Reconstructing and Hindcasting Sea Ice Conditions in Hudson Bay Using a Thermal Variability Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Air Temperature Data
2.2. Sea Ice Data
2.3. Day-to-Day Temperature Analysis
2.4. Correlation Analysis
3. Results
3.1. Correlation Analysis
3.2. Imputation
3.3. Reconstruction Pre-1971
3.4. Early Warning?
3.5. “Forecast” 2011–2018
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Danielson, J.E.W. Hudson Bay Ice Conditions. ARCTIC 1971, 24, 90–107. [Google Scholar] [CrossRef]
- Catchpole, A.; Halpin, J. Measuring summer sea ice severity in eastern Hudson Bay 1751–1870. Can. Geogr. Can. 1987, 31, 233–244. [Google Scholar] [CrossRef]
- Etkin, D.A. Break-up in Hudson Bay: Its sensitivity to air temperatures and implications for climate warming. Climatological Bulletin 1991, 25, 21–34. [Google Scholar]
- Wang, J.; Mysak, L.A.; Ingram, R.G. Interannual variability of sea-ice cover in Hudson Bay, Baffin Bay and the Labrador Sea. Atmosphere-Ocean 1994, 32, 421–447. [Google Scholar] [CrossRef]
- Gagnon, A.S.; Gough, W.A. Trends in the Dates of Ice Freeze-up and Breakup over Hudson Bay, Canada. Arctic 2005, 58, 370–382. [Google Scholar] [CrossRef]
- Hochheim, K.P.; Barber, D.G. An Update on the Ice Climatology of the Hudson Bay System. Arctic Antarct. Alp. Res. 2014, 46, 66–83. [Google Scholar] [CrossRef]
- Kowal, S.; Gough, W.A.; Butler, K. Temporal evolution of Hudson Bay Sea Ice (1971–2011). Theor. Appl. Clim. 2017, 127, 753–760. [Google Scholar] [CrossRef]
- Kowal, S.; Gough, W.A.; Butler, K. Spatial clustering of seasonal sea ice of Hudson Bay, Canada, 1971–2018. Arctic Antarct. Alp. Res. 2024, 56. [Google Scholar] [CrossRef]
- Bruneau, J.; Babb, D.; Chan, W.; Kirillov, S.; Ehn, J.; Hanesiak, J.; Barber, D.G. The ice factory of Hudson Bay: Spatiotemporal variability of the Kivalliq Polynya. Elementa 2021, 9, 00168. [Google Scholar]
- Crane, R.G. Seasonal variations of sea ice extent in the Davis Strait–Labrador Sea area and relationship with synoptic-scale atmospheric circulation. Arctic 1978, 31, 434–447. [Google Scholar] [CrossRef]
- Ridenour, N.A.; Straneo, F.; Holte, J.; Gratton, Y.; Myers, P.G.; Barber, D.G. Hudson Strait Inflow: Structure and Variability. J. Geophys. Res. Oceans 2021, 126. [Google Scholar] [CrossRef]
- Hochheim, K.P.; Barber, D.G. Atmospheric forcing of sea ice in Hudson Bay during the fall period, 1980–2005. J. Geophys. Res. Oceans 2010, 115. [Google Scholar] [CrossRef]
- Hochheim, K.; Lukovich, J.; Barber, D. Atmospheric forcing of sea ice in Hudson Bay during the spring period, 1980–2005. J. Mar. Syst. 2011, 88, 476–487. [Google Scholar] [CrossRef]
- Andrews, J.; Babb, D.; Barber, D.G. Climate change and sea ice: Shipping accessibility on the marine transportation corridor through Hudson Bay and Hudson Strait (1980–2014). Elementa Sci. Anthr. 2017, 5. [Google Scholar] [CrossRef]
- Andrews, J.; Babb, D.; Barber, D.G. Climate change and sea ice: Shipping in Hudson Bay, Hudson Strait, and Foxe Basin (1980–2016). Elementa Sci. Anthr. 2018, 6. [Google Scholar] [CrossRef]
- Gupta, K.; Mukhopadhyay, A.; Barber, D.G.; Ehn, J.K. Landfast sea ice in Hudson Bay and James Bay. Elementa Sci. Anthr. 2022, 10. [Google Scholar] [CrossRef]
- Galbraith, P.S.; Larouche, P. Reprint of “Sea-surface temperature in Hudson Bay and Hudson Strait in relation to air temperature and ice cover breakup, 1985–2009”. J. Mar. Syst. 2011, 88, 463–475. [Google Scholar] [CrossRef]
- Joly, S.; Senneville, S.; Caya, D.; Saucier, F.J. Sensitivity of Hudson Bay Sea ice and ocean climate to atmospheric temperature forcing. Clim. Dyn. 2010, 36, 1835–1849. [Google Scholar] [CrossRef]
