Skill and Inter-Model Comparison of Regional and Global Climate Models in Simulating Wind Speed over South Asian Domain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate Models and Reference Data
2.2. Methodology
Climate Variable Scale | Method/Statistic | Assessment Criteria Statistic (ACS) | W |
---|---|---|---|
Daily mean | Perkins Skill Score (PSS) | Bias in PSS ) | 0.5 |
Spatio-temporal variability | Empirical Orthogonal Function (EOF) analysis
| Empirical Orthogonal Function (EOF) analysis
| 1 |
Annual cycle | Statistical significance of positive ‘r’ | 1 | |
Annual mean | Statistical significance of bias | Percentage of statistically significant bias | 0 |
Seasonal mean | 1 | ||
Annual mean trend | Mann–Kendall (MK) test Theil-Sen slope | Mean Absolute Bias of trend | 1 |
Seasonal mean trend | 1 | ||
W= weighting factor r = correlation coefficient | |||
= percentage of statistically insignificant positive correlation coefficient |
3. Results and Discussion
3.1. Skill of Climate Models in Reproducing WS Climate over Diverse Climate Variable Scales
3.1.1. Daily Mean Wind Speed
3.1.2. Spatio-Temporal Variability of Monthly Mean Wind Speed
3.1.3. Annual Cycle
3.1.4. Seasonal Mean Wind Speed
3.1.5. Seasonal Mean Wind Speed Trend
3.1.6. Annual Mean Wind Speed and Its Trend
3.2. Construction of Best-Performing Models
3.3. Inter-Comparison of CMIP5 GCMs and CORDEX RCMs
4. Conclusions
- Over the SA domain, model 30 (constructed from mean ensemble of MPI-ESM-MR, CSIRO-Mk3.6.0 and GFDL-ESM2G GCMs) and REMO2009 RCM driven by MPI-M-MPI-ESM-LR GCM perform well over ocean and land, respectively.
- It is recommended to use the WS projections constructed from the mean ensemble of MPI-ESM-MR, CSIRO-Mk3.6.0 and GFDL-ESM2G GCMs for understanding the impact of climate change on future wave climate, coastal sediment transport and offshore wind energy potential over the SA ocean region. However, the individual GCMs can also be used with caution.
- Over the SA land region, the REMO2009 RCM driven by MPI-M-MPI-ESM-LR GCM WS projections can be used for assessing climate change impact studies on evapotranspiration, onshore wind energy potential and air pollution modelling.
- MIROC-ESM and MIROC-ESM-CHEM GCMs show very poor skill in representing WS over SA ocean and land regions, and these GCMs are strongly not recommended in understanding the wind-driven processes.
- All the parent GCMs show higher skill compared to all RCMs, except for 6_RCA, over the SA ocean region. Conversely, over the SA land region, all the RCMs (except 27_RegCM and 17_RCA) show higher skill compared to the parent GCMs. This concludes that the RCMs show significant added value over land, unlike over the open ocean.
- Most of the parent GCMs outperform the RCMs over the SA ocean region. Using the RCM WS projections based on the corresponding parent GCM performance in wind-driven models for climate change impact and policymaking is strongly not recommended.
- The ensemble of all climate models need not be always considered as reliable. However, the meticulous construction of the ensemble model after the rigorous analysis of individual model potential is important, rather than the type of climate model being used (whether it is GCM or RCM).
