Two Centuries of Monthly Rainfall in Barcelona (NE Spain): Disparity Trends, Correlation of Autumnal Rainfall with the WeMO Index and Its Contribution to Annual Amounts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Characteristics
2.2. Rainfall Discrepancies with Respect to Years 1961–1990
2.3. Monthly and Annual Rainfall Disparity
2.4. Trends and Correlations
3. Results
3.1. Main Characteristics of the Annual and Monthly Series
3.2. Rainfall Discrepancies with Respect to Years 1961–1990
3.3. Disparity of Monthly Amounts
3.4. Disparity and WeMO Relationships with Moving Windows
3.5. Autumn Calendar Months Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lionello, P.; Abrantes, F.; Congedi, L.; Dulac, F.; Gacic, M.; Gomis, D.; Goodess, C.; Hoff, H.; Kutie, L.H.; Luterbacher, J.; et al. Introduction: Mediterranean climate: Background information. In The Climate of the Mediterranean Region. From the Past to the Future; Lionello, P., Ed.; Elsevier Oxford: Amsterdam, The Netherlands, 2012; pp. 35–90. ISBN 9780124160422. [Google Scholar] [CrossRef]
- Lionello, P.; Trigo, I.F.; Gil, V.; Liberato, M.L.R.; Nissen, K.; Pinto, J.G.; Raible, C.; Reale, M.; Tanzarella, A.; Trigo, R.M.; et al. Objective Climatology of Cyclones in the Mediterranean Region: A consensus view among methods with different system identification and tracking criteria. Tellus A 2016, 68, 29391. [Google Scholar] [CrossRef]
- Campins, J.; Jansà, A.; Genovés, A.; Picornell, M.A. Climatology of Mediterranean cyclones using the ERA-40 dataset. Int. J. Climatol. 2011, 31, 1596–1614. [Google Scholar] [CrossRef]
- Seneviratne, S.; Lüthi, D.; Litschi, M.; Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. Impacts of 1.5 °C global warming on natural and human systems. In Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/sr15/chapter/chapter-3/ (accessed on 16 October 2024).
- Coppola, E.; Nogherotto, R.; Ciarlò, J.M.; Giorgi, F.; van Meijgaard, E.; Kadygrov, N.; Iles, C.; Corre, L.; Sandstad, M.; Somot, S.; et al. Assessment of the European climate projections as simulated by the large EURO-CORDEX regional and global climate model ensemble. J. Geophys. Res. Atmos. 2021, 126, e2019JD032356. [Google Scholar] [CrossRef]
- Barredo, J.I.; Mauri, A.; Caudullo, G.; Dosio, A. Assessing Shifts of Mediterranean and Arid Climates Under RCP4.5 and RCP8.5 Climate Projections in Europe. Pure Appl. Geophys. 2018, 175, 3955–3971. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef]
- Kotsias, G.; Lolis, C.; Hatzianastassiou, N.; Bakas, N.; Lionello, P.; Bartzokas, A. Objective climatology and classification of the Mediterranean cyclones based on the ERA5 data set and the use of the results for the definition of seasons. Theor. Appl. Climatol. 2023, 152, 581–597. [Google Scholar] [CrossRef]
- Flaounas, E.; Aragão, L.; Bernini, L.; Dafis, S.; Doiteau, B.; Flocas, H.; Gray, S.L.; Karwat, A.; Kouroutzoglou, J.; Lionello, P.; et al. A composite approach to produce reference datasets for extratropical cyclone tracks: Application to Mediterranean cyclones. Weather. Clim. Dyn. 2023, 4, 639–661. [Google Scholar] [CrossRef]
- Reale, M.; Cabos Narváez, W.D.; Cavicchia, L.; Conte, D.; Coppola, E.; Flaounas, E.; Giorgi, F.; Gualdi, S.; Hochman, A.; Li, L.; et al. Future projections of Mediterranean cyclone characteristics using the Med-CORDEX ensemble of coupled regional climate system models. Clim. Dyn. 2022, 58, 2501–2524. [Google Scholar] [CrossRef]
- Forzieri, G.; Feyen, L.; Russo, S.; Vousdoukas, M.; Alfieri, L.; Outten, S.; Migliavacca, M.; Bianchi, A.; Rojas, R.; Cid, A. Multi-hazard assessment in Europe under climate change. Clim. Change 2016, 137, 105–119. [Google Scholar] [CrossRef]