- Kirillov, S.; Babb, D.; Dmitrenko, I.; Landy, J.; Lukovich, J.; Ehn, J.; Sydor, K.; Barber, D.; Stroeve, J. Atmospheric Forcing Drives the Winter Sea Ice Thickness Asymmetry of Hudson Bay. J. Geophys. Res. Oceans 2020, 125. [Google Scholar] [CrossRef]
- Lukovich, J.V.; Jafarikhasragh, S.; Myers, P.G.; Ridenour, N.A.; de la Guardia, L.C.; Hu, X.; Grivault, N.; Marson, J.; Pennelly, C.; Stroeve, J.C.; et al. Simulated impacts of relative climate change and river discharge regulation on sea ice and oceanographic conditions in the Hudson Bay Complex. Elementa Sci. Anthr. 2021, 9. [Google Scholar] [CrossRef]
- McGovern, P.G.; Gough, W.A. East-West Asymmetry in Coastal Temperatures of Hudson Bay as a Proxy for Sea Ice. ARCTIC 2015, 68, 445. [Google Scholar] [CrossRef]
- Gough, W.A.; He, D. Diurnal temperature asymmetries and fog at Churchill, Manitoba. Theor. Appl. Clim. 2014, 121, 113–119. [Google Scholar] [CrossRef]
- Gough, W.A. Theoretical considerations of day-to-day temperature variability applied to Toronto and Calgary, Canada data. Theor. Appl. Clim. 2008, 94, 97–105. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W.; Plummer, N. Trends in high-frequency climate variability in the twentieth century. Nature 1995, 377, 217–220. [Google Scholar] [CrossRef]
- Gough, W.A.; Leung, A.C.W. Do Airports Have Their Own Climate? Meteorology 2022, 1, 171–182. [Google Scholar] [CrossRef]
- Gough, W.A.; Li, Z. Climate Classification in the Canadian Prairie Provinces Using Day-to-Day Thermal Variability Metrics. Atmosphere 2024, 15, 1111. [Google Scholar] [CrossRef]
- Przybylak, R.; Vizi, Z. Air temperature changes in the Canadian Arctic from the early instrumental period to modern times. Int. J. Clim. 2005, 25, 1507–1522. [Google Scholar] [CrossRef]
- Wu, F.T.; Fu, C.; Qian, Y.; Gao, Y.; Wang, S.-Y. High frequency daily temperature variability in China and its relationship to large scale circulation. Int. J. Clim. 2017, 37, 570–582. [Google Scholar] [CrossRef]
- Przybylak, R.; Singh, G.; Wyszyński, P.; Araźny, A.; Chmist, K. Air temperature changes in SW Greenland in the second half of the 18th century. Clim. Past 2024, 20, 1451–1470. [Google Scholar] [CrossRef]
- Laidler, G.J.; Ford, J.D.; Gough, W.A.; Ikummaq, T.; Gagnon, A.S.; Kowal, S.; Qrunnut, K.; Irngaut, C. Travelling and hunting in a changing Arctic: Assessing Inuit vulnerability to sea ice change in Igloolik, Nunavut. Clim. Chang. 2008, 94, 363–397. [Google Scholar] [CrossRef]
- Guo, Y.; Barnett, A.G.; Yu, W.; Pan, X.; Ye, X.; Huang, C.; Tong, S. A Large Change in Temperature between Neighbouring Days Increases the Risk of Mortality. PLoS ONE 2011, 6, e16511. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tan, Z.-M.; Sun, J.; Hou, Y.; Fu, C.; Wu, Z. Changing rapid weather variability increases influenza epidemic risk in a warming climate. Environ. Res. Lett. 2020, 15, 044004. [Google Scholar] [CrossRef]
- Hovdahl, I. The deadly effect of day-to-day temperature variation in the United States. Environ. Res. Lett. 2022, 17, 104031. [Google Scholar] [CrossRef]
- Savić, S.; Arsenović, D.; Lužanin, Z.; Milošević, D.; Dunjić, J.; Šećerov, I.; Kojić, M.; Radić, I.; Harhaji, S.; Arsić, M. Hospital admission tendencies caused by day-to-day temperature changes during summer: A case study for the city of Novi Sad (Serbia). Int. J. Biometeorol. 2023, 67, 695–704. [Google Scholar] [CrossRef]
