Mapping and Assessing Riparian Vegetation Response to Drought along the Buffalo River Catchment in the Eastern Cape Province, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Pre-Processing
2.3. Image Processing
2.3.1. Normalize Difference Vegetation Index
2.3.2. Transformed Difference Vegetation Index
2.3.3. Modified Normalized Difference Water Index
2.4. Standardized Precipitation Index (SPI)
2.5. Study Methods
Classification and Accuracy Assessment
3. Results
3.1. Spatial Variation of Buffalo River Catchment Dynamics for TDVI
3.2. Spatial Variation of Buffalo River Catchment Dynamics for NDVI
3.3. Spatial Variation of Buffalo River Catchment for MNDWI
3.4. Analysis of Annual Precipitation, Streamflow and Vegetation Series (1990–2020)
3.5. Standardized Precipitation Index Classification for 3, 6 and 12 Months
3.5.1. 3-Months SPI Patterns (1990–2020)
3.5.2. 6-Months SPI Patterns (1990–2020)
3.5.3. 12-Month SPI Patterns (1990–2020)
3.5.4. Correlation between Indices and SPI Drought Patterns (1990–2020)
4. Discussion
4.1. Hydro-Meteorological Influence on Climate-Related Vegetation Series
4.2. SPI Drought Classification Patterns between 1990 and 2020
5. Conclusions
- The change detection technique and Pearson’s correlation analysis show that the NDVI and TDVI were significant indices for detecting water-stressed vegetation in river catchment dynamics. Much of these changes were reflected for MNDWI in dry areas with a higher accuracy (87.47%) and dense vegetation in the upper catchment areas.
- The correlation results revealed a moderate positive correlation (r = 0.77) between the precipitation and streamflow with a significant p-value of 0.04 suggesting consequences on riparian vegetation health. Concurrent with the precipitation, the vegetation trends showed that precipitation increased insignificantly with less of an influence while the reverse was the case with the streamflow in the long term.
- The standardized precipitation index (SPI) revealed the inter-annual and inter-seasonal variations in drought-stressed years between 1991–1996, 2000–2004, 2009–2010, 2015, and 2018–2019, while 2020 exhibited slight sensitivity to drought. Within context, the last decade exhibited slight sensitivity to drought along the Buffalo River catchment, highlighting the dynamic nature of riparian ecosystems and their ability to recover during improved climatic conditions.
- The findings of this study revealed valuable insights into drought dynamics of 6 months and the 12 months SPI of a longer time scale for identifying less frequent droughts with longer-lasting episodes. The result of this study can be used to establish a provincial drought monitoring system and risk assessment program, considering the frequency and severity of droughts in the region.
- The assessment of drought disaster in this study provides guidelines for policymakers on disaster preparedness and response, emphasizing the importance of managing recurrent drought within the river ecosystems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haile, G.G.; Tang, Q.; Hosseini-Moghari, S.M.; Liu, X.; Gebremicael, T.G.; Leng, G.; Kebede, A.; Xu, X.; Yun, X. Projected impacts of climate change on drought patterns over East Africa. Earth’s Future 2020, 8, e2020EF001502. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Svoboda, M.; Fuchs, B.A. Handbook of Drought Indicators and Indices; World Meteorological Organization (WMO) and Global Water Partnership (GWP), Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2; Taylor and Francis Group: Geneva, Switzerland, 2016. [Google Scholar]
- CRED. Centre for Research on the Epidemiology of Disasters. CRED Disasters in Numbers 2021. 2021. Available online: https://cred.be/sites/default/files/2021_EMDAT_report.pdf (accessed on 1 July 2023).