- Petrova, I.Y.; Miralles, D.G.; Brient, F.; Donat, M.G.; Min, S.-K.; Kim, Y.-H.; Bador, M. Observation-constrained projections reveal longer-than-expected dry spells. Nature 2024, 633, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, X.; Zwiers, F.; Westra, S.; Alexander, L.V. A Global, Continental, and Regional Analysis of Changes in Extreme Precipitation. J. Clim. 2021, 34, 243–258. [Google Scholar] [CrossRef]
- Cioffi, F.; Lall, U.; Rus, E.; Krishnamurthy, C.K.B. Space-time structure of extreme precipitation in Europe over the last century. Int. J. Climatol. 2015, 35, 1749–1760. [Google Scholar] [CrossRef]
- van den Besselaar, E.J.M.; Klein Tank, A.M.G.; Buishand, T.A. Trends in European precipitation extremes over 1951–2010. Int. J. Climatol. 2013, 33, 2682–2689. [Google Scholar] [CrossRef]
- Reale, M.; Lionello, P. Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Nat. Hazards Earth Sys. Sci. 2013, 13, 1707–1722. [Google Scholar] [CrossRef]
- Sunyer, M.A.; Hundecha, Y.; Lawrence, D.; Madsen, H.; Willems, P.; Martinkova, M.; Vormoor, K.; Bürger, G.; Hanel, M.; Kriaučiūnienė, J.; et al. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 1827–1847. [Google Scholar] [CrossRef]
- Pedron, I.T.; Silva Dias, M.A.F.; de Paula Dias, S.; Carvalho, L.M.; Freitas, E.D. Trends and variability in extremes of precipitation in Curitiba–Southern Brazil. Int. J. Climatol. 2017, 37, 1250–1264. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; Beguería, S.; Saz, M.; de Luis, M. Recent trends reveal decreasing intensity of daily precipitation in Spain. Int. J. Climatol. 2018, 38, 4211–4224. [Google Scholar] [CrossRef]
- Ribes, A.; Thao, S.; Vautard, R.; Dubuisson, B.; Somot, S.; Colin, J.; Planton, S.; Soubeyroux, J.M. Observed increase in extreme daily rainfall in the French Mediterranean. Clim. Dyn. 2019, 52, 1095–1114. [Google Scholar] [CrossRef]
- Lana, X.; Martínez, M.D.; Serra, C.; Burgueño, A. Spatial and temporal variability of the daily rainfall regime in Catalonia (Northeastern Spain), 1950–2000. Int. J. Climatol. 2004, 24, 613–641. [Google Scholar] [CrossRef]
- Casas-Castillo, M.C.; Llabrés-Brustenga, A.; Rius, A.; Rodríguez-Solà, R.; Navarro, X. A single scaling parameter as a first approximation to describe the rainfall pattern of a place: Application on Catalonia. Acta Geophys. 2018, 66, 415–424. [Google Scholar] [CrossRef]
- Lana, X.; Burgueño, A. Some statistical characteristics of monthly and annual pluviometric irregularity for the Spanish Mediterranean coast. Theor. Appl. Climatol. 2000, 65, 79–98. [Google Scholar] [CrossRef]
- Llabrés-Brustenga, A.; Rius, A.; Rodríguez-Solà, R.; Casas-Castillo, M.C. Influence of regional and seasonal rainfall patterns on the ratio between fixed and unrestricted measured intervals of rainfall amounts. Theor. Appl. Climatol. 2020, 140, 389–399. [Google Scholar] [CrossRef]
- Martín-Vide, J.; Lopez-Bustins, J.A.; Lemus, M.; Moreno-García, M.C.; Balagué, X.; González-Hidalgo, J.C.; Beguería, S.; Peña-Angulo, D.; Trullenque, V. The consecutive disparity of precipitation in conterminous Spain. Theor. Appl. Climatol. 2022, 147, 1151–1161. [Google Scholar] [CrossRef]
- Cortesi, N.; González-Hidalgo, J.C.; Brunetti, M.; Martín-Vide, J. Daily precipitation concentration across Europe (1971–2010). Nat. Hazards Earth Sys. 2012, 12, 2799–2810. [Google Scholar] [CrossRef]
- Martín-Vide, J.; Gómez, L. Regionalization of Peninsular Spain based on the length of dry spells. Theor. Appl. Climatol. 1999, 19, 537–555. [Google Scholar] [CrossRef]