- It is observed that improving spatial resolution itself does not improve the climate model skill, whereas model configuration plays a key role. Further, in addition to quantifying GCM competence, it is critical to comprehend the benefit/disadvantage added by integrating more dynamical processes (such as carbon cycle dynamics and bio-geochemical processes) in WS simulation.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.; Feng, Q.; Adamowski, J.F.; Yin, Z.; Wen, X.; Wu, M.; Jia, B.; Hao, Q. Erratum to ‘Spatio-temporal variation of reference evapotranspiration in northwest China based on CORDEX-EA’ [Atmos. Res. 238 (2020) 104868]. Atmos. Res. 2021, 252, 105425. [Google Scholar] [CrossRef]
- Ottosen, T.B.; Ketzel, M.; Skov, H.; Hertel, O.; Brandt, J.; Kakosimos, K.E. Micro-scale modelling of the urban wind speed for air pollution applications. Sci. Rep. 2019, 9, 14279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottosen, T.B.; Ketzel, M.; Skov, H.; Hertel, O.; Brandt, J.; Kakosimos, K.E. A parameter estimation and identifiability analysis methodology applied to a street canyon air pollution model. Environ. Model. Softw. 2016, 84, 165–176. [Google Scholar] [CrossRef]
- Kulkarni, S.; Deo, M.C.; Ghosh, S. Framework for assessment of climate change impact on offshore wind energy. Meteorol. Appl. 2017, 25, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Nabipour, N.; Mosavi, A.; Hajnal, E.; Nadai, L.; Shamshirband, S.; Chau, K.W. Modeling climate change impact on wind power resources using adaptive neuro-fuzzy inference system. Eng. Appl. Comput. Fluid Mech. 2020, 14, 491–506. [Google Scholar] [CrossRef] [Green Version]
- Hemer, M.A.; Trenham, C.E. Evaluation of a CMIP5 derived dynamical global wind wave climate model ensemble. Ocean Model. 2016, 103, 190–203. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, P.; Behera, M.R. Evaluation of CMIP5 and CORDEX derived wave climate in Indian Ocean. Clim. Dyn. 2018, 52, 4463–4482. [Google Scholar] [CrossRef]
- Chowdhury, P.; Behera, M.R.; Reeve, D.E. Wave climate projections along the Indian coast. Int. J. Climatol. 2019, 39, 4531–4542. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Lin, S.J.; Griffies, S.M.; Hemer, M.A. Simulated global swell and wind-sea climate and their responses to anthropogenic climate change at the end of the twenty-first century. J. Clim. 2014, 27, 3516–3536. [Google Scholar] [CrossRef]
- Chowdhury, P.; Behera, M.R. Nearshore Sediment Transport in a Changing Climate. In Climate Change Signals and Response: A Strategic Knowledge Compendium for India; Venkataraman, C., Mishra, T., Ghosh, S., Karmakar, S., Eds.; Springer Singapore: Singapore, 2019; pp. 147–160. ISBN 978-981-13-0280-0. [Google Scholar]
- Rajasree, B.R.; Deo, M.C. Evaluation of estuary shoreline shift in response to climate change: A study from the central west coast of India. L. Degrad. Dev. 2018, 29, 3571–3583. [Google Scholar] [CrossRef]
- Munk, W.; Wunsch, C. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Res. Part I Oceanogr. Res. Pap. 1998, 45, 1977–2010. [Google Scholar] [CrossRef]
- Hemer, M.A.; McInnes, K.L.; Ranasinghe, R. Climate and variability bias adjustment of climate model-derived winds for a southeast Australian dynamical wave model. Ocean Dyn. 2012, 62, 87–104. [Google Scholar] [CrossRef]
- Macias, D.; Garcia-Gorriz, E.; Dosio, A.; Stips, A.; Keuler, K. Obtaining the correct sea surface temperature: Bias correction of regional climate model data for the Mediterranean Sea. Clim. Dyn. 2018, 51, 1095–1117. [Google Scholar] [CrossRef] [Green Version]
- Colbert, A.J.; Soden, B.J.; Kirtman, B.P. The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks. J. Clim. 2015, 28, 1806–1823. [Google Scholar] [CrossRef]