- del Tánago, M.G.; Martínez-Fernández, V.; Aguiar, F.C.; Bertoldi, W.; Dufour, S.; de Jalón, D.G.; Garófano-Gómez, V.; Mandzukovski, D.; Rodríguez-González, P.M. Improving river hydromorphological assessment through better integration of riparian vegetation: Scientific evidence and guidelines. J. Environ. Manag. 2021, 292, 112730. [Google Scholar] [CrossRef]
- Walz, Y.; Min, A.; Dall, K.; Duguru, M.; de Leon, J.-C.V.; Graw, V.; Dubovyk, O.; Sebesvari, Z.; Jordaan, A.; Post, J. Monitoring the progress of the Sendai Framework using a geospatial model: The example of people affected by agricultural droughts in Eastern Cape, South Africa. Prog. Disaster Sci. 2020, 5, 100062. [Google Scholar] [CrossRef]
- Cornejo-Denman, L.; Romo-Leon, J.R.; Castellanos, A.E.; Diaz-Caravantes, R.E.; Moreno-Vázquez, J.L.; Mendez-Estrella, R. Assessing riparian vegetation condition and function in disturbed sites of the arid northwestern Mexico. Land 2018, 7, 13. [Google Scholar] [CrossRef]
- Chiang, F.; Mazdiyasni, O.; AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 2021, 12, 2754. [Google Scholar] [CrossRef]
- Dufour, S.; Rodríguez-González, P.M. Riparian Zone/Riparian Vegetation Definition: Principles and Recommendations. Report, Cost Action ca16208 Converges. 2019, p. 20. Available online: https://converges.eu/wp-content/uploads/2019/04/Report_definitions_Riparian_V1-2.pdf (accessed on 1 July 2023).
- Kusler, J. Protecting and Restoring Riparian Areas. Association of State Wetland Managers. Windham, ME. 2016. Available online: https://www.nawm.org/pdf_lib/protecting_and_restoring_riparian_areas_kusler_030916.pdf (accessed on 2 July 2023).
- Jiang, L.; ·Jiapaer, G.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Chatterjee, U.; Kashyap, A.; Shit, P.K. (Eds.) Land Reclamation and Restoration Strategies for Sustainable Development: Geospatial Technology Based Approach; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Hussain, S.; Qin, S.; Nasim, W.; Bukhari, M.A.; Mubeen, M.; Fahad, S.; Raza, A.; Abdo, H.G.; Tariq, A.; Mousa, B.G.; et al. Monitoring the Dynamic Changes in Vegetation Cover Using Spatio-Temporal Remote Sensing Data from 1984 to 2020. Atmosphere 2022, 13, 1609. [Google Scholar] [CrossRef]
- Afuye, G.A.; Kalumba, A.M.; Orimoloye, I.R. Characterisation of Vegetation Response to Climate Change: A Review. Sustainability 2021, 13, 7265. [Google Scholar] [CrossRef]
- Rusnák em Goga, T.; Michaleje, L.; Šulc Michalková, M.; Máčka, Z.; Bertalan, L.; Kidová, A. Remote sensing of riparian ecosystems. Remote Sens. 2022, 14, 2645. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Belle, J.A.; Ololade, O.O. Drought disaster monitoring using MODIS derived index for drought years: A space-based information for ecosystems and environmental conservation. J. Environ. Manag. 2021, 284, 112028. [Google Scholar] [CrossRef]
