Analysis of Near-Surface Air Temperature Trends in Brazil Region Using Meteorological Station Data, ERA5 Reanalysis, and CMIP6 Models
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CMIP6 | Coupled Model Intercomparison Project phase 6 |
| ECMWF | European Centre for Medium-Range Weather Forecasts |
| ENSO | El Niño—Southern Oscillation |
| IPCC | Intergovernmental Panel on Climate Change |
| IPO | Interdecadal Pacific Oscillation |
| NSAT | Near-Surface Air Temperature |
| SSPs | Shared Socio-economic Pathways |
| WMO | World Meteorological Organization |
References
- Intergovernmental Panel on Climate Change. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Santer, B.D.; Taylor, K.E.; Wigley, T.M.L.; Johns, T.C.; Jones, P.D.; Karoly, D.J.; Mitchell, J.F.B.; Oort, A.H.; Penner, J.E.; Ramaswamy, V.; et al. A search for human influences on the thermal structure of the atmosphere. Nature 1996, 382, 39–46. [Google Scholar] [CrossRef]
- Stott, P.A.; Tett, S.F.B.; Jones, G.S.; Allen, M.R.; Mitchell, J.F.B.; Jenkins, G.J. External control of 20th century temperature by natural and anthropogenic forcings. Science 2000, 290, 2133–2137. [Google Scholar] [CrossRef] [PubMed]
- Hegerl, G.C.; Zwiers, F.W. Use of models in detection and attribution of climate change. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 570–591. [Google Scholar] [CrossRef]
- Gillett, N.P.; Kirchmeier-Young, M.; Ribes, A.; Shiogama, H.; Hegerl, G.C.; Knutti, R.; Gastineau, G.; John, J.G.; Li, L.; Nazarenko, L.; et al. Constraining human contributions to observed warming since the pre-industrial period. Nat. Clim. Change 2021, 11, 207–212. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Conners, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Almar, R.; Boucharel, J.; Graffin, M.; Ondoa Abessolo, G.; Thoumyre, G.; Papa, F.; Ranasinghe, R.; Montano, J.; Bergsma, E.W.J.; Baba, M.W.; et al. Influence of El Niño on the variability of global shoreline position. Nat. Commun. 2023, 14, 3133. [Google Scholar] [CrossRef]
- Chelton, D.B.; Xie, S.P. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography 2010, 23, 52–69. [Google Scholar] [CrossRef]
- Miller, A.; Collins, M.; Gualdi, S.; Jensen, T.; Misra, V.; Pezzi, L.; Pierce, D.; Putrasahan, D.; Seo, H.; Tseng, Y.-H. Coupled ocean–atmosphere modeling and predictions. J. Mar. Res. 2017, 75, 361–402. [Google Scholar] [CrossRef]
- Xue, P.; Malanotte-Rizzoli, P.; Wei, J.; Eltahir, E.A.B. Coupled Ocean-Atmosphere Modeling Over the Maritime Continent: A Review. J. Geophys. Res. Oceans 2020, 125, e2019JC014978. [Google Scholar] [CrossRef]
- Bhardwaj, R.K. Application of GIS technology for Coastal Zone Management: A hydrographer perspective. Geospat. World 2009, 211–277. [Google Scholar]
- Fedra, K.; Feoli, E. GIS technology and spatial analysis in coastal zone management. EEZ Technol. 1998, 3, 171–179. [Google Scholar]
- Mummery, J. Available data, datasets and derived information to support coastal hazard assessment and adaptation planning. In Coast Adapt Information Manual 3; National Climate Change Adaptation Research Facility NCCARF, Griffith University: Southport, Australia, 2016; p. 66. [Google Scholar]