- Serra, C.; Burgueño, A.; Martínez, M.D.; Lana, X. Trends of dry spells across Catalonia (NE Spain) for the second half of the 20th century. Theor. Appl. Climatol. 2006, 85, 165–183. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; McVicar, T.R.; Tomas-Burguera, M.; Peña-Gallardo, M.; Noguera, I.; López-Moreno, J.I.; Peña, D.; El Kenawy, A. Global characterization of hydrological and meteorological droughts under future climate change: The importance of timescales, vegetation-CO2 feedbacks and changes to distribution functions. Int. J. Climatol. 2020, 40, 2557–2567. [Google Scholar] [CrossRef]
- Lana, X.; Rodríguez-Solà, R.; Martínez, M.D.; Casas-Castillo, M.C.; Serra, C.; Kirchner, R. Autoregressive process of monthly rainfall amounts in Catalonia (NE Spain) and improvements on predictability of length and intensity of drought episodes. Int. J. Climatol. 2021, 41, 3178–3194. [Google Scholar] [CrossRef]
- Lionello, P.; Abrantes, F.; Gacic, M.; Planton, S.; Trigo, R.; Ulbrich, U. The climate of the Mediterranean region: Research progress and climatic change impacts. Reg. Environ. Change 2014, 14, 1679–1684. [Google Scholar] [CrossRef]
- Rodrigo, F.S. Spatio-temporal variability of the relationship between seasonal temperatures and precipitation in Spain, 1951–2019. Theor. Appl. Climatol. 2023, 153, 1371–1391. [Google Scholar] [CrossRef]
- Menabde, M.; Seed, A.; Pegram, G. A simple scaling model for extreme rainfall. Water Resour. Res. 1999, 35, 335–339. [Google Scholar] [CrossRef]
- Yu, P.S.; Yang, T.H.; Lin, C.S. Regional rainfall intensity formulas based on scaling property rainfall. J. Hydrol. 2004, 29, 108–123. [Google Scholar] [CrossRef]
- Bara, M.; Gaál, L.; Kohnová, S.; Szolgay, J.; Hlavčová, K. On the use of the simple scaling of heavy rainfall in a regional estimation of IDF curves in Slovakia. J. Hydrol. Hydromech. 2010, 58, 49–63. [Google Scholar] [CrossRef]
- Innocenti, S.; Mailhot, A.; Frigon, A. Simple scaling of extreme precipitation in North America. Hydrol. Earth Syst. Sci. 2017, 21, 5823–5846. [Google Scholar] [CrossRef]
- Rodríguez-Solà, R.; Casas-Castillo, M.C.; Navarro, X.; Redaño, À. A study of the scaling properties of rainfall in Spain and its appropriateness to generate intensity-duration-frequency curves from daily records. Int. J. Climatol. 2017, 37, 770–780. [Google Scholar] [CrossRef]
- Casas-Castillo, M.C.; Rodríguez-Solà, R.; Llabrés-Brustenga, A.; García-Marín, A.P.; Estévez, J.; Navarro, X. A simple scaling analysis of rainfall in Andalusia (Spain) under different precipitation regimes. Water 2022, 14, 1303. [Google Scholar] [CrossRef]
- Martín-Vide, J. Propiedades y aplicaciones de un índice de disparidad en pluviometría. In Proceedings of the X Congreso Nacional de Geografía, Asociación de Geógrafos Españoles, Zaragoza, Spain, 28 September–3 October 1987; pp. 267–276. [Google Scholar]
- Lana, X.; Rodríguez-Solà, R.; Casas-Castillo, M.C.; Serra, C.; Kirchner, R.; Martínez, M.D. Rainfall disparity at monthly scale on Catalonia (NE Spain): Dependence on geographic coordinates, altitude and distance to the Mediterranean coast. Theor. Appl. Climatol. 2023, 153, 1293–1306. [Google Scholar] [CrossRef]
- Lana, X.; Rodríguez-Solà, R.; Martínez, M.D.; Casas-Castillo, M.C.; Serra, C.; Kirchner, R. Multifractal structure of the monthly rainfall regime in Catalonia (NE Spain): Evaluation of the non-linear structural complexity of the monthly rainfall. Chaos 2020, 30, 073117. [Google Scholar] [CrossRef]
