Characterisation of Morphological Patterns for Land Surface Temperature Distribution in Urban Environments: An Approach to Identify Priority Areas
Abstract
:1. Introduction
2. Study Area
3. Methods and Data
3.1. Data Retrieval
Biophysical Type | Source and Data Type | Biophysical Variable | Formula | Description | |
---|---|---|---|---|---|
Built-up | Spanish Cadastre shapefiles | Floor Space Index (FSI) | (1) | Building intensity from the total amount of enclosed area of all storeys within each building. | |
Average Building Height (AvgH) | (2) | Mean building height. | |||
Vegetation | Pléiades Satellite_Airbus DS Geo SGSA VHR imagery | Vegetation Cover (VC) | (3) | Percentage of area occupied by vegetation on winter and/or summer dates over the study area. | |
Vegetation Level Cover (VLC) high/medium/low | VLC (H/M/L) | (4) | The values for this characterisation were obtained from [36]:
| ||
Broadband Albedo | Unites States Geological Survey USGS Landsat 8 OLI + TIRS | Broadband Albedo (BBAlbedo) BBAlvar_w/s | Broadband Albedo [35] BBAlbedo = 0.356 * BBlue + 0.130 * BRed + 0.373 * BNIR + 0.085 * BSwir1+ 0.072 * BSwir2 − 0.0018 BBAlvar_w/s = The standard deviation of each polygon was extracted to obtain | (5) | Relationship between the surface upward flux and the downward flux of shortwave solar radiation over the ascending hemispherical space. |
Land Surface Temperature (LST) | Unites States Geological Survey USGS Landsat 8 OLI + TIRS | NDVI method [34]. | Emission of thermal radiance from a surface derived from solar radiation. | ||
Top of Atmosphere | |||||
(Lλ) | (6) | ||||
Lλ | (7) | ||||
Brightness Temperature | |||||
(8) | |||||
BT | (9) | ||||
Proportion of Vegetation | |||||
(10) | |||||
Land Surface Emissivity | |||||
(ε) | (11) | ||||
Land Surface Temperature | |||||
(LST) | (12) |
3.2. Previous Classification of Biophysical Variables
3.3. Proposed Analyses to Identify Morphological Patterns
4. Results
4.1. Observation of Morphological Patterns from Classifications
4.2. Identification of Morphological Patterns from Statistical Correlation Analysis
4.3. Identitification of Morphological Patterns from Multiple Regression Analysis
4.4. Characterisation of Morphological Patterns and Distribution of LST
5. Discussion
5.1. Methods to Identify Relationships of Biophysical Variabless and LST
5.2. Morphological Pattern Characterisation from Biophysical Variables and Identification of Priority Areas
5.3. Limitations Found in the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NOOA National Oceanic and Atmospheric Administration. April 2023 Was Earth’s Fourth Warmest on Record. Available online: https://www.noaa.gov/news/april-2023-was-earths-fourth-warmest-on-record (accessed on 12 May 2023).
- Kamal-Chaoui, L.; Robert, A. (Eds.) Competitive Cities and Climate Change; OECD Regional Development Working Papers N° 2; OECD Publishing, ©OECD: Paris, France, 2009. [Google Scholar]
- Kousis, I.; Pigliautile, I.; Pisello, A.L. Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Sci. Rep. 2021, 11, 9732. [Google Scholar] [CrossRef] [PubMed]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Hoelscher, M.-T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy Build. 2016, 114, 283–290. [Google Scholar] [CrossRef]
- Kalogeropoulos, G.; Dimoudi, A.; Toumboulidis, P.; Zoras, S. Urban Heat Island and Thermal Comfort Assessment in a Medium-Sized Mediterranean City. Atmosphere 2022, 13, 1102. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Masson, V.; Heldens, W.; Bocher, E.; Bonhomme, M.; Bucher, B.; Burmeister, C.; de Munck, C.; Esch, T.; Hidalgo, J.; Kanani-Sühring, F.; et al. City-descriptive input data for urban climate models: Model requirements, data sources and challenges. Urban Clim. 2020, 31, 100536. [Google Scholar] [CrossRef]