- Dantas, L.; dos Santos, C.A.C.; Santos, C.A.G.; Martins, E.; Alves, L.M. Future Changes in Temperature and Precipitation over Northeastern Brazil by CMIP6 Model. Water 2022, 14, 4118. [Google Scholar] [CrossRef]
- Moura, A.D.; Shukla, J. On the dynamics of droughts in northeast Brazil: Observations, theory and numerical experiments with a general circulation model. J. Atmos. Sci. 1981, 38, 2653–2675. [Google Scholar] [CrossRef]
- Turner, K.J.; Burls, N.J.; von Brandis, A.; Lübbecke, J.; Claus, M. Seasonality in the relationship between equatorial-mean heat content and interannual eastern equatorial Atlantic sea surface temperature variability. Clim. Dyn. 2022, 59, 61–75. [Google Scholar] [CrossRef]
- Lian, Y.; Zheng, J.; Li, Y.; Wang, C.; Li, X. Record-breaking rainfall in the northern Amazon in spring 2022 tied to the Pacific and Atlantic sea surface temperatures. Ocean-Land-Atmos. Res. 2024, 3, 62. [Google Scholar] [CrossRef]
- Salas y Melia, D.; Sanchez, E.; Decharme, B.; Fernandez, E.; Cassou, C.; Chevallier, M.; Geoffroy, O.; Senesi, S.; Voldoire, A. Contributing to CMIP5 with CNRM-CM5: Model evaluation and simulated climate future climate change. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 5–9 December 2011; p. 881. [Google Scholar]
- Saint-Martin, D.; Geoffroy, O.; Voldoire, A.; Cattiaux, J.; Brient, F.; Chauvin, F.; Chevallier, M.; Colin, J.; Decharme, B.; Delire, C.; et al. Tracking Changes in Climate Sensitivity in CNRM Climate Models. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002190. [Google Scholar] [CrossRef]
- Lovato, T.; Peano, D.; Butenschön, M.; Materia, S.; Iovino, D.; Scoccimarro, E.; Fogli, P.G.; Cherchi, A.; Bellucci, A.; Gualdi, S.; et al. CMIP6 simulations with the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 2022, 14, e2021MS002814. [Google Scholar] [CrossRef]
- Nicolì, D.; Bellucci, A.; Ruggieri, P.; Athanasiadis, P.; Materia, S.; Peano, D.; Fedele, G.; Hénin, R.; Gualdi, S. The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system. Geosci. Model Dev. 2023, 16, 179–197. [Google Scholar] [CrossRef]
- Sales, E.G.S.; Matsunaga, W.K.; Braga, C.C.; Sakamoto, M.S.; Lucena, D.; de Brito, J.I.B. Climate classification for Northeast Brazil using reanalysis data and the Absolute Aridity Index. Rev. Bras. De Geogr. Física 2024, 17, 1478–1500. [Google Scholar] [CrossRef]
- Bustos Usta, D.F.; Teymouri, M.; Chatterjee, U. Projections of temperature changes over South America during the twenty-first century using CMIP6 models. Geo J. 2021, 87, 739–763. [Google Scholar] [CrossRef]
- Díaz, L.B.; Saurral, R.I.; Vera, C.S. Assessment of South America summer rainfall climatology and trends in a set of global climate models large ensembles. Int. J. Climatol. 2021, 41, E59–E77. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Min, S.-K.; Zhang, X.; Sillmann, J.; Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extrem. 2020, 29, 100269. [Google Scholar] [CrossRef]
- Francisco, P.R.M.; de Sousa, J.H.S.; Ribeiro, G.N.; Silva, J.N. Projeção Climática da Pluviosidade e Temperatura do ar Da Região Continental Brasileira Entre 2021 a 2040 Simulada por Modelos do CMIP6-SSP126/245/370. Rev. Biol. Ciências Terra 2025, 25, 27–42. [Google Scholar]
