Annual, Seasonal, and Monthly Rainfall Trend Analysis through Non-Parametric Tests in the Sebou River Basin (SRB), Northern Morocco
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data: Selection of Rainfall Series, Quality Control, and Homogenization
3. Methodology
4. Results
4.1. Annual Rainfall Trend
4.2. Seasonal Rainfