 | (Tmax − Tbase)/2 − (Tbase − Tmin)/4 |
Tmin ≥ Tbase (uniformly warm day) | 0 (No heating is required) | Tmean − Tbase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chervenkov, H.; Slavov, K. Population-Weighted Degree-Days over Southeast Europe—Near Past Climate Evaluation and Future Projections with NEX-GDDP CMIP6 Ensemble. Climate 2025, 13, 66. https://doi.org/10.3390/cli13040066
Chervenkov H, Slavov K. Population-Weighted Degree-Days over Southeast Europe—Near Past Climate Evaluation and Future Projections with NEX-GDDP CMIP6 Ensemble. Climate. 2025; 13(4):66. https://doi.org/10.3390/cli13040066
Chicago/Turabian StyleChervenkov, Hristo, and Kiril Slavov. 2025. "Population-Weighted Degree-Days over Southeast Europe—Near Past Climate Evaluation and Future Projections with NEX-GDDP CMIP6 Ensemble" Climate 13, no. 4: 66. https://doi.org/10.3390/cli13040066
APA StyleChervenkov, H., & Slavov, K. (2025). Population-Weighted Degree-Days over Southeast Europe—Near Past Climate Evaluation and Future Projections with NEX-GDDP CMIP6 Ensemble. Climate, 13(4), 66. https://doi.org/10.3390/cli13040066