- Almazroui, M.; Ashfaq, M.; Islam, M.N.; Rashid, I.U.; Kamil, S.; Abid, M.A.; O’Brien, E.; Ismail, M.; Reboita, M.S.; Sörensson, A.A.; et al. Assessment of CMIP6 Performance and Projected Temperature and Precipitation Changes over South America. Earth Syst. Environ. 2021, 5, 155–183. [Google Scholar] [CrossRef]
- Ortega, G.; Arias, P.O.; Villegas, J.C.; Marquet, P.A.; Nobre, P. Present-day and future climate over central and South America according to CMIP5/CMIP6 models. Int. J. Climatol. 2021, 41, 6713–6735. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- O’Neill, S.; Williams, H.T.P.; Kurz, T.; Wiersma, B.; Boykoff, M. Dominant frames in legacy and social media coverage of the IPCC Fifth Assessment Report. Nat. Clim. Change 2015, 5, 380–385. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Batlle-Bayer, L.; Chuwah, C.; Ganzeveld, L.; Hazeleger, W.; van den Hurk, B.; van Noije, T.; O’Neill, B.; Strengers, B.J. A comprehensive view on climate change: Coupling of Earth system and integrated assessment models. Environ. Res. Lett. 2012, 7, 024012. [Google Scholar] [CrossRef]
- Aparecido, L.E.O.; de Meneses, K.C.; Lorençone, P.A.; Rolim, G.d.S. Climate Classification by Thornthwaite (1948) Humidity Index in Future Scenarios for Maranhão State, Brazil. Environ. Dev. Sustain. 2022, 25, 855–878. [Google Scholar] [CrossRef]
- Freitas, A.; Carvalho, V.S.B.; Reboita, M.S. Extreme Precipitation Events During the Wet Season of the South America Monsoon: A Historical Analysis over Three Major Brazilian Watersheds. Climate 2024, 12, 188. [Google Scholar] [CrossRef]
- Santos, C.A.M.; Lyra, G.B.; Rodriguez, D.A. Impact of Climate Change on Cassava Yield in Guapimirim, State of Rio de Janeiro, Southeast Brazil. Anu. Inst. Geocienc. 2022, 45, 1–16. [Google Scholar] [CrossRef]
- Chiquetto, J.; Nolasco, M.A. New Insights on Climate Change and Adaptation Research in Brazil: A Bibliometric and Bibliographic Review. Discov. Environ. 2024, 2, 36. [Google Scholar] [CrossRef]
- Borges, R.C.; Brito, R.M.; Imperatriz-Fonseca, V.L.; Giannini, T.C. The Value of Crop Production and Pollination Services in the Eastern Amazon. Neotrop. Entomol. 2020, 49, 545–556. [Google Scholar] [CrossRef]
- Werneck, D.R.; Romero, M.A.B.; Celuppi, M.C.; Gobo, J.P.A. Urban Expansion Coupled with Climate Change: The Scenario of Federal District of Brazil. In Climate Change and Regional Socio-Economic Systems in the Global South; Mishra, M., de Lucena, A.J., Maharaj, B., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Silva, T.B.d.; Baptista, P.; Silva, C.A.S.; Santos, L. Climate Change Mitigation Policies in the Transportation Sector in Rio de Janeiro, Brazil. Environments 2020, 7, 99. [Google Scholar] [CrossRef]
- Andrade, A.L.C. Governing Climate Change in Brazil—A Governance Gap Analysis of Selected Cases; University of Potsdam: Potsdam, Germany, 2023. [Google Scholar] [CrossRef]