- Blondeel, A.; Hermans, F.; Breuls, S.; Wuyts, M.; De Maeyer, N.; Verniest, T.; Derom, E.; Van Calster, B.; Janssens, W.; Troosters, T.; et al. The association of weather conditions with day-to-day variability in physical activity in patients with COPD. ERJ Open Res. 2023, 9. [Google Scholar] [CrossRef]
- Kinsenmeier, M. Temperature variability and long-run economic development. J. Environ. Econ. Manag. 2023, 121, 102840. [Google Scholar] [CrossRef]
- Kotz, M.; Wenz, L.; Stechemesser, A.; Kalkuhl, M.; Levermann, A. Day-to-day temperature variability reduces economic growth. Nat. Clim. Chang. 2021, 11, 319–325. [Google Scholar] [CrossRef]
- Garner, A.J.; Duran, D.P.; Schubert, W.H.; Klemp, J.B.; Heideman, K.F.; Brasseur, O.; Cassano, J.J.; Parish, T.R.; King, J.C.; Pagowski, M.; et al. Late-Winter and Springtime Temperature Variations throughout New Jersey in a Warming Climate. J. Appl. Meteorol. Clim. 2024, 63, 197–207. [Google Scholar] [CrossRef]
- Pińskwar, I.; Choryński, A.; Graczyk, D. Good weather for a ride (or not?): How weather conditions impact road accidents—A case study from Wielkopolska (Poland). Int. J. Biometeorol. 2023, 68, 317–331. [Google Scholar] [CrossRef]
- Tam, B.Y.; Gough, W.A.; Mohsin, T. The impact of urbanization on day-to-day temperature variation. Urban Clim. 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Bonacci, O.; Roje-Bonacci, T.; Vrsalovic, A. The day-to-day temperature variability method as a tool for urban heat island analysis: A case of Zagreb-Gric Observatory (1887–2018). Urban Clim. 2022, 45, 101281. [Google Scholar] [CrossRef]
- Tong, X.; Wang, P.; Wu, S.; Luo, M. Urbanization effects on high-frequency temperature variability over South China. Urban Clim. 2022, 42, 101092. [Google Scholar] [CrossRef]
- Bonacci, O.; Bonacci, D.; Roje-Bonacci, T. Different air temperature changes in continental and Mediterranean regions: A case study from two Croatian stations. Theor. Appl. Climatol. 2021, 145, 1333–1346. [Google Scholar] [CrossRef]
- Gough, W.A. Thermal Metrics to Identify Canadian Coastal Environments. Coasts 2022, 2, 93–101. [Google Scholar] [CrossRef]
- Minnis, P.; Harrison, E.F.; Stowe, L.L.; Gibson, G.G.; Denn, F.M.; Doelling, D.R.; Smith, W.L. Radiative Climate Forcing by the Mount Pinatubo Eruption. Science 1993, 259, 1411–1415. [Google Scholar] [CrossRef]
- McCormick, M.P.; Thomason, L.W.; Trepte, C.R. Atmospheric effects of the Mt Pinatubo eruption. Nature 1995, 373, 399–404. [Google Scholar] [CrossRef]
- Boretti, A. Reassessing the cooling that followed the 1991 volcanic eruption of Mt. Pinatubo. J. Atmospheric Solar-Terrestrial Phys. 2024, 256. [Google Scholar] [CrossRef]
- Tivy, A.; Howell, S.E.L.; Alt, B.; McCourt, S.; Chagnon, R.; Crocker, G.; Carrieres, T.; Yackel, J.J. Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960–2008 and 1968–2008. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Pizzolato, L.; Howell, S.E.L.; Derksen, C.; Dawson, J.; Copland, L. Changing sea ice conditions and marine transportation activity in Canadian Arctic waters between 1990 and 2012. Clim. Chang. 2014, 123, 161–173. [Google Scholar] [CrossRef]
- Pizzolato, L.; Howell, S.E.L.; Dawson, J.; Laliberté, F.; Copland, L. The influence of declining sea ice on shipping activity in the Canadian Arctic. Geophys. Res. Lett. 2016, 43, 12146–12154. [Google Scholar] [CrossRef]
- Babb, D.G.; Kirillov, S.; Galley, R.J.; Straneo, F.; Ehn, J.K.; Howell, S.E.L.; Brady, M.; Ridenour, N.A.; Barber, D.G. Sea Ice Dynamics in Hudson Strait and Its Impact on Winter Shipping Operations. J. Geophys. Res. Oceans 2021, 126. [Google Scholar] [CrossRef]