- Lana, X.; Casas-Castillo, M.C.; Rodríguez-Solà, R.; Prohom, M.; Serra, C.; Martínez, M.D.; Kirchner, R. Time trends, irregularity, multifractal structure and effects of CO2 emissions on the monthly rainfall regime at Barcelona city, NE Spain, years 1786–2019. Int. J. Climatol. 2023, 43, 499–518. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Martin-Vide, J.; López-Bustins, J.A. The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. Int. J. Climatol. 2006, 26, 1455–1475. [Google Scholar] [CrossRef]
- Martín-Vide, J.; Sánchez-Lorenzo, A.; López-Bustins, J.A.; Cordobilla, M.J.; García-Manuel, A.; Raso, J.M. Torrential rainfall in northeast of the Iberian Peninsula: Synoptic patterns and WeMO influence. Adv. Sci. Res. 2008, 2, 99–105. [Google Scholar] [CrossRef]
- López-Bustins, J.A.; Lemus-Cánovas, M. The influence of the Western Mediterranean Oscillation upon the spatio-temporal variability of precipitation over Catalonia (northeastern of the Iberian Peninsula). Atmos. Res. 2020, 236, 104819. [Google Scholar] [CrossRef]
- Prohom, M.; Barriendos, M.; Sánchez-Lorenzo, A. Reconstruction and homogenization of the longest instrumental precipitation series in the Iberian Peninsula (Barcelona, 1786–2014). Int. J. Climatol. 2015, 36, 3072–3087. [Google Scholar] [CrossRef]
- Servei Meteorològic de Catalunya (Generalitat de Catalunya). Climatologia, Dades i Productes Climàtics. Sèrie de Precipitació de Barcelona (des de 1786). Available online: https://www.meteo.cat/wpweb/climatologia/dades-i-productes-climatics/serie-climatica-de-barcelona-des-de-1780/ (accessed on 30 September 2024).
- Lemus-Cánovas, M.; López-Bustins, J. Variabilidad espaciotemporal de la precipitación en el sur de Cataluña y su relación con la oscilación del mediterráneo occidental (WEMO). In Proceedings of the X Congreso Internacional Asociación Española de Climatología: Clima, Sociedad, Riesgos y Ordenación del Territorio, Alicante, Spain, 5–8 October 2016. [Google Scholar] [CrossRef]
- Lana, X.; Burgueño, A.; Martínez, M.D.; Serra, C. Complexity and predictability of the monthly western Mediterranean oscillation index. Int. J. Climatol. 2016, 36, 435–2450. [Google Scholar] [CrossRef]
- Mediterranean Oscillation Indices (MOI) with Saharan Oscillation Index (SaOI) and Western Mediterranean Oscillation (WeMOI), Climatic Research Unit, University of East Anglia. Available online: https://crudata.uea.ac.uk/cru/data/moi/ (accessed on 30 September 2024).
- Sneyers, R. On the Statistical Analysis of Series of Observations; Technical Note No. 143, WMO No. 415; World Meteorological Organization: Geneva, Switzerland, 1990; 192p. [Google Scholar]
- Watterson, I.G.; Dix, M.R. Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution. J. Geophys. Res. 2023, 108, 4379. [Google Scholar] [CrossRef]
- Martínez-Villalobos, C.; Neelin, J.D. Why do precipitation intensities tend to follow Gamma distributions? J. Atmos. Sci. 2019, 76, 3611–3631. [Google Scholar] [CrossRef]
- Husak, G.J.; Michaelsen, J.; Funk, C. Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. Int. J. Climatol. 2007, 27, 935–944. [Google Scholar] [CrossRef]
- Michaelides, S.C.; Tymvios, F.S.; Michaelidou, T. Spatial and temporal characteristics of the annual rainfall frequency distribution in Cyprus. Atmos. Res. 2009, 94, 606–615. [Google Scholar] [CrossRef]
- Wilks, D.S. Parametric Probability Distributions. In Statistical Methods in the Atmospheric Sciences, 2nd ed.; Dmowska, R., Hartmann, D., Thomas Rossby, H., Eds.; Elsevier: London, UK, 2006; Chapter 4; pp. 95–97. Available online: https://sunandclimate.files.wordpress.com/2009/05/statistical-methods-in-the-atmospheric-sciences-0127519661.pdf (accessed on 30 September 2024).