- Serrao-Neumann, S.; Di Giulio, G.; Choy, D.L. When Salient Science Is Not Enough to Advance Climate Change Adaptation: Lessons from Brazil and Australia. Environ. Sci. Policy 2020, 109, 73–82. [Google Scholar] [CrossRef]
- Carvalho, W.K.M.; Silva, A.O.D.; Bon, F.P.; Fernandes, R.A.S. Mudanças climáticas na metrópole paulista: Uma análise de planos diretores e leis urbanísticas. Ambiente Construído 2020, 20, 143–156. [Google Scholar] [CrossRef]
- Sotto, D.; Philippi, A., Jr.; Yigitcanlar, T.; Kamruzzaman, M. Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice? Energies 2019, 12, 3418. [Google Scholar] [CrossRef]
- Lampis, A.; Pavanelli, J.M.M.; Guerrero, A.L.D.V.; Bermann, C. Possibilidades e limites da transição energética: Uma análise à luz da ciência pós-normal. Estud. Avanç. 2021, 35, 183–200. [Google Scholar] [CrossRef]
- Braz, D.F.; Ambrizzi, T.; Da Rocha, R.P.; Algarra, I.; Nieto, R.; Gimeno, L. Assessing the Moisture Transports Associated with Nocturnal Low-Level Jets in Continental South America. Front. Environ. Sci. 2021, 9, 657764. [Google Scholar] [CrossRef]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Navarra, A. Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model. J. Adv. Model. Earth Syst. 2019, 11, 185–209. [Google Scholar] [CrossRef]
- Gómez, E.S.; Séférian, R.; Batté, L.; Voldoire, A. Description and Evaluation of the CNRM-Cerfacs Climate Prediction System (C3PS). J. Adv. Model. Earth Syst. 2024, 16, e2023MS004193. [Google Scholar] [CrossRef]
- INMET—Instituto Nacional de Meteorologia. (n.d.). Meteorological Stations Map. Available online: https://mapas.inmet.gov.br/ (accessed on 25 April 2025).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Müller, P.H.; Neuman, P.; Storm, R. Tafeln der Mathematischen Statistik; VEB Fachbuchverlag: Leipzig, Germany, 1979; p. 274. [Google Scholar]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Reichler, T.; Kim, J. How Well Do Coupled Models Simulate Today’s Climate? Bull. Amer. Meteor. Soc. 2008, 89, 303–312. [Google Scholar] [CrossRef]
- Serykh, I.V.; Sonechkin, D.M. Global El Niño–Southern Oscillation Teleconnections in CMIP6 Models. Atmosphere 2024, 15, 500. [Google Scholar] [CrossRef]
- Serykh, I.V. El Niño–Southern Oscillation Prediction Based on the Global Atmospheric Oscillation in CMIP6 Models. Climate 2025, 13, 25. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Lehner, F.; Deser, C.; Maher, N.; Marotzke, J.; Fischer, E.M.; Brunner, L.; Knutti, R.; Hawkins, E. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dynam. 2020, 11, 491–508. [Google Scholar] [CrossRef]
- Pokrovsky, O.M.; Pokrovsky, I.O. Coherence of Fluctuations of Components of the Global Climate System with Slow Fluctuations of Solar Activity according to Ground-Based and Satellite Observations. Izv. Atmos. Ocean. Phys. 2022, 58, 1131–1142. [Google Scholar] [CrossRef]
- Silva, W.L.; Dereczynski, C.P.; Chou, S.C.; Cavalcanti, I.F. de A. Future Changes in Temperature and Precipitation Extremes in the State of Rio de Janeiro (Brazil). Am. J. Clim. Change 2014, 3, 353–365. [Google Scholar] [CrossRef]