- Shimura, T.; Mori, N.; Mase, H. Future projection of ocean wave climate: Analysis of SST impacts on wave climate changes in the Western North Pacific. J. Clim. 2015, 28, 3171–3190. [Google Scholar] [CrossRef] [Green Version]
- Burke, C.; Stott, P. Impact of anthropogenic climate change on the East Asian summer monsoon. J. Clim. 2017, 30, 5205–5220. [Google Scholar] [CrossRef]
- Davy, R.; Outten, S. The arctic surface climate in CMIP6: Status and developments since CMIP5. J. Clim. 2020, 33, 8047–8068. [Google Scholar] [CrossRef]
- Krishnan, A.; Bhaskaran, P.K.; Kumar, P. CMIP5 model performance of significant wave heights over the Indian Ocean using COWCLIP datasets. Theor. Appl. Climatol. 2021, 145, 377–392. [Google Scholar] [CrossRef]
- Saha, A.; Ghosh, S.; Sahana, A.S.; Rao, E.P. Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon. Geophys. Res. Lett. 2014, 41, 7323–7330. [Google Scholar] [CrossRef]
- Trzaska, S.; Schnarr, E. A Review of Downscaling Methods for Climate Change Projections; United States Agency for International Development: Washington, DC, USA, 2014. [Google Scholar]
- Önol, B.; Bozkurt, D.; Turuncoglu, U.U.; Sen, O.L.; Dalfes, H.N. Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean-Black Sea region. Clim. Dyn. 2014, 42, 1949–1965. [Google Scholar] [CrossRef]
- Mori, N.; Shimura, T.; Yasuda, T.; Mase, H. Multi-model climate projections of ocean surface variables under different climate scenarios-Future change of waves, sea level and wind. Ocean Eng. 2013, 71, 122–129. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y.; Swail, V.R. Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophys. Res. Lett. 2014, 41, 1026–1034. [Google Scholar] [CrossRef]
- Perez, J.; Menendez, M.; Camus, P.; Mendez, F.J.; Losada, I.J. Statistical multi-model climate projections of surface ocean waves in Europe. Ocean Model. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Grabemann, I.; Weisse, R. Climate change impact on extreme wave conditions in the north sea: An ensemble study. Ocean Dyn. 2008, 58, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Chang. 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Pinto, I.; Lennard, C.; Tadross, M.; Hewitson, B.; Dosio, A.; Nikulin, G.; Panitz, H.J.; Shongwe, M.E. Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models. Clim. Change 2016, 135, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Abba Omar, S.; Abiodun, B.J. How well do CORDEX models simulate extreme rainfall events over the East Coast of South Africa? Theor. Appl. Climatol. 2017, 128, 453–464. [Google Scholar] [CrossRef]
- Choudhary, A.; Dimri, A.P.; Maharana, P. Assessment of CORDEX-SA experiments in representing precipitation climatology of summer monsoon over India. Theor. Appl. Climatol. 2018, 134, 283–307. [Google Scholar] [CrossRef]
- Gbobaniyi, E.; Sarr, A.; Sylla, M.B.; Diallo, I.; Lennard, C.; Dosio, A.; Dhiédiou, A.; Kamga, A.; Klutse, N.A.B.; Hewitson, B.; et al. Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int. J. Climatol. 2014, 34, 2241–2257. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; Bucchignani, E.; Cassano, J.; Cavazos, T.; Christensen, J.H.; Christensen, O.B.; Coppola, E.; Evans, J.; Geyer, B.; et al. Future global meteorological drought hot spots: A study based on CORDEX data. J. Clim. 2020, 33, 3635–3661. [Google Scholar] [CrossRef]
- Dafka, S.; Toreti, A.; Luterbacher, J.; Zanis, P.; Tyrlis, E.; Xoplaki, E. On the ability of RCMs to capture the circulation pattern of Etesians. Clim. Dyn. 2018, 51, 1687–1706. [Google Scholar] [CrossRef]