- González-Hidalgo, J.C.; Trullenque-Blanco, V.; Beguería, S.; Peña-Angulo, D. Seasonal precipitation changes in the western Mediterranean Basin: The case of the Spanish mainland, 1916–2015. Int. J. Climatol. 2024, 44, 1800–1815. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- World Meteorological Organization Climatological Normals. Climatological Standard Normals. Available online: https://community.wmo.int/en/activity-areas/climate-services/climate-products-and-initiatives/wmo-climatological-normals (accessed on 29 September 2024).
- Servei Meteorològic de Catalunya (Generalitat de Catalunya). Climatologia. Evolució Observada del Clima. Evolució Observada de la Precipitació. Available online: https://www.meteo.cat/wpweb/climatologia/evolucio-observada-del-clima/evolucio-observada-de-la-precipitacio/ (accessed on 30 September 2024).
- Fernández-Martínez, M.; Vicca, S.; Janssens, I.A.; Carnicer, J.; Martín-Vide, J.; Peñuelas, J. The consecutive disparity index, D: A measure of temporal variability and ecological studies. Ecosphere 2018, 9, 02527. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Din, M.A. ARIMA by Box Jenkins Methodology for Estimation and Forecasting Models in Higher Education. No: EMS2015-1846. In Proceedings of the 18th Annual International Conference on Education, Athens, Greece, 16–19 May 2016. [Google Scholar] [CrossRef]
- Barriendos, M.; Prohom, M.; Sánchez-Lorenzo, A. Extreme drought conditions over NE Iberia in early 19th century (1812–1825) and its possible relationship to major volcanic eruptions. In Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 3–7 May 2010; Volume 12, p. 4926. Available online: http://salva-sinobas.uvigo.es/index.php/download_file/-/view/54 (accessed on 16 October 2024).
- Moruno, C. La sequera de 1817 a Catalunya. Abast i conseqüències socials en un context de postguerra. Estud. Hist. Agràr. 2021, 32, 97–113. [Google Scholar] [CrossRef]
- Martin-Vide, J.; Barriendos, M. The use of rogation ceremony records in climatic reconstruction: A case study from Catalonia (Spain). Clim. Change 1995, 30, 201–221. [Google Scholar] [CrossRef]
- Trigo, R.M.; Vaquero, J.M.; Alcoforado, M.J.; Barriendos, M.; Taborda, J.; García-Herrera, R.; Luterbacher, J. Iberia in 1816, the year without a summer. Int. J. Climatol. 2009, 29, 99–115. [Google Scholar] [CrossRef]
- Domínguez-Castro, F.; Ribera, P.; García-Herrera, R.; Vaquero, J.M.; Barriendos, M.; Cuadrat, J.M.; Moreno, J.M. Assessing extreme droughts in Spain during 1750–1850 from rogation ceremonies. Clim. Past 2012, 8, 705–722. [Google Scholar] [CrossRef]
- Harrington, C.R. (Ed.) The Year Without a Summer? World Climate in 1816; Canadian Museum of Nature: Ottawa, ON, Canada, 1992; ISBN 0660130637. [Google Scholar] [CrossRef]