- Salinger, M.J.; Renwick, J.A.; Mullan, A.B. Interdecadal Pacific Oscillation and South Pacific Climate. Int. J. Climatol. 2001, 21, 1705–1721. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A.; et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Gulizia, C.; Pirotte, M.N. Characterization of simulated extreme El Niño events and projected impacts on South American climate extremes by a set of Coupled Model Intercomparison Project Phase 5 global climate models. Int. J. Climatol. 2022, 42, 48–62. [Google Scholar] [CrossRef]
- BRAZIL’S NDC. National Determination to Contribute and Transform. Available online: https://unfccc.int/sites/default/files/2024-11/Brazil_Second%20Nationally%20Determined%20Contribution%20(NDC)_November2024.pdf (accessed on 26 October 2025).
- Climate Crisis: Severe Drought in the Amazon Is Worsened by Deforestation and Fire. Available online: https://www.wwf.org.br/?87020%2FClimate-crisis-severe-drought-in-the-Amazon-is-worsened-by-deforestation-and-fire (accessed on 26 October 2025).
- International Climate Initiative. Building Climate Adaptation Across Brazil: From National to Local Action. Available online: https://www.international-climate-initiative.com/en/iki-media/news/building-climate-adaptation-across-brazil-from-national-to-local-action/ (accessed on 26 October 2025).
- Brazil: National Adaptation Plan to Climate Change—Volume I: General Strategy 2016. Available online: https://www.preventionweb.net/publication/brazil-national-adaptation-plan-climate-change-volume-i-general-strategy-2016 (accessed on 26 October 2025).







| Weather Stations | Latitude, ° S | Longitude, ° W | Height, m | Ta_Weather Stations, °C | Periods | Ta_ERA5, °C for 2000–2023 |
|---|---|---|---|---|---|---|
| Rio de Janeiro | 22°54′40″ | 43°12′20” | 5 | 23.9 ± 0.4 | 2000–2023 | 23.9 ± 0.3 |
| Forte Copacabana | 22°59′09″ | 43°11′05″ | 982 | 23.6 ± 0.5 | 2008–2023 | 23.9 ± 0.4 |
| Santa Cruz | 22°55′13″ | 43°41′06″ | 33 | 23.9 ± 0.3 | 2000–2007, 2021–2023 | 23.6 ± 0.3 |
| Seropédica | 22°44′38″ | 43 °42′28” | 36 | 23.8 ± 0.4 | 2002–2023 | 23.1 ± 0.4 |
| Teresópolis | 22°24′43″ | 42°57′57” | 982 | 18.1 ± 0.4 | 2007–2023 | 21.5 ± 0.4 |
| Campos dos Goytacazes | 21°45′14″ | 41°19′26″ | 17 | 23.8 ± 0.4 | 2007–2020 | 24.9 ± 0.4 |
| Iguaba Grande | 22°50′20″ | 42°13′44″ | 6 | 24.5 ± 0.4 | 2000–2020 | 23.5 ± 0.3 |
| Paty do Alferes | 22°25′44″ | 43°25′08” | 507 | 21.7 ± 0.4 | 2000–2019 | 21.6 ± 0.4 |
| Arraial do Cabo | 22°57′57″ | 42°01′40″ | 6 | 23.3 ± 0.4 | 2007–2020, 2022 | 23.1 ± 0.2 |
| Cruzeiro do Sul | 7°37′59″ | 72°40′0” | 170 | 26.1 ± 0.3 | 2001–2023 | 25.8 ± 0.5 |
| Manaus | 3°6′11″ | 60°0′59” | 61 | 27.6 ± 0.3 | 2001–2023 | 26.8 ± 0.7 |
| Macapá | 0°2′41″ | 51°6′35” | 13 | 27.6 ± 0.3 | 2001–2023 | 26.9 ± 0.6 |
| Jacobina | 11°10′59″ | 40°28′0” | 485 | 24.4 ± 0.4 | 2001–2023 | 24.7 ± 1.6 |
| Goiânia | 16°40′1″ | 49°15′0” | 741 | 24.9 ± 0.4 | 2001–2023 | 22.9 ± 1.0 |
| Região Metropolitana de Imperatriz | 5°31′59″ | 47°30′0” | 123 | 27.9 ± 0.3 | 2001–2023 | 26.9 ± 0.9 |
| Diamantino | 14°24′0″ | 56°27′0” | 286 | 25.7 ± 0.3 | 2001–2023 | 25.1 ± 0.9 |
| Campo Grande | 20°28′0″ | 54°40′0” | 567 | 24.3 ± 0.9 | 2001–2023 | 24.7 ± 1.7 |
| Almenara | 16°10′0″ | 40°41′16” | 189 | 25.5 ± 0.5 | 2001–2023 | 24.4 ± 1.5 |