- Aghamolaei, R.; Azizi, M.M.; Aminzadeh, B.; O’donnell, J. A comprehensive review of outdoor thermal comfort in urban areas: Effective parameters and approaches. Energy Environ. 2022, 34, 2204–2227. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zhang, H.; Xue, B.; Li, W. Urban morphology in China: Dataset development and spatial pattern characterization. Sustain. Cities Soc. 2021, 71, 102981. [Google Scholar] [CrossRef]
- Yu, D.; Fang, C. Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sens. 2023, 15, 1307. [Google Scholar] [CrossRef]
- Noblejas, H.C.; Orellana-Macías, J.M.; Rodríguez, M.F.M. Use of Vegetation to Classify Urban Landscape Types: Application in a Mediterranean Coastal Area. Land 2022, 11, 228. [Google Scholar] [CrossRef]
- Grove, M.; Cadenasso, M.L.; Burch, W.R., Jr.; Prickett, S.T.A.; Schwarz, K.; Wilson, M.; Troy, A.; Boone, C., Jr. Data and methods comparing social structure and vegetation structure of urban neighborhoods in Baltimore, Maryland. Soc. Nat. Resour. 2006, 19, 117–136. [Google Scholar] [CrossRef]
- Pandey, P.C.; Balzter, H.; Srivastava, P.K.; Petropoulos, G.P.; Bhattacharya, B. 21—Future perspectives and challenges in hyperspectral remote sensing. Hyperspectral Remote Sens. 2020, 429–439. [Google Scholar]
- García-Pardo, K.A.; Moreno-Rangel, D.; Domínguez-Amarillo, S.; García-Chávez, J.R. Remote sensing for the assessment of ecosystem services provided by urban vegetation: A review of the methods applied. Urban For. Urban Green. 2022, 74, 127636. [Google Scholar] [CrossRef]
- McGee, J.A.; Day, S.D.; Wynne, R.H.; White, M.B. Using geospatial tools to assess the urban tree canopy: Decision support for local governments. J. For. 2012, 110, 275–286. [Google Scholar] [CrossRef]
- Hostetler, A.E.; Rogan, J.; Martin, D.; DeLauer, V.; O’neil-Dunne, J. Characterizing tree canopy loss using multi-source GIS data in Central Massachusetts, USA. Remote Sens. Lett. 2013, 4, 1137–1146. [Google Scholar] [CrossRef]
- Huang, C.; Ye, X.; Deng, C.; Zhang, Z.; Wan, Z. Mapping above-ground biomass by integrating optical and SAR imagery: A case study of Xixi National Wetland Park, China. Remote Sens. 2016, 8, 647. [Google Scholar] [CrossRef]
- Wang, J.; Gao, C.; Wang, M.; Zhang, Y. Identification of Urban Functional Areas and Urban Spatial Structure Analysis by Fusing Multi-Source Data Features: A Case Study of Zhengzhou, China. Sustainability 2023, 15, 6505. [Google Scholar] [CrossRef]
- García-Pardo, K.A.; Moreno-Rangel, D.; Domínguez-Amarillo, S.; García-Chávez, J.R. Urban classification of the built-up and seasonal variations in vegetation: A framework integrating multisource datasets. Urban For. Urban Green. 2023, 89, 128114. [Google Scholar] [CrossRef]
- Ayuntamiento de Madrid. Distrito en cifras (Información de Barrios). 1 January 2022. Available online: https://www.madrid.es/portales/munimadrid/es/Inicio/El-Ayuntamiento/Estadistica/Areas-de-informacion-estadistica/Economia/Distritos-en-cifras-Informacion-de-Barrios-/ (accessed on 18 August 2022).
- Boletín Oficial del Estado. 1949. DECRETO de 17 de Agosto de 1949 por el que se Aprueba la Anexión Total del Término Municipal de Canillas al de Madrid. B. O. del E.—Núm. 319. Available online: https://www.boe.es/da-tos/pdfs/BOE/1949/319/A04782-04782.pdf (accessed on 10 January 2020).
- Fernández García, A. La Evolución social de Madrid en la época Liberal (1834–1900). In Ciclo de Conferencias Arquitectura u Espacio Urbano de Madrid en el siglo XIX; Museo de Historia de Madrid: Madrid, Spain, 2008; pp. 10–29. Available online: https://www.madrid.es/ (accessed on 10 January 2020).