- Kunz, M.; Mohr, S.; Rauthe, M.; Lux, R.; Kottmeier, C. Assessment of extreme wind speeds from regional climate models-Part 1: Estimation of return values and their evaluation. Nat. Hazards Earth Syst. Sci. 2010, 10, 907–922. [Google Scholar] [CrossRef] [Green Version]
- Rockel, B.; Woth, K. Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations. Clim. Change 2007, 81, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Iizuka, S.; Dairaku, K.; Sasaki, W.; Adachi, S.A.; Ishizaki, N.N.; Kusaka, H.; Takayabu, I. Assessment of ocean surface winds and tropical cyclones around Japan by RCMs. J. Meteorol. Soc. Japan 2012, 90, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Picher, P.; Christensen, J.H.; Saeed, F.; Kumar, P.; Asharaf, S.; Ahrens, B.; Wiltshire, A.J.; Jacob, D.; Hagemann, S. Can regional climate models represent the Indian monsoon? J. Hydrometeorol. 2011, 12, 849–868. [Google Scholar] [CrossRef] [Green Version]
- Winterfeldt, J.; Weisse, R. Assessment of value added for surface marine wind speed obtained from two regional climate models. Mon. Weather Rev. 2009, 137, 2955–2965. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, A.; Bhaskaran, P.K. Performance of CMIP5 wind speed from global climate models for the Bay of Bengal region. Int. J. Climatol. 2020, 40, 3398–3416. [Google Scholar] [CrossRef]
- Mohan, S.; Bhaskaran, P.K. Evaluation of CMIP5 climate model projections for surface wind speed over the Indian Ocean region. Clim. Dyn. 2019, 53, 5415–5435. [Google Scholar] [CrossRef]
- Krishnan, A.; Bhaskaran, P.K. CMIP5 wind speed comparison between satellite altimeter and reanalysis products for the Bay of Bengal. Environ. Monit. Assess. 2019, 191, 554. [Google Scholar] [CrossRef]
- Mohan, S.; Bhaskaran, P.K. Evaluation and bias correction of global climate models in the CMIP5 over the Indian Ocean region. Environ. Monit. Assess. 2019, 191, 806. [Google Scholar] [CrossRef]
- Krishnan, A.; Bhaskaran, P.K. Skill assessment of global climate model wind speed from CMIP5 and CMIP6 and evaluation of projections for the Bay of Bengal. Clim. Dyn. 2020, 55, 2667–2687. [Google Scholar] [CrossRef]
- Torma, C.; Giorgi, F.; Coppola, E. Added value of regional climate modeling over areas characterized by complex terrain-precipitation over the Alps. J. Geophys. Res. 2015, 120, 3957–3972. [Google Scholar] [CrossRef]
- Singh, S.; Ghosh, S.; Sahana, A.S.; Vittal, H.; Karmakar, S. Do dynamic regional models add value to the global model projections of Indian monsoon? Clim. Dyn. 2017, 48, 1375–1397. [Google Scholar] [CrossRef]
- Kulkarni, S.; Deo, M.C.; Ghosh, S. Performance of the CORDEX regional climate models in simulating offshore wind and wind potential. Theor. Appl. Climatol. 2018, 135, 1449–1464. [Google Scholar] [CrossRef]
- Raju, K.S.; Kumar, D.N. Review of approaches for selection and ensembling of GCMS. J. Water Clim. Chang. 2020, 11, 577–599. [Google Scholar] [CrossRef]
- Srinivasa Raju, K.; Nagesh Kumar, D. Ranking general circulation models for India using TOPSIS. J. Water Clim. Chang. 2015, 6, 288–299. [Google Scholar] [CrossRef] [Green Version]
- Raju, K.S.; Kumar, D.N. Ranking of global climate models for India using multicriterion analysis. Clim. Res. 2014, 60, 103–117. [Google Scholar] [CrossRef]
- Morim, J.; Hemer, M.; Andutta, F.; Shimura, T.; Cartwright, N. Skill and uncertainty in surface wind fields from general circulation models: Intercomparison of bias between AGCM, AOGCM and ESM global simulations. Int. J. Climatol. 2020, 40, 2659–2673. [Google Scholar] [CrossRef]
- Herrmann, M.; Somot, S.; Calmanti, S.; Dubois, C.; Sevault, F. Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: Impact of the regional climate model configuration. Nat. Hazards Earth Syst. Sci. 2011, 11, 1983–2001. [Google Scholar] [CrossRef] [Green Version]