- Anet, J.G.; Muthers, S.; Rozanov, E.V.; Raible, C.C.; Stenke, A.; Shapiro, A.I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; et al. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum. Clim. Past 2014, 10, 921–938. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; López-Ballesteros, A.; Jimeno-Sáez, P.; Pérez-Sánchez, J. Recent precipitation trends in Peninsular Spain and implications for water infrastructure design. J. Hydrol. Reg. Stud. 2023, 45, 101308. [Google Scholar] [CrossRef]
- Casas-Castillo, M.C.; Rodríguez-Solà, R.; Lana, X.; Serra, C.; Martínez, M.D.; Biere, R.; Arellano, B.; Roca, J. Consecuencias hidrológicas del cambio climático en entornos urbanos. In Proceedings of the XIII International Conference on Virtual City and Territory: Challenges and Paradigms of the Contemporary City, Barcelona, Spain, 2–4 October 2019; p. 8291, E-ISSN 2604-6512. [Google Scholar] [CrossRef]
- Forero-Ortiz, E.; Martínez-Gomariz, E.; Monjo, R. Climate change implications for water availability: A case study of Barcelona City. Sustainability 2020, 12, 1779. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; Reig, F.; Beguería, S.; Tomas-Burguera, M.; Latorre, B.; Peña-Angulo, D.; Noguera, I.; Rabanaque, I.; Luna, Y.; et al. A near real-time drought monitoring system for Spain using automatic weather station network. Atmos. Res. 2022, 271, 106095. [Google Scholar] [CrossRef]
- Toreti, A.; Bavera, D.; Acosta Navarro, J.; Arias-Muñoz, C.; Avanzi, F.; Marinho Ferreira Barbosa, P.; De Jager, A.; Di Ciollo, C.; Ferraris, L.; Fioravanti, G.; et al. Drought in Europe March 2023; Publications Office of the European Union: Luxembourg, 2023; JRC133025; ISBN 978-92-68-01068-6. [Google Scholar] [CrossRef]
- Barcelona City Council (2023, March 1). Drought Alert Protocol Activated in Barcelona. Available online: https://www.barcelona.cat/infobarcelona/en/tema/environment-and-sustainability/drought-alert-protocol-activated-in-barcelona-2-2_1260262.html (accessed on 16 October 2024).
- Wetterzentrale: NCEP Climate Forecast System Reanalysis (CFSRv1). Available online: https://www.wetterzentrale.de/en/reanalysis.php?model=cfsr (accessed on 8 October 2024).
Trends | M-K Test | % | |
---|---|---|---|
January | 0.035 | 0.15 | 12 |
February | 0.061 | 1.85 | 94 |
March | 0.043 | 1.17 | 76 |
April | 0.042 | 0.78 | 56 |
May | 0.038 | 0.76 | 55 |
June | −0.013 | −0.29 | 23 |
July | 0.034 | 0.76 | 55 |
August | 0.058 | 1.83 | 92 |
September | −0.082 | −2.15 | 97 |
October | 0.054 | 0.33 | 26 |
November | 0.029 | 0.26 | 20 |
December | 0.043 | 0.81 | 58 |
Annual | 0.341 | 1.49 | 86 |
Minimum | Maximum | Average | Std. Deviation | Skewness | |
---|---|---|---|---|---|
January | 0.0 | 262.4 | 38.0 | 38.5 | 2.3 |
February | 0.0 | 275.1 | 34.7 | 36.1 | 2.4 |
March | 0.0 | 188.2 | 48.7 | 38.2 | 1.3 |
April | 0.0 | 259.3 | 53.7 | 36.9 | 1.3 |
May | 0.0 | 235.1 | 53.7 | 40.4 | 1.3 |
June | 0.0 | 183.3 | 37.1 | 32.3 | 1.6 |
July | 0.0 | 163.2 | 26.2 | 28.0 | 1.6 |
August | 0.0 | 196.2 | 39.3 | 34.8 | 1.4 |
September | 1.4 | 338.5 | 78.4 | 55.9 | 1.4 |
October | 0.5 | 328.6 | 78.6 | 59.2 | 1.5 |
November | 0.0 | 330.4 | 58.0 | 51.5 | 1.7 |
December | 0.0 | 365.8 | 43.0 | 45.1 | 2.6 |
Annual | 215.6 | 1122.7 | 589.5 | 155.4 | 0.5 |