| Brasília | 15°46′59″ | 47°55′59” | 1159 | 21.5 ± 0.3 | 2001–2023 | 22.2 ± 1.2 |
| Belém | 1°26′59″ | 48°28′0” | 10 | 27.0 ± 0.2 | 2001–2023 | 27.0 ± 0.7 |
| Areia | 6°58′31″ | 35°43′5” | 574 | 22.5 ± 0.2 | 2001–2023 | 24.9 ± 0.9 |
| Curitiba | 25°31′0″ | 49°10′0” | 908 | 17.6 ± 0.4 | 2001–2023 | 17.6 ± 2.4 |
| Montes Claros | 16°43′0″ | 43°52′0” | 646 | 23.7 ± 0.6 | 2001–2023 | 24.2 ± 1.6 |
| Boa Vista | 2°49′59″ N | 60°42′0” | 140 | 28.0 ± 0.3 | 2001–2023 | 27.4 ± 1.1 |
| Vilhena | 12°41′59″ | 60°6′0” | 612 | 24.1 ± 0.4 | 2001–2023 | 24.4 ± 0.7 |
| Santa Maria | 29°41′59″ | 53°42′0” | 95 | 19.7 ± 0.4 | 2001–2023 | 18.8 ± 3.5 |
| Apodi | 5°39′0″ | 37°47′59” | 65 | 27.7 ± 0.3 | 2001–2023 | 28.6 ± 0.8 |
| São João do Piauí | 8°20′59″ | 42°15′0” | 235 | 28.3 ± 0.5 | 2001–2023 | 28.1 ± 1.3 |
| Arcoverde | 8°25′0″ | 37°4′59” | 682 | 23.6 ± 0.4 | 2001–2023 | 24.0 ± 1.3 |
| Vitória | 20°16′0″ | 40°16′59” | 4 | 24.9 ± 0.4 | 2001–2023 | 24.0 ± 1.4 |
| Palmas | 10°10′59″ | 48°17′59” | 281 | 27.4 ± 0.4 | 2001–2023 | 26.5 ± 0.9 |
| Quixeramobim | 5°12′0″ | 39°17′59” | 212 | 27.4 ± 0.4 | 2001–2023 | 28.5 ± 0.8 |
| Florianópolis | 27°40′0″ | 48°32′59” | 5 | 21.3 ± 0.5 | 2001–2023 | 21.3 ± 2.5 |
| Bauru | 22°19′59″ | 49°2′59” | 615 | 23.5 ± 0.6 | 2001–2023 | 23.0 ± 2.1 |
| Presidente Prudente | 22°7′0″ | 51°22′59” | 436 | 23.9 ± 0.3 | 2001–2023 | 23.5 ± 2.1 |
| Pão de Açúcar | 9°45′0″ | 37°25′59” | 20 | 27.6 ± 0.6 | 2000–2023 | 26.7 ± 1.6 |
| Rio Branco | 9°58′0″ | 67°47′59” | 160 | 25.7 ± 0.6 | 2000–2023 | 25.8 ± 0.7 |
| Porto Alegre | 30°01′58″ | 51°13′48″ | 9 | 19.9 ± 0.4 | 2000–2023 | 19.9 ± 3.5 |
| Natal 1 | 05°47′42″ | 35°12′32″ | 49 | 26.6 ± 0.2 | 2000–2023 | 27.2 ± 0.6 |
| Average value Ta, °C | 24.5 ± 2.2 | 2000–2023 | 24.4 ± 1.9 | |||
| Variables | Ta_ERA5 Natal 1, °C | Ta_ERA5 Porto Alegre, °C | Ta_ERA5 Boa Vista, °C | Ta_ERA5 Rio Branco, °C | Ta_ERA5 Pão de Açúcar, °C | Ta_ERA5 Rio de Janeiro, °C | Ta_Weather station Natal 1, °C | Ta_Weather station Porto Alegre, °C |
|---|---|---|---|---|---|---|---|---|
| Ta_ERA5 Natal 1, °C | 1 | 0.2 | 0.7 | 0.7 | 0.6 | 0.7 | 0.9 | −0.2 |
| Ta_ERA5 Porto Alegre, °C | 0.2 | 1 | 0.3 | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 |
| Ta_ERA5 Boa Vista, °C | 0.7 | 0.3 | 1 | 0.7 | 0.4 | 0.5 | 0.7 | 0.1 |
| Ta_ERA5 Rio Branco, °C | 0.7 | 0.2 | 0.7 | 1 | 0.4 | 0.5 | 0.7 | −0.2 |
| Ta_ERA5 Pão de Açúcar, °C | 0.6 | 0.2 | 0.4 | 0.4 | 1 | 0.5 | 0.6 | −0.1 |
| Ta_ERA5 Rio de Janeiro, °C | 0.7 | 0.2 | 0.5 | 0.5 | 0.5 | 1 | 0.7 | 0.0 |
| Ta_Weather station Natal1, °C | 0.9 | 0.3 | 0.7 | 0.7 | 0.6 | 0.7 | 1 | −0.3 |
| Ta_Weather station PortoAlegre, °C | −0.2 | 0.4 | 0.1 | −0.2 | −0.1 | 0.0 | −0.3 | 1 |
| Weather Stations | Region | Ta_Weather stations ±σ, °C | Ta_Weather stations ±σ, °C | ΔTa_Weather stations, °C | Ta_ERA5, ±σ, °C | Ta_ERA5, ±σ, °C | Ta_ERA5, ±σ, °C | ΔTa_ERA5, °C | ΔTa_ERA5, °C |
|---|---|---|---|---|---|---|---|---|---|
| Periods | 1964–1993 | 1994–2023 | (1994–2023) – (1964–1993) | 1940–1969 | 1964–1993 | 1994–2023 | (1994–2023) – (1940–1969) | (1994–2023) – (1964–1993) | |
| Rio de Janeiro | Southeastern | 24.3 ± 0.3 * | 24.5 ± 0.4 | 0.2 | 21.9 ± 1.9 | 22.6 ± 1.9 | 23.1 ± 1.9 | 1.2 | 0.5 |