- Helali, J.; Asaadi, S.; Jafarie, T.; Habibi, M.; Salimi, S.; Momenpour, S.E.; Shahmoradi, S.; Hosseini, S.A.; Hessari, B.; Saeidi, V. Drought monitoring and its effects on vegetation and water extent changes using remote sensing data in Urmia Lake watershed, Iran. J. Water Clim. Chang. 2022, 13, 2107–2128. [Google Scholar] [CrossRef]
- Albano, C.M.; McGwire, K.C.; Hausner, M.B.; McEvoy, D.J.; Morton, C.G.; Huntington, J.L. Drought sensitivity and trends of riparian vegetation vigor in Nevada, USA (1985–2018). Remote Sens. 2020, 12, 1362. [Google Scholar] [CrossRef]
- Afuye, G.A.; Kalumba, A.M.; Busayo, E.T.; Orimoloye, I.R. A bibliometric review of vegetation response to climate change. Environ. Sci. Pollut. Res. 2021, 29, 18578–18590. [Google Scholar] [CrossRef]
- Mahlalela, P.T.; Blamey, R.C.; Hart, N.C.G.; Reason, C.J.C. Drought in the Eastern Cape region of South Africa and trends in rainfall characteristics. Clim. Dyn. 2020, 55, 2743–2759. [Google Scholar] [CrossRef]
- Gleser, G.C.; Green, B.L.; Winget, C. Prolonged Psychosocial Effects of Disaster: A Study of Buffalo Creek; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Mokgoebo, J.M.; Kabanda, T.A.; Gumbo, J.R. Assessment of the riparian vegetation changes downstream of selected dams in Vhembe District, Limpopo Province based on historical aerial photography. In Environmental Risks; IntechOpen: London, UK, 2018; pp. 65–84. [Google Scholar]
- Petersen, C.; Jovanovic, N.; Grenfell, M. The effectiveness of riparian zones in mitigating water quality impacts in an agriculturally dominated river system in South Africa. Afr. J. Aquat. Sci. 2020, 45, 336–349. [Google Scholar] [CrossRef]
- Pace, G.; Gutiérrez-Cánovas, C.; Henriques, R.; Carvalho-Santos, C.; Cássio, F.; Pascoal, C. Remote sensing indicators to assess riparian vegetation and river ecosystem health. Ecol. Indic. 2022, 144, 109519. [Google Scholar] [CrossRef]
- Slaughter, A.R.; Mantel, S.K.; Hughes, D.A. Investigating Possible Climate Change and Development Effects on Water Quality within an Arid Catchment in South Africa: A Comparison of Two Models. International Congress on Environmental Modelling and Software. 13. 2014. Available online: https://scholarsarchive.byu.edu/iemssconference/2014/Stream-H/13 (accessed on 2 July 2023).
- Owolabi, S.T.; Madi, K.; Kalumba, A.M.; Alemaw, B.F. Assessment of recession flow variability and the surficial lithology impact: A case study of Buffalo River catchment, Eastern Cape, South Africa. Environ. Earth Sci. 2020, 79, 187. [Google Scholar] [CrossRef]
- Carter, A.; Hunter, A.; Mack, C.; Smith, C.; Mgweba, T. Buffalo River Estuary Situation Assessment Report. EOA Coastal and Environment Service. 2016. Available online: http://www.cesnet.co.za/pubdocs/Buffalo%20River%20Estuary%20Management%20Plan%20295_AH/Buffalo%20River%20Draft%20Situation%20Assessment%20Report%20Full.pdf (accessed on 25 April 2023).