Maximum | Minimum | Average | Std. Deviation | |
---|---|---|---|---|
January | 2.21 | 1.05 | 1.59 | 0.27 |
February | 1.96 | 0.90 | 1.48 | 0.25 |
March | 1.56 | 0.89 | 1.14 | 0.11 |
April | 1.25 | 0.62 | 0.97 | 0.13 |
May | 1.49 | 0.45 | 1.05 | 0.22 |
June | 1.70 | 0.82 | 1.32 | 0.23 |
July | 2.50 | 1.05 | 1.78 | 0.34 |
August | 2.14 | 0.59 | 1.35 | 0.41 |
September | 1.19 | 0.55 | 0.90 | 0.13 |
October | 1.58 | 0.54 | 1.07 | 0.26 |
November | 1.96 | 0.88 | 1.36 | 0.26 |
December | 1.85 | 0.87 | 1.39 | 0.22 |
Annual | 0.35 | 0.18 | 0.27 | 0.04 |
Trend (×10−3 year−1) | mM-K Test | % | |
---|---|---|---|
January | 2.5 | 1.72 | 91 |
February | 0.9 | 1.42 | 85 |
March | 0.2 | 0.31 | 24 |
April | 0.2 | 0.20 | 16 |
May | 0.4 | −0.44 | 34 |
June | −0.8 | −1.20 | 77 |
July | −0.1 | −0.01 | 1 |
August | −0.2 | −0.36 | 28 |
September | 1.0 | 3.90 | 99 |
October | 2.8 | 4.16 | 99 |
November | 3.6 | 5.59 | 99 |
December | 0.2 | 0.27 | 22 |
Annual | 0.03 | 0.18 | 14 |
Year | Annual | September | October | November | Ratio |
---|---|---|---|---|---|
2000 | 469.1 | 56.4 | 61.1 | 13.9 | 28.0 |
2001 | 472.3 | 48.7 | 36.8 | 67.8 | 32.5 |
2004 | 588.4 | 71.1 | 27.9 | 9.8 | 18.5 |
2005 | 558.4 | 105.6 | 127.1 | 140.3 | 66.8 |
2006 | 474.6 | 154.1 | 37.9 | 1.5 | 40.8 |
2007 | 493.6 | 9.9 | 157.9 | 1.0 | 34.2 |
2009 | 524.3 | 29.3 | 103.8 | 4.8 | 26.3 |
2012 | 479.7 | 81.6 | 145.9 | 38.8 | 55.5 |
2013 | 580.0 | 22.6 | 28.8 | 110.5 | 27.9 |
2015 | 345.8 | 60.7 | 29.6 | 38.7 | 37.3 |
2016 | 480.2 | 95.7 | 75.8 | 38.5 | 43.7 |
2017 | 518.4 | 53.3 | 128.2 | 15.2 | 37.9 |
2021 | 327.6 | 23.3 | 61.6 | 77.3 | 49.5 |
2022 | 307.7 | 13.1 | 11.3 | 7.6 | 10.4 |
2023 | 309.5 | 50.4 | 29.2 | 3.7 | 26.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lana, X.; Serra, C.; Casas-Castillo, M.d.C.; Rodríguez-Solà, R.; Prohom, M. Two Centuries of Monthly Rainfall in Barcelona (NE Spain): Disparity Trends, Correlation of Autumnal Rainfall with the WeMO Index and Its Contribution to Annual Amounts. Climate 2024, 12, 166. https://doi.org/10.3390/cli12100166
Lana X, Serra C, Casas-Castillo MdC, Rodríguez-Solà R, Prohom M. Two Centuries of Monthly Rainfall in Barcelona (NE Spain): Disparity Trends, Correlation of Autumnal Rainfall with the WeMO Index and Its Contribution to Annual Amounts. Climate. 2024; 12(10):166. https://doi.org/10.3390/cli12100166
Chicago/Turabian StyleLana, Xavier, Carina Serra, María del Carmen Casas-Castillo, Raül Rodríguez-Solà, and Marc Prohom. 2024. "Two Centuries of Monthly Rainfall in Barcelona (NE Spain): Disparity Trends, Correlation of Autumnal Rainfall with the WeMO Index and Its Contribution to Annual Amounts" Climate 12, no. 10: 166. https://doi.org/10.3390/cli12100166
APA StyleLana, X., Serra, C., Casas-Castillo, M. d. C., Rodríguez-Solà, R., & Prohom, M. (2024). Two Centuries of Monthly Rainfall in Barcelona (NE Spain): Disparity Trends, Correlation of Autumnal Rainfall with the WeMO Index and Its Contribution to Annual Amounts. Climate, 12(10), 166. https://doi.org/10.3390/cli12100166