| Pão de Açúcar | Northeastern | 26.8 ± 0.3 * | 27.5 ± 0.3 | 0.7 | 26.2 ± 1.6 | 26.4 ± 1.5 | 26.5 ± 1.6 | 0.3 | 0.1 |
| Rio Branco | Northern | 25.6 ± 0.3 * | 25.8 ± 0.5 | 0.2 | 25.1 ± 0.9 | 25.2 ± 0.7 | 25.5 ± 0.7 | 0.4 | 0.3 |
| Boa Vista | Northern (extreme) | 27.9 ± 0.3 * | 28.2 ± 0.4 | 0.3 | 26.3 ± 1.3 | 26.6 ± 1.1 | 26.9 ± 1.1 | 0.6 | 0.3 |
| Porto Alegre | Southern | 20.1 ± 0.2 | 20.0 ± 0.4 | –0.1 | 19.4 ± 3.3 | 19.5 ± 3.4 | 19.7 ± 3.5 | 0.3 | 0.2 |
| Natal 1 | Northeastern | 26.0 ± 0.3 | 26.6 ± 0.2 | 0.6 | 25.7 ± 0.5 | 25.7 ± 0.5 | 25.9 ± 0.6 | 0.2 | 0.2 |
| Average values Ta, °C | 25.1 ± 0.3 | 25.4 ± 0.4 | 0.4 ± 0.2 | 24.1 ± 0.7 | 24.3 ± 0.8 | 24.6 ± 0.8 | 0.5 ± 0.3 | 0.3 ± 0.1 | |
| Ta_Ave Weather stations, °C | Ta_ERA5, °C | Ta_Historical, °C | Ta_SSP 2.6, °C | Ta_SSP 4.5, °C | Ta_SSP 7.0, °C | Ta_SSP 8.5, °C | |
|---|---|---|---|---|---|---|---|
| Ta_Ave Weather stations, °C | 1 | 0.7 | 0.7 | 0.6 | 0.6 | 0.7 | 0.7 |
| Ta_ERA5, °C | 0.7 | 1 | 0.8 | 0.7 | 0.7 | 0.8 | 0.8 |
| Ta_Historical, °C | 0.7 | 0.8 | 1 | 0.9 | 0.9 | 0.9 | 0.9 |
| Ta_SSP 2.6, °C | 0.6 | 0.7 | 0.9 | 1 | 0.8 | 0.9 | 0.9 |
| Ta_SSP 4.5, °C | 0.6 | 0.7 | 0.9 | 0.8 | 1 | 0.9 | 0.9 |
| Ta_SSP 7.0, °C | 0.7 | 0.8 | 0.9 | 0.9 | 0.9 | 1 | 0.9 |
| Ta_SSP 8.5, °C | 0.7 | 0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 1 |
| Organization | Model | The Difference Between 1994–2023 and 1940–1969 (°C) | The Difference Between 2024–2053 and 1994–2023 (°C) | The Difference Between 2070–2099 and 1994–2023 (°C) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Historical | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | ||
| AS-RCEC | TaiESM1 | 0.55 | 1.24 | 1.21 | 1.17 | 1.54 | 1.95 | 2.72 | 3.56 | 4.60 |
| AWI | AWI-CM-1-1-MR | 0.73 | 0.58 | 0.68 | 0.91 | 0.94 | 0.74 | 1.60 | 2.64 | 3.36 |
| BCC | BCC-CSM2-MR | 0.65 | 0.58 | 0.76 | 0.92 | 1.00 | 0.75 | 1.60 | 2.66 | 3.04 |
| CAMS | CAMS-CSM1-0 | 0.47 | 0.40 | 0.53 | 0.65 | 0.70 | 0.64 | 1.27 | 1.86 | 2.25 |
| CAS | CAS-ESM2-0 | 0.52 | 0.93 | 0.95 | 0.87 | 1.24 | 1.62 | 2.50 | 3.09 | 4.19 |
| CAS | FGOALS-f3-L | 0.77 | 0.67 | 0.81 | 0.85 | 0.95 | 0.67 | 1.54 | 2.34 | 2.93 |
| CAS | FGOALS-g3 | 0.71 | 0.51 | 0.69 | 0.83 | 0.81 | 0.45 | 1.30 | 2.26 | 2.50 |
| CCCma | CanESM5 | 1.04 | 0.93 | 1.26 | 1.41 | 1.42 | 1.29 | 2.52 | 4.12 | 5.08 |
| CCCma | CanESM5-CanOE | 1.21 | 0.92 | 1.33 | 1.36 | 1.58 | 1.16 | 2.54 | 4.05 | 5.15 |
| CMCC | CMCC-CM2-SR5 | 0.67 | 0.86 | 0.92 | 0.86 | 1.07 | 1.38 | 2.13 | 2.53 | 3.59 |
| CMCC | CMCC-ESM2 | 0.60 | 0.79 | 0.81 | 0.76 | 0.99 | 1.44 | 2.05 | 2.51 | 3.59 |
| CNRM-CERFACS | CNRM-CM6-1 | 0.61 | 0.82 | 0.89 | 0.94 | 1.20 | 1.20 | 2.10 | 3.02 | 4.17 |
| CNRM-CERFACS | CNRM-CM6-1-HR | 0.67 | 0.96 | 0.95 | 1.04 | 1.18 | 1.35 | 2.30 | 3.09 | 4.04 |
| CNRM-CERFACS | CNRM-ESM2-1 | 0.57 | 0.76 | 0.91 | 1.02 | 1.09 | 1.24 | 2.15 | 3.12 | 3.91 |
| CSIRO-ARCCSS | ACCESS-CM2 | 0.58 | 1.06 | 1.10 | 1.13 | 1.23 | 1.52 | 2.44 | 3.35 | 4.34 |
| CSIRO | ACCESS-ESM1-5 | 0.76 | 0.83 | 1.02 | 0.92 | 1.26 | 1.17 | 2.02 | 2.90 | 3.51 |
| EC-Earth-Consortium | EC-Earth3 | 0.87 | 0.78 | 0.79 | 0.92 | 1.02 | 0.97 | 1.84 | 2.71 | 3.47 |