- Olaniyan, L.W.B.; Okoh, A.I. Determination and ecological risk assessment of two endocrine disruptors from River Buffalo, South Africa. Environ. Monit. Assess. 2020, 192, 750. [Google Scholar] [CrossRef]
- Huylenbroeck, L.; Laslier, M.; Dufour, S.; Georges, B.; Lejeune, P.; Michez, A. Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers. J. Environ. Manag. 2020, 267, 110652. [Google Scholar] [CrossRef]
- Hernina, R.; Yandi, S. Drought Analysis by Using Standardized Precipitation Index (SPI) and Normalized Difference Vegetation Index (NDVI) at Bekasi Regency in 2018. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 280, p. 012002. [Google Scholar]
- Mohammed, S.; Alsafadi, K.; Daher, H.; Gombos, B.; Mahmood, S.; Harsányi, E. Precipitation pattern changes and the response of vegetation to drought variability in eastern Hungary. Bull. Natl. Res. Cent. 2020, 44, 55. [Google Scholar] [CrossRef]
- Patil, R.; Polisgowdar, B.S.; Rathod, S.; Bandumula, N.; Mustac, I.; Reddy, G.V.S.; Wali, V.; Satishkumar, U.; Rao, S.; Kumar, A.; et al. Spatiotemporal characterization of drought magnitude, severity, and return period at various time scales in the Hyderabad Karnataka Region of India. Water 2023, 15, 2483. [Google Scholar] [CrossRef]
- Stefanidis, S.; Rossiou, D.; Proutsos, N. Drought severity and trends in a Mediterranean oak forest. Hydrology 2023, 10, 167. [Google Scholar] [CrossRef]
- Thomas, A. Modelling of spatially distributed surface runoff and infiltration in the Olifants River catchment/water management area using GIS. Int. J. Adv. Remote Sens. GIS 2015, 4, 828–862. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; Adeola, A.M.; De Wit, J.P.; Ncongwane, K.P.; Zwane, N.N. Drought risk analysis in the Eastern Cape Province of South Africa: The copula lens. Water 2020, 12, 1938. [Google Scholar] [CrossRef]
- Gaznayee, H.A.A.; Al-Quraishi, A.M.F.; Mahdi, K.; Ritsema, C. A Geospatial Approach for Analysis of Drought Impacts on Vegetation Cover and Land Surface Temperature in the Kurdistan Region of Iraq. Water 2022, 14, 927. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Casa, R.; Pignatti, S.; Laneve, G.; Pascucci, S.; et al. Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1482–1493. [Google Scholar] [CrossRef]
- Hameid, N.A.; Bannari, A. The relationship between vegetation and rainfall in central Sudan. Int. J. Remote Sens. Appl. 2016, 6, 30–40. [Google Scholar]
- Al-Ali, Z.M.; Bannari, A.; El-Battay, A.; Hameid, N. Potential of Spectral Indices for Halophyte Vegetation Cover Detection in Arid and Salt-Affected Landscape. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4632–4635. [Google Scholar]
- Atefi, M.R.; Miura, H. Detection of flash flood inundated areas using relative difference in NDVI from sentinel-2 images: A case study of the August 2020 event in Charikar, Afghanistan. Remote Sens. 2022, 14, 3647. [Google Scholar] [CrossRef]
- Sun, F.; Sun, W.; Chen, J.; Gong, P. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. Int. J. Remote Sens. 2012, 33, 6854–6875. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Jordaan, A.J.; Mlenga, D.H.; Mandebvu, B. Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index. Jàmbá J. Disaster Risk Stud. 2019, 11, 1–11. [Google Scholar]
- Rolbiecki, R.; Yücel, A.; Kocięcka, J.; Atilgan, A.; Marković, M.; Liberacki, D. Analysis of SPI as a drought indicator during the maize growing period in the cukurova region (Turkey). Sustainability 2022, 14, 3697. [Google Scholar] [CrossRef]
- Du, J.; Fang, J.; Xu, W.; Shi, P. Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 377–387. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. 1993: The relationship of drought frequency and duration of time scales. In Proceedings of the Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim, CA, USA, 17–23 January 1993; pp. 179–186. [Google Scholar]
- Puttinaovarat, S.; Saeliw, A.; Pruitikanee, S.; Kongcharoen, J.; Chai-Arayalert, S.; Khaimook, K.; Horkaew, P. River classification and change detection from Landsat images by using a river classification toolbox. IAES Int. J. Artif. Intell. 2021, 10, 948. [Google Scholar] [CrossRef]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.R.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef]
- Ayele, G.T.; Tebeje, A.K.; Demissie, S.S.; Belete, M.A.; Jemberrie, M.A.; Teshome, W.M.; Mengistu, D.T.; Teshale, E.Z. Time series land cover mapping and change detection analysis using geographic information system and remote sensing, Northern Ethiopia. Air, Soil Water Res. 2018, 11, 1178622117751603. [Google Scholar] [CrossRef]
- Ngcofe, L.; Hickson, R.; Singh, P. The South African land cover change detection derived from 2013_2014 and 2017_2018 land cover products. South Afr. J. Geomat. 2022, 8, 160–177. [Google Scholar] [CrossRef]
- Martins, J.A.; Brand, V.S.; Capucim, M.N.; Machado, C.B.; Piccilli, D.G.A.; Martins, L.D. The impact of rainfall and land cover changes on the flow of a medium-sized river in the South of Brazil. Energy Procedia 2016, 95, 272–278. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, Z.; Feng, S.; Zhang, X.; Hao, F. Response of vegetation to El Niño-Southern Oscillation (ENSO) via compound dry and hot events in southern Africa. Glob. Planet. Chang. 2020, 195, 103358. [Google Scholar] [CrossRef]
- United Nations Office for the Coordination of Human Affairs. Briefing Note: Overview of El Niño Response in East and Southern Africa. 2016. Available online: https://docs.unocha.org/sites/dms/Documents/2016_11_Elnino_Africa_Breakfast_meeting_FINAL.pdf (accessed on 1 August 2023).