- Copland, L.; Dawson, J.; Tivy, A.; Delaney, F.; Cook, A. Changes in shipping navigability in the Canadian Arctic between 1972 and 2016. FACETS 2021, 6, 1069–1087. [Google Scholar] [CrossRef]
- Cao, Y.; Liang, S. Recent advances in driving mechanisms of the Arctic amplification: A review. Chin. Sci. Bull. 2018, 63, 2757–2771. [Google Scholar] [CrossRef]
- Nielsen-Englyst, P.; Høyer, J.L.; Kolbe, W.M.; Dybkjær, G.; Lavergne, T.; Tonboe, R.T.; Skarpalezos, S.; Karagali, I. A combined sea and sea-ice surface temperature climate dataset of the Arctic, 1982–2021. Remote. Sens. Environ. 2022, 284. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 1–10. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Crawford, A.D.; Stammerjohn, S. Using timing of ice retreat to predict timing of fall freeze-up in the Arctic. Geophys. Res. Lett. 2016, 43, 6332–6340. [Google Scholar] [CrossRef]
Station | Latitude | Longitude | Elevation (m) | Period |
---|---|---|---|---|
Churchill A | 58.74° N | 94.07° W | 29.30 | 1944–2010 |
Churchill Marine | 58.78° N | 94.18° W | 13.40 | 1932–1951 |
Kuujjurapik A | 55.28° N | 77.75° W | 12.20 | 1926–2010 |
Inukjuak UA | 58.47° N | 78.08° W | 24.40 | 1922–1996 |
Inukjuak A | 58.47° N | 78.08° W | 26.20 | 1995–2010 |
Coral Harbour A | 64.19° N | 83.36° W | 62.20 | 1934–2010 |
Pearson Correlation | p-Value | Start Date | End Date | Equation | Difference (Standard Deviation) | |
---|---|---|---|---|---|---|
Churchill | ||||||
Breakup | 0.5317 | 0.019 | 105 | 145 | y = 9.8256 × x + 159.15 | 8.15 |
Freeze-up | −0.766 | <0.0001 | 261 | 301 | y = −18.773 × x + 373.84 | 6.56 |
Inukjuak | ||||||
Breakup | 0.5485 | 0.018 | 111 | 157 | y = 16.219 × x + 149.73 | 10.04 |
Freeze-up | −0.7445 | 0.0003 | 271 | 301 | y = −18.483 × x + 367.07 | 6.86 |
Kuujjurapik | ||||||
Breakup | 0.4751 | 0.04 | 106 | 146 | y = 10.017 × x + 156.15 | 10.38 |
Freeze-up | −0.5295 | 0.02 | 290 | 330 | y = −15.935 × x + 368.88 | 8.66 |
Coral Harbour | ||||||
Breakup | 0.6071 | 0.005 | 123 | 155 | y = 10.078 × x + 161.68 | 9.77 |
Freeze-up | −0.7925 | <0.0001 | 261 | 297 | y = −14.75 × x + 369.38 | 6.23 |
Pearson | p-Value | Difference (Standard Deviation) | |
---|---|---|---|
Churchill | |||
Breakup | 0.4900 | 0.003 | 8.02 |
Freeze-up | −0.6082 | 0.0003 | 6.86 |
Inukjuak | |||
Breakup | 0.4011 | 0.02 | 8.20 |
Freeze-up | −0.6581 | 0.0001 | 6.35 |
Kuujjurapik | |||
Breakup | 0.4873 | 0.002 | 8.31 |
Freeze-up | −0.4026 | 0.02 | 8.07 |
Coral Harbour | |||
Breakup | 0.4900 | 0.003 | 8.20 |
Freeze-up | −0.6082 | 0.0003 | 7.99 |
Aggregate | |||
Breakup | 0.6212 | <0.0001 | 6.82 |
Freeze-up | −0.8002 | <0.0001 | 5.06 |
Time Series | Year | Imputed Value |
---|---|---|
Breakup | 2002 | 186.8 |
Freeze-up | 1971 | 335.5 |
Freeze-up | 1973 | 337.6 |
Freeze-up | 1997 | 330.6 |
Freeze-up | 1998 | 335.4 |
Freeze-up | 1999 | 331.0 |
Freeze-up | 2001 | 332.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gough, W.A. Reconstructing and Hindcasting Sea Ice Conditions in Hudson Bay Using a Thermal Variability Framework. Climate 2024, 12, 165. https://doi.org/10.3390/cli12100165
Gough WA. Reconstructing and Hindcasting Sea Ice Conditions in Hudson Bay Using a Thermal Variability Framework. Climate. 2024; 12(10):165. https://doi.org/10.3390/cli12100165
Chicago/Turabian StyleGough, William A. 2024. "Reconstructing and Hindcasting Sea Ice Conditions in Hudson Bay Using a Thermal Variability Framework" Climate 12, no. 10: 165. https://doi.org/10.3390/cli12100165
APA StyleGough, W. A. (2024). Reconstructing and Hindcasting Sea Ice Conditions in Hudson Bay Using a Thermal Variability Framework. Climate, 12(10), 165. https://doi.org/10.3390/cli12100165