- De Winter, R.C.; Sterl, A.; Ruessink, B.G. Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs. J. Geophys. Res. Atmos. 2013, 118, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, S.; Gleeson, E.; Tiron, R.; McGrath, R.; Dias, F. Twenty-first century wave climate projections for Ireland and surface winds in the North Atlantic Ocean. Adv. Sci. Res. 2016, 13, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, M.J.; Kavianpour, M.R.; Kamranzad, B.; Etemad-Shahidi, A. A Weibull Distribution Based Technique for Downscaling of Climatic Wind Field. Asia-Pacific J. Atmos. Sci. 2019, 55, 685–700. [Google Scholar] [CrossRef]
- Abolude, A.T.; Zhou, W.; Akinsanola, A.A. Evaluation and projections of wind power resources over China for the energy industry using CMIP5 models. Energies 2020, 13, 2417. [Google Scholar] [CrossRef]
- Wang, X.L.; Swail, V.R.; Cox, A. Dynamical versus statistical downscaling methods for ocean wave heights. Int. J. Climatol. 2009, 30, 317–332. [Google Scholar] [CrossRef]
- Li, D.; Staneva, J.; Grayek, S.; Behrens, A.; Feng, J.; Yin, B. Skill assessment of an atmosphere-wave regional coupled model over the east china sea with a focus on typhoons. Atmosphere 2020, 11, 252. [Google Scholar] [CrossRef] [Green Version]
- Muhammed Naseef, T.; Sanil Kumar, V. Climatology and trends of the Indian Ocean surface waves based on 39-year long ERA5 reanalysis data. Int. J. Climatol. 2020, 40, 979–1006. [Google Scholar] [CrossRef]
- Costoya, X.; de Castro, M.; Carvalho, D.; Feng, Z.; Gómez-Gesteira, M. Climate change impacts on the future offshore wind energy resource in China. Renew. Energy 2021, 175, 731–747. [Google Scholar] [CrossRef]
- Saenz-Aguirre, A.; Saenz, J.; Ulazia, A.; Ibarra-Berastegui, G. Optimal strategies of deployment of far offshore co-located wind-wave energy farms. Energy Convers. Manag. 2022, 251, 114914. [Google Scholar] [CrossRef]
- Zhao, L.; Jin, S.; Liu, X.; Wang, B.; Song, Z.; Hu, J.; Guo, Y. Assessment of CMIP6 Model Performance for Wind Speed in China. Front. Clim. 2021, 3, 1–8. [Google Scholar] [CrossRef]
- Molina, M.O.; Gutiérrez, C.; Sánchez, E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int. J. Climatol. 2021, 41, 4864–4878. [Google Scholar] [CrossRef]
- Olauson, J. ERA5: The new champion of wind power modelling? Renew. Energy 2018, 126, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Hayes, L.; Stocks, M.; Blakers, A. Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis. Energy 2021, 229, 120603. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, W.; Berrisford, P.; Horányi, A.J.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar] [CrossRef]
- Belmonte Rivas, M.; Stoffelen, A. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci. 2019, 15, 831–852. [Google Scholar] [CrossRef] [Green Version]
- Minola, L.; Zhang, F.; Azorin-Molina, C.; Pirooz, A.A.S.; Flay, R.G.J.; Hersbach, H.; Chen, D. Near-surface mean and gust wind speeds in ERA5 across Sweden: Towards an improved gust parametrization. Clim. Dyn. 2020, 55, 887–907. [Google Scholar] [CrossRef]
- Parker, K.; Hill, D.F. Evaluation of bias correction methods for wave modeling output. Ocean Model. 2017, 110, 52–65. [Google Scholar] [CrossRef]
- Li, D.; Feng, J.; Xu, Z.; Yin, B.; Shi, H.; Qi, J. Statistical Bias Correction for Simulated Wind Speeds Over CORDEX-East Asia. Earth Sp. Sci. 2019, 6, 200–211. [Google Scholar] [CrossRef]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos. 2010, 115, D10. [Google Scholar] [CrossRef]
- Schulzweida, U. CDO User Guide 2021. Available online: https://zenodo.org/record/5614769#.YqlZU-xByUk (accessed on 1 January 2022).
- Jones, P. A User’s Guide for SCRIP: A Spherical Coordinate Remapping and Interpolation Package; Version 1.4; Los Alamos National Laboratory: Los Alamos, NM, USA, 1998. [Google Scholar]
- Perkins, S.E.; Pitman, A.J.; Holbrook, N.J.; McAneney, J. Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Clim. 2007, 20, 4356–4376. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Biometrika 1957, 44, 107–116. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 2020, 8, 1–12. [Google Scholar] [CrossRef]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2053–2075. [Google Scholar] [CrossRef] [PubMed]
- Thober, S.; Samaniego, L. Robust ensemble selection by multivariate evaluation of extreme precipitation and temperature characteristics. J. Geophys. Res. 2014, 119, 594–613. [Google Scholar] [CrossRef]
- Kulkarni, S.; Deo, M.C.; Ghosh, S. Evaluation of wind extremes and wind potential under changing climate for Indian offshore using ensemble of 10 GCMs. Ocean Coast. Manag. 2016, 121, 141–152. [Google Scholar] [CrossRef]
- Hassan, I.; Kalin, R.M.; White, C.J.; Aladejana, J.A. Selection of CMIP5 GCM ensemble for the projection of spatio-temporal changes in precipitation and temperature over the Niger Delta, Nigeria. Water 2020, 12, 385. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, M.; Nguyen-Duy, T.; Ngo-Duc, T.; Tangang, F. Climate change impact on sea surface winds in Southeast Asia. Int. J. Climatol. 2021, 42, 3571–3595. [Google Scholar] [CrossRef]
- Anoop, T.R.; Kumar, V.S.; Shanas, P.R.; Johnson, G. Surface wave climatology and its variability in the north Indian Ocean Based on ERA-interim reanalysis. J. Atmos. Ocean. Technol. 2015, 32, 1372–1385. [Google Scholar] [CrossRef] [Green Version]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Desmet, Q.; Ngo-Duc, T. A novel method for ranking CMIP6 global climate models over the southeast Asian region. Int. J. Climatol. 2021, 42, 97–117. [Google Scholar] [CrossRef]
- Tian, Q.; Huang, G.; Hu, K.; Niyogi, D. Observed and Global Climate Model Based Changes in Wind Power Potential over the Northern Hemisphere during 1979–2016; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 167, ISBN 1082995312. [Google Scholar]
- Shanas, P.R.; Sanil Kumar, V. Temporal variations in the wind and wave climate at a location in the eastern Arabian Sea based on ERA-Interim reanalysis data. Nat. Hazards Earth Syst. Sci. 2014, 14, 1371–1381. [Google Scholar] [CrossRef] [Green Version]
- Feser, F.; Rrockel, B.; Storch, H.; Winterfeldt, J.; Zahn, M. Regional climate models add value to global model data a review and selected examples. Bull. Am. Meteorol. Soc. 2011, 92, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- Roshin, E.; Deo, M.C. Derivation of design waves along the Indian coastline incorporating climate change. J. Mar. Sci. Technol. 2016, 22, 61–70. [Google Scholar] [CrossRef]
- Bhat, S.; Jain, P.; Deo, M.C. Application of Regional Climate Models for Coastal Design Parameters along India. J. Coast. Res. 2018, 35, 110–121. [Google Scholar] [CrossRef]
- Gopikrishna, B.; Deo, M.C. Changes in the shoreline at Paradip Port, India in response to climate change. Geomorphology 2018, 303, 243–255. [Google Scholar] [CrossRef]
- Jain, P.; Deo, M.C. Climate Change Impact on Design Waves Using Climate Models. In Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018); Murali, K., Sriram, V., Samad, A., Saha, N., Eds.; Springer: Singapore, 2019; pp. 783–794. [Google Scholar]
- Rajasree, B.R.; Deo, M.C. Assessment of Coastal Vulnerability Considering the Future Climate: A Case Study along the Central West Coast of India. J. Waterw. Port Coast. Ocean Eng. 2020, 146, 05019005. [Google Scholar] [CrossRef]
- Samuelsson, P.; Jones, C.G.; Willén, U.; Ullerstig, A.; Gollvik, S.; Hansson, U.; Jansson, C.; Kjellström, E.; Nikulin, G.; Wyser, K. The Rossby Centre Regional Climate model RCA3: Model description and performance. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2011, 63, 4–23. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Pryor, S.C.; Li, D. Assessing the performance of intergovernmental panel on climate change AR5 climate models in simulating and projecting wind speeds over China. J. Geophys. Res. Atmos. 2012, 117, 1–15. [Google Scholar] [CrossRef] [Green Version]
Model ID | Model Acronym | Model | Institution | Atmospheric Spatial Resolution (latitude °× longitude °) |
---|---|---|---|---|
0 | ERA5 | Fifth-Generation European Research Agency | 0.25 × 0.25 | |
1 | ACCESS1.0 | Australian Community Climate and Earth System Simulator | Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia, and Bureau of Meteorology (BOM), Australia | 1.25 × 1.875 |
2 | ACCESS1.3 | Australian Community Climate and Earth System Simulator | Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia, and Bureau of Meteorology (BOM), Australia | 1.25 × 1.875 |
3 | BCC-CSM1.1 -M | Beijing Climate Center Climate System Model with Moderate Resolution | Beijing Climate Center, China Meteorological Administration | 1.1215 × 1.125 |
4 | BNU-ESM | Beijing Normal University Earth System Model | College of Global Change and Earth System Science (GCESS), Beijing Normal University | 2.7906 × 2.8125 |
5 | CanCM4 | Canadian Coupled Global Climate Model | Canadian Centre for Climate Modelling and Analysis (CCCma) | 2.8125 × 2.8125 |
6 | CanESM2 | Canadian Earth System Model | Canadian Centre for Climate Modelling and Analysis (CCCma) | 2.8125 × 2.8125 |
7 | CMCC-CM | CMCC Climate Model | Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) | 0.7484 × 0.75 |
8 | CMCC-CMS | CMCC Climate Model with a Resolved Stratosphere | Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) | 1.8653 × 1.875 |
9 | CNRM-CM5 | CNRM Coupled Global Climate Model | Centre National de Recherches Meteorologiques and Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique (CNRM-CERFACS) | 1.4008 × 1.40625 |
10 | CSIRO-Mk3.6.0 | CSIRO Mark 3.6.0 Model | Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence (CSIRO-QCCCE) | 1.875 × 1.875 |
11 | FGOALS-s2 | Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 | Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG-IAP) | 1.6590 × 2.8125 |
12 | GFDL-CM3 | GFDL Coupled Model version 3 | Geophysical Fluid Dynamics Laboratory (GFDL) | 2.0 × 2.5 |
13 | GFDL-ESM2G | GFDL Earth System Model, an isopycnal model using the Generalized Ocean Layer Dynamics (GOLD) code base | Geophysical Fluid Dynamics Laboratory (GFDL) | 2.0225 × 2.5 |
14 | GFDL-ESM2M | GDFL Earth System Model with Modular Ocean Model 4 | Geophysical Fluid Dynamics Laboratory (GFDL) | 2.0225 × 2.5 |
15 | HadGEM2-AO | Hadley Centre Global Environment Model 2 Atmosphere-Ocean | National Institute of Meteorological Research/Korea Meteorological Administration (NIMR/KMA) | 1.250 × 1.875 |
16 | HadGEM2-CC | Hadley Centre Global Environment Model 2 Carbon cycle | Met Office Hadley Centre | 1.250 × 1.875 |
17 | HadGEM2-ES | Hadley Centre Global Environment Model 2 Earth System | Met Office Hadley Centre | 1.250 × 1.875 |
18 | INM-CM4 | INM Climate Model 4 | Institute for Numerical Mathematics of the Russian Academy of Sciences (INM) | 1.5 × 2.0 |
19 | IPSL-CM5A-LR | IPSL Coupled Model version 5A Low Resolution | Institut Pierre-Simon Laplace (IPSL) | 1.875 × 3.750 |
20 | IPSL-CM5A-MR | IPSL Coupled Model version 5A Mid Resolution | Institut Pierre-Simon Laplace (IPSL) | 1.2676 × 2.500 |
21 | IPSL-CM5B-LR | IPSL Coupled Model version 5B New Atmospheric Physics at Low Resolution | Institut Pierre-Simon Laplace (IPSL) | 1.875 × 3.750 |
22 | MIROC4h | Model for Interdisciplinary Research on Climate version 4 with High Resolution | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 0.5616 × 0.5625 |
23 | MIROC5 | Model for Interdisciplinary Research on Climate 5 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 1.4008 × 1.4063 |
24 | MIROC-ESM | MIROC Earth System Model | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 2.7906 × 2.8125 |
25 | MIROC-ESM-CHEM | MIROC Earth System Model, Atmospheric Chemistry Coupled Version | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 2.7906 × 2.8125 |
26 | MPI-ESM-LR | MPI Earth System Model Low Resolution | Max Planck Institute for Meteorology (MPI-M) | 1.875 × 1.875 |
27 | MPI-ESM-MR | MPI Earth System Model Mixed Resolution | Max Planck Institute for Meteorology (MPI-M) | Approximately 1.875 × 1.875 |
28 | MRI-CGCM3 | MRI Coupled Atmosphere-Ocean General Circulation Model, version 3 | Meteorological Research Institute (MRI) | 1.12148 × 1.125 |
29 | MME_CMIP5 | Multi-Model Ensemble mean of all twenty-eight CMIP5 GCMs | 0.25 × 0.25 | |
30 | MME-3_ (27, 10 and 13) | Multi-Model Ensemble mean of top 3 performed CMIP5 GCMs (Model with ID 27, 10 and 13) over ocean | 0.25 × 0.25 | |
34 | MME-3_ (1, 27 and 15) | Multi-Model Ensemble mean of top 3 performed CMIP5 GCMs (Model with ID 1, 27 and 15) over land | 0.25 × 0.25 |
Model ID | Model Acronym: Driving Model (RCM Model) | Institute ID |
---|---|---|
6_RCA | CCCma-CanESM2(RCA4) | SMHI |
6_RegCM | CCCma-CanESM2(RegCM4-4) | IITM |
9_RCA | CNRM-CERFACS-CNRM-CM5(RCA4) | SMHI |
9_RegCM | CNRM-CERFACS-CNRM-CM5(RegCM4-4) | IITM |
10_RCA | CSIRO-QCCCE-CSIRO-Mk3-6-0(RCA4) | SMHI |
10_RegCM | CSIRO-QCCCE-CSIRO-Mk3-6-0(RegCM4-4) | IITM |
19_RegCM | IPSL-IPSL-CM5A-LR(RegCM4-4) | IITM |
20_RCA | IPSL-IPSL-CM5A-MR(RCA4) | SMHI |
23_RCA | MIROC-MIROC5(RCA4) | SMHI |
17_RCA | MOHC-HadGEM2-ES(RCA4) | SMHI |
26_RCA | MPI-M-MPI-ESM-LR(RCA4) | SMHI |
26_REMO | MPI-M-MPI-ESM-LR(REMO2009) | MPI-CSC |
27_RegCM | MPI-M-MPI-ESM-MR(RegCM4-4) | IITM |
31_RCA | NCC-NorESM1-M(RCA4) | SMHI |
14_RCA | NOAA-GFDL-GFDL-ESM2M(RCA4) | SMHI |
14_RegCM | NOAA-GFDL-GFDL-ESM2M(RegCM4-4) | IITM |
32 | Ensemble of all CORDEX RCMs (MME_CORDEX) | - |
33 | Ensemble of top five performing CORDEX RCMs (MME-5) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakku, N.K.G.; Behera, M.R. Skill and Inter-Model Comparison of Regional and Global Climate Models in Simulating Wind Speed over South Asian Domain. Climate 2022, 10, 85. https://doi.org/10.3390/cli10060085
Lakku NKG, Behera MR. Skill and Inter-Model Comparison of Regional and Global Climate Models in Simulating Wind Speed over South Asian Domain. Climate. 2022; 10(6):85. https://doi.org/10.3390/cli10060085
Chicago/Turabian StyleLakku, Naresh K. G., and Manasa R. Behera. 2022. "Skill and Inter-Model Comparison of Regional and Global Climate Models in Simulating Wind Speed over South Asian Domain" Climate 10, no. 6: 85. https://doi.org/10.3390/cli10060085
APA StyleLakku, N. K. G., & Behera, M. R. (2022). Skill and Inter-Model Comparison of Regional and Global Climate Models in Simulating Wind Speed over South Asian Domain. Climate, 10(6), 85. https://doi.org/10.3390/cli10060085