- Dala-Corte, R.B.; Melo, A.S.; Siqueira, T.; Bini, L.M.; Martins, R.T.; Cunico, A.M.; Pes, A.M.; Magalhães, A.L.B.; Godoy, B.S.; Leal, C.G.; et al. Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. J. Appl. Ecol. 2020, 57, 1391–1402. [Google Scholar] [CrossRef]
- Almouctar, M.A.S.; Wu, Y.; Kumar, A.; Zhao, F.; Mambu, K.J.; Sadek, M. Spatiotemporal analysis of vegetation cover changes around surface water based on NDVI: A case study in Korama basin, Southern Zinder, Niger. Appl. Water Sci. 2020, 11, 4. [Google Scholar] [CrossRef]
- Nallaperuma, B.; Asaeda, T. The long-term legacy of riparian vegetation in a hydrogeomorphologically remodelled fluvial setting. River Res. Appl. 2020, 36, 1690–1700. [Google Scholar] [CrossRef]
- Lang, S.D. The Application of Remote Sensing in Drought Monitoring: A Case Study of KwaZulu-Natal, South Africa. Ph.D. Dissertation, University of KwaZulu Natal, Pietermaritzburg, South Africa, 2017. [Google Scholar]
- Zhang, M.; Chen, S.; Liu, W. Disentangling the Complexity of Regional Ecosystem Degradation: Uncovering the Interconnected Natural-Social Drivers of Quantity and Quality Loss. Land 2023, 12, 1280. [Google Scholar] [CrossRef]
- Gojon, A.; Nussaume, L.; Luu, D.T.; Murchie, E.H.; Baekelandt, A.; Saltenis, V.L.R.; Cohan, J.; Desnos, T.; Inzé, D.; Ferguson, J.N.; et al. Approaches and determinants to sustainably improve crop production. Food Energy Secur. 2022, 12, e369. [Google Scholar] [CrossRef]
- Moazzam, M.F.U.; Rahman, G.; Munawar, S.; Tariq, A.; Safdar, Q.; Lee, B.-G. Trends of rainfall variability and drought monitoring using standardized precipitation index in a scarcely gauged basin of northern Pakistan. Water 2022, 14, 1132. [Google Scholar] [CrossRef]
- Banze, F.; Guo, J.; Xiaotao, S. Variability and trends of rainfall, precipitation and discharges over Zambezi river basin, southern Africa: Review. Int. J. Hydrol. 2018, 2, 1. [Google Scholar] [CrossRef]
- Slaughter, A.R.; Mantel, S.K. Water quality modelling of an impacted semi-arid catchment using flow data from the WEAP model. Proc. Int. Assoc. Hydrol. Sci. 2018, 377, 25–33. [Google Scholar] [CrossRef]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.E.; Bayala, M.I. Relationship between TIR and NIR-SWIRas Indicator of Vegetation Water Availability. Remote Sens. 2021, 13, 3371. [Google Scholar] [CrossRef]
- Dobel, A.J.; O’Hare, M.; Gunn, I.; Edwards, F. Streams and rivers: Report card 2020. In About Drought; UK Centre for Ecology & Hydrology: Wallingford, UK, 2020; 16p. [Google Scholar]
- Ngobele, F.J. Using Riparian Vegetation Responses in the Mooi River Catchment within an Ecological Water Requirement Framework. Ph.D. Dissertation, North-West University, Potchefstroom, South Africa, 2021. [Google Scholar]