| EC-Earth-Consortium | EC-Earth3-Veg | 0.76 | 0.65 | 0.68 | 0.79 | 0.91 | 0.94 | 1.75 | 2.69 | 3.42 |
| INM | INM-CM4-8 | 0.48 | 0.49 | 0.61 | 0.70 | 0.83 | 0.47 | 1.21 | 1.95 | 2.37 |
| INM | INM-CM5-0 | 0.44 | 0.47 | 0.54 | 0.69 | 0.79 | 0.51 | 1.11 | 1.85 | 2.20 |
| IPSL | IPSL-CM6A-LR | 0.68 | 0.78 | 0.98 | 1.05 | 1.06 | 0.99 | 2.17 | 3.18 | 4.19 |
| MIROC | MIROC-ES2L | 0.63 | 0.66 | 0.65 | 0.79 | 0.99 | 0.72 | 1.43 | 2.08 | 2.83 |
| MIROC | MIROC6 | 0.36 | 0.54 | 0.73 | 0.69 | 0.90 | 0.81 | 1.42 | 2.08 | 2.58 |
| MOHC | UKESM1-0-LL | 0.76 | 1.10 | 1.30 | 1.60 | 1.60 | 1.62 | 2.90 | 4.17 | 5.17 |
| MPI-M | MPI-ESM1-2-LR | 0.63 | 0.49 | 0.64 | 0.72 | 0.85 | 0.55 | 1.46 | 2.30 | 2.93 |
| MRI | MRI-ESM2-0 | 0.59 | 0.72 | 0.76 | 0.86 | 1.00 | 0.96 | 1.60 | 2.34 | 2.99 |
| NASA-GISS | GISS-E2-1-G | 0.63 | 0.67 | 0.73 | 0.89 | 0.96 | 0.88 | 1.73 | 2.55 | 3.10 |
| NCAR | CESM2 | 0.61 | 0.97 | 0.99 | 0.95 | 1.30 | 1.40 | 2.32 | 2.95 | 4.17 |
| NCAR | CESM2-WACCM | 0.70 | 0.96 | 1.00 | 0.87 | 1.24 | 1.43 | 2.20 | 2.95 | 4.14 |
| NCC | NorESM2-LM | 0.48 | 0.56 | 0.64 | 0.55 | 0.84 | 0.79 | 1.42 | 2.05 | 2.82 |
| NCC | NorESM2-MM | 0.55 | 0.60 | 0.65 | 0.73 | 0.96 | 0.80 | 1.49 | 2.18 | 2.98 |
| NIMS-KMA | KACE-1-0-G | 0.70 | 1.04 | 1.11 | 1.21 | 1.38 | 1.47 | 2.19 | 3.25 | 4.01 |
| NOAA-GFDL | GFDL-ESM4 | 0.81 | 0.57 | 0.64 | 0.81 | 0.81 | 0.61 | 1.38 | 2.45 | 2.92 |
| Minimum NSAT, °C | 0.36 | 0.40 | 0.53 | 0.55 | 0.70 | 0.45 | 1.11 | 1.85 | 2.20 | |
| Maximum NSAT, °C | 1.21 | 1.24 | 1.33 | 1.60 | 1.60 | 1.95 | 2.90 | 4.17 | 5.17 | |
| Average NSAT ± σ, °C | 0.66 ± 0.17 | 0.75 ± 0.21 | 0.86 ± 0.22 | 0.92 ± 0.23 | 1.08 ± 0.24 | 1.05 ± 0.39 | 1.89 ± 0.48 | 2.75 ± 0.63 | 3.53 ± 0.83 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serykh, I.; Krasheninnikova, S.; Safonova, M.; Gorbunova, T.; Gorbunov, R.; Miranda, F.; Krykhtine, F.L.P.; Rezende, O.M. Analysis of Near-Surface Air Temperature Trends in Brazil Region Using Meteorological Station Data, ERA5 Reanalysis, and CMIP6 Models. Climate 2025, 13, 235. https://doi.org/10.3390/cli13110235
Serykh I, Krasheninnikova S, Safonova M, Gorbunova T, Gorbunov R, Miranda F, Krykhtine FLP, Rezende OM. Analysis of Near-Surface Air Temperature Trends in Brazil Region Using Meteorological Station Data, ERA5 Reanalysis, and CMIP6 Models. Climate. 2025; 13(11):235. https://doi.org/10.3390/cli13110235
Chicago/Turabian StyleSerykh, Ilya, Svetlana Krasheninnikova, Mariia Safonova, Tatiana Gorbunova, Roman Gorbunov, Francis Miranda, Fabio Luiz Peres Krykhtine, and Osvaldo Moura Rezende. 2025. "Analysis of Near-Surface Air Temperature Trends in Brazil Region Using Meteorological Station Data, ERA5 Reanalysis, and CMIP6 Models" Climate 13, no. 11: 235. https://doi.org/10.3390/cli13110235
APA StyleSerykh, I., Krasheninnikova, S., Safonova, M., Gorbunova, T., Gorbunov, R., Miranda, F., Krykhtine, F. L. P., & Rezende, O. M. (2025). Analysis of Near-Surface Air Temperature Trends in Brazil Region Using Meteorological Station Data, ERA5 Reanalysis, and CMIP6 Models. Climate, 13(11), 235. https://doi.org/10.3390/cli13110235