- Zhao, M.; Cai, H.; Qiao, Z.; Xu, X. Influence of urban expansion on the urban heat island effect in Shanghai. Int. J. Geogr. Inf. Sci. 2016, 30, 2421–2441. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yu, W.; Ren, J.; Xiao, X.; Xia, J.C. Relationship between urban spatial form and seasonal land surface temperature under different grid scales. Sustain. Cities Soc. 2023, 89, 104374. [Google Scholar] [CrossRef]
- Han, L.; Lu, L.; Fu, P.; Ren, C.; Cai, M.; Li, Q. Exploring the seasonality of surface urban heat islands using enhanced land surface temperature in a semi-arid city. Urban Clim. 2023, 49, 101455. [Google Scholar] [CrossRef]
- Han, S.; Hou, H.; Estoque, R.C.; Zheng, Y.; Shen, C.; Murayama, Y.; Pan, J.; Wang, B.; Hu, T. Seasonal effects of urban morphology on land surface temperature in a three-dimensional perspective: A case study in Hangzhou, China. J. Affect. Disord. 2023, 228, 109913. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Chen, W.; Meng, L.; Wu, Q.; Gong, P.; Seto, K.C. Satellite mapping of urban built-up heights reveals extreme infrastructure gaps and inequalities in the Global South. Proc. Natl. Acad. Sci. USA 2022, 119, 46. [Google Scholar] [CrossRef]
- Jiménez-Espada, M.; García, F.M.M.; González-Escobar, R. Urban Equity as a Challenge for the Southern Europe Historic Cities: Sustainability-Urban Morphology Interrelation through GIS Tools. Land 2022, 11, 1929. [Google Scholar] [CrossRef]
- Rahman, H.; Islam, H.; Neema, M.N. GIS-based compactness measurement of urban form at neighborhood scale: The case of Dhaka, Bangladesh. J. Urban Manag. 2022, 11, 6–22. [Google Scholar] [CrossRef]
- Liu, B.; Deng, Y.; Li, M.; Yang, J.; Liu, T. Classification Schemes and Identification Methods for Urban Functional Zone: A Review of Recent Papers. Appl. Sci. 2021, 11, 9968. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- García, D.H. Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing. Sustainability 2023, 15, 10410. [Google Scholar] [CrossRef]
- Aryal, J.; Sitaula, C.; Aryal, S. NDVI threshold-based urban green space mapping from sentinel-2A at the Local Governmental Area (LGA) level of victoria, Australia. Land 2022, 11, 351. [Google Scholar] [CrossRef]
- Balaguer-Beser, Á.A.; Ruiz-Fernández, L.Á. Selección de un modelo de regresión lineal múltiple para el cálculo de la precipitación media en verano. Universitat Politècnica de València. 2021. Available online: http://hdl.handle.net/10251/167659 (accessed on 13 November 2023).
- Berman, J.J. Chapter 4—Understanding Your Data. In Data Simplification; Kaufmann, M., Ed.; Morgan Kaufmann: Boston, MA, USA, 2016; pp. 135–187. ISBN 9780128037812. [Google Scholar] [CrossRef]
- Moore, D.S.; Notz, W.I.; Flinger, M.A. The Basic Practice of Statistics, 6th ed.; W. H. Freeman and Company: New York, NY, USA, 2013. [Google Scholar]
- Guechi, I.; Gherraz, H.; Alkama, D. Correlation analysis between biophysical indices and Land Surface Temperature using remote sensing and GIS in Guelma city (Algeria). Bull. Société R. Sci. Liège 2021, 90, 158–180. [Google Scholar] [CrossRef]
- Illyani, I.; Azizan, A.S.; Rosmadi, F. Land Surface Temperature and Biophysical Factors in Urban Planning. In Proceedings of the Conference: World Academy of Science, Engineering and Technology, Kuala Lumpur, Malaysia, 29–30 May 2012; Volume 68. [Google Scholar]
- Guo, G.; Wu, Z.; Xiao, R.; Chen, Y.; Liu, X.; Zhang, X. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc. Urban Plan. 2015, 135, 1–10. [Google Scholar] [CrossRef]