- Pace, G.; Gutiérrez-Cánovas, C.; Henriques, R.; Boeing, F.; Cássio, F.; Pascoal, C. Remote sensing depicts riparian vegetation responses to water stress in a humid Atlantic region. Sci. Total Environ. 2021, 772, 145526. [Google Scholar] [CrossRef]
- Birtwistle, A.N.; Laituri, M.; Bledsoe, B.; Friedman, J.M. Using NDVI to measure precipitation in semi-arid landscapes. J. Arid. Environ. 2016, 131, 15–24. [Google Scholar] [CrossRef]
- Afuye, G.A.; Kalumba, A.M.; Ishola, K.A.; Orimoloye, I.R. Long-Term Dynamics and Response to Climate Change of Different Vegetation Types Using GIMMS NDVI3g Data over Amathole District in South Africa. Atmosphere 2022, 13, 620. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, J.; Chen, Y. NDVI-based vegetation responses to climate change in an arid area of China. Theor. Appl. Climatol. 2015, 126, 213–222. [Google Scholar] [CrossRef]
- Mathivha, F.I. Drought in Luvuvhu River Catchment-South Africa: Assessment, Characterisation and Prediction. Ph.D. Dissertation, University of Venda, Venda, South Africa, 2020. [Google Scholar]
- Koskey, J.C.; M’erimba, C.M.; Ogendi, G.M. Effects of Land Use on the Riparian Vegetation along the Njoro and Kamweti Rivers, Kenya. Open J. Ecol. 2021, 11, 807–827. [Google Scholar] [CrossRef]
- Van Zitters, M. Evaluating the Effect of Active Riparian Rehabilitation Initiatives and Investment on Native Vegetation Recovery, in the Berg-Breede Catchment, Western Cape, South Africa. Ph.D. Dissertation, Stellenbosch University, Stellenbosch, South Africa, 2021. [Google Scholar]
- Strydom, W.F. The Impact of State-of-Rivers Reporting on People’s Attitudes towards River Conservation: A Case Study of the Buffalo and Hartenbos & Klein Brak Catchments in South Africa. Ph.D. Dissertation, University of Stellenbosch, Stellenbosch, South Africa, 2010. [Google Scholar]
- Chakona, A.; Rennie, C.; Kadye, W.T. First record of Lernaea cyprinacea (Copepoda: Lernaeidae) on an imperilled endemic anabantid, Sandelia bainsii (Teleostei: Anabantidae), from the Eastern Cape province, South Africa. Afr. J. Aquat. Sci. 2019, 44, 183–187. [Google Scholar] [CrossRef]
- Saha, A.K.; Kashaigili, J.; Mashingia, F.; Kiwango, H.; Mohamed, M.A.; Kimaro, M.; Igulu, M.M.; Matiku, P.; Masikini, R.; Tamatamah, R.; et al. Determination of Environmental Flows in Data-Poor Estuaries—Wami River Estuary in Saadani National Park, Tanzania. Hydrology 2023, 10, 33. [Google Scholar] [CrossRef]
SPI Values | Drought/Wetness Category |
---|---|
2.0+ | Extremely wet |
1.5 to 1.99 | Very wet |
1.0 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
−1.0 to −1.49 | Moderate drought |
−1.5 to −1.99 | Severely dry |
−2 and less | Extremely dry |
TDVI Years | 1990 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|
Kappa coefficient | 0.91 | 0.93 | 0.92 | 0.89 | 0.93 | 0.95 |
Overall classification accuracy (%) | 88.34 | 95.22 | 91.31 | 95.41 | 94.18 | 91.47 |
NDVI Years | 1990 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|
Kappa coefficient | 0.79 | 0.78 | 0.80 | 0.88 | 0.87 | 0.85 |
Overall classification accuracy (%) | 82.34 | 84.22 | 85.31 | 85.41 | 84.18 | 88.47 |
MNDWI Years | 1990 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|
Kappa coefficient | 0.82 | 0.81 | 0.73 | 0.89 | 0.87 | 0.85 |
Overall classification accuracy (%) | 92.34 | 92.22 | 85.40 | 92.41 | 94.47 | 87.47 |
Indices | NDVI | TDVI | MNDWI |
---|---|---|---|
NDVI | 1 | ||
TDVI | 0.44 | 1 | |
MNDWI | 0.07 | 0.30 | 1 |
SPI-3 | 0.16 | 0.40 | 0.14 |
SPI-6 | −0.38 | −0.14 | −0.26 |
SPI-12 | −0.40 | −0.18 | −0.22 |
(A) | |||||
Variables | Precipitation | Streamflow | NDVI | TDVI | MNDWI |
Precipitation | 1 | ||||
streamflow | 0.77 | 1 | |||
MNDWI | 0.58 | 0.55 | 1 | ||
NDVI | 0.13 | 0.47 | 0.48 | 1 | |
TDVI | 0.24 | 0.18 | 0.71 | 0.48 | 1 |
(B) | |||||
Precipitation and Streamflow | Precipitation and NDVI | Precipitation and TDVI | Precipitation and MNDWI | ||
Coefficient (r): | 0.77 | 0.58 | 0.47 | 0.24 | |
N | 7 | 7 | 7 | 7 | |
T statistic | 2.70 | 1.59 | 1.18 | 0.56 | |
DF | 5 | 5 | 5 | 5 | |
p value | 0.04 | 0.17 | 0.29 | 0.60 | |
(C) | |||||
Streamflow and NDVI | Streamflow and TDVI | Streamflow and MNDWI | |||
Coefficient (r): | 0.55 | 0.47 | 0.18 | ||
N | 7 | 7 | 7 | ||
T statistic | 1.49 | 1.18 | 0.41 | ||
DF | 5 | 5 | 5 | ||
p value | 0.20 | 0.29 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpanyaro, Z.; Kalumba, A.M.; Zhou, L.; Afuye, G.A. Mapping and Assessing Riparian Vegetation Response to Drought along the Buffalo River Catchment in the Eastern Cape Province, South Africa. Climate 2024, 12, 7. https://doi.org/10.3390/cli12010007
Mpanyaro Z, Kalumba AM, Zhou L, Afuye GA. Mapping and Assessing Riparian Vegetation Response to Drought along the Buffalo River Catchment in the Eastern Cape Province, South Africa. Climate. 2024; 12(1):7. https://doi.org/10.3390/cli12010007
Chicago/Turabian StyleMpanyaro, Zolisanani, Ahmed Mukalazi Kalumba, Leocadia Zhou, and Gbenga Abayomi Afuye. 2024. "Mapping and Assessing Riparian Vegetation Response to Drought along the Buffalo River Catchment in the Eastern Cape Province, South Africa" Climate 12, no. 1: 7. https://doi.org/10.3390/cli12010007
APA StyleMpanyaro, Z., Kalumba, A. M., Zhou, L., & Afuye, G. A. (2024). Mapping and Assessing Riparian Vegetation Response to Drought along the Buffalo River Catchment in the Eastern Cape Province, South Africa. Climate, 12(1), 7. https://doi.org/10.3390/cli12010007