- Li, D.; Wang, L. Sensitivity of Surface Temperature to Land Use and Land Cover Change-Induced Biophysical Changes: The Scale Issue. Geophys. Res. Lett. 2019, 46, 9678–9689. [Google Scholar] [CrossRef]
- Addas, A. Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia). Int. J. Environ. Res. Public Health 2023, 20, 5025. [Google Scholar] [CrossRef]
FSI | AvgH | VCw | VLCwH | VLCwM | VLCwL | BBAlvar_w | |
---|---|---|---|---|---|---|---|
r | −0.02 | −0.22 | −0.19 | 0.07 | 0.20 | −0.42 | 0.04 |
p-value | 0.75 | 0.00 | 0.00 | 0.32 | 0.00 | <0.001 | 0.54 |
R2 | 0.00 | 0.04 | 0.03 | 0.00 | 0.04 | 0.17 | 0.01 |
strength of correlation [38]. | not significant | low, negative | low, negative | not significant | low, positive | medium, negative | not significant |
FSI | AvgH | VCs | VLCsH | VLCsM | VLCsL | BBAlvar_s | |
---|---|---|---|---|---|---|---|
r | −0.15 | −0.45 | −0.48 | −0.57 | −0.42 | 0.11 | 0.35 |
p-value | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 |
R2 | 0.02 | 0.20 | 0.23 | 0.33 | 0.17 | 0.01 | 0.12 |
strength of correlation [37]. | low, negative | medium, negative | medium, negative | high, negative | medium, positive | medium, negative | medium, positive |
LSTw = 0.000499368 + 0.134601 × BBAlvar_w + 0.233196 × FSI − 0.394395 × VLCwL + 0.226289 × VLCwM | LSTs = −0.0770149 − 0.161675 × AvgH + 0.095179 × BBAlvar_s − 0.387928 × FSI − 0.378526 × VLCsH + 0.165156 × VLCsL − 0.374235 × VLCsM | ||||
Independent variables | T | p-value | Independent variables | T | p-value |
FSI | 2.8999 | 0.0041 | AvgH | −3.0179 | 0.0029 |
VLCwM | 2.7843 | 0.0058 | FSI | −7.2416 | 0.0000 |
VLCwL | −6.1922 | 0.0000 | VLCsH | −6.2162 | 0.0000 |
BBAlvar_w | 2.1526 | 0.0325 | VLCsM | −6.3179 | 0.0000 |
VLCsL | 3.5562 | 0.0005 | |||
BBAlva_s | 3.2759 | 0.0012 | |||
Adjusted model results | |||||
R2 | 20.4731% | R2 | 57.3889% | ||
MAE | 0.7037 | MAE | 0.4919 | ||
RMSE | 0.8920 | RMSE | 0.6529 |
LSTw | LSTs |
---|---|
|
|
Variables | Morphological Patterns for Selection by Filter | |
---|---|---|
winter | VLCwL | ≥30% cover |
AvgH | gross values from 14 m to 32 m in height | |
VLCwM | ≤22% cover | |
FSI | gross values from 0 to 0.34 | |
BBAlvar_w | ≤1.5 | |
summer | VLCsH | ≤20% cover |
AvgH | gross values from 0 m to 16 m in height | |
VLCsM | ≤20% cover | |
FSI | gross values from 0 to 0.35 | |
VLCsL | ≤18% cover | |
BBAlvar_s | >0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Pardo, K.A.; Moreno-Rangel, D.; Domínguez-Amarillo, S.; García-Chávez, J.R. Characterisation of Morphological Patterns for Land Surface Temperature Distribution in Urban Environments: An Approach to Identify Priority Areas. Climate 2024, 12, 4. https://doi.org/10.3390/cli12010004
García-Pardo KA, Moreno-Rangel D, Domínguez-Amarillo S, García-Chávez JR. Characterisation of Morphological Patterns for Land Surface Temperature Distribution in Urban Environments: An Approach to Identify Priority Areas. Climate. 2024; 12(1):4. https://doi.org/10.3390/cli12010004
Chicago/Turabian StyleGarcía-Pardo, Karina Angélica, David Moreno-Rangel, Samuel Domínguez-Amarillo, and José Roberto García-Chávez. 2024. "Characterisation of Morphological Patterns for Land Surface Temperature Distribution in Urban Environments: An Approach to Identify Priority Areas" Climate 12, no. 1: 4. https://doi.org/10.3390/cli12010004
APA StyleGarcía-Pardo, K. A., Moreno-Rangel, D., Domínguez-Amarillo, S., & García-Chávez, J. R. (2024). Characterisation of Morphological Patterns for Land Surface Temperature Distribution in Urban Environments: An Approach to Identify Priority Areas. Climate, 12(1), 4. https://doi.org/10.3390/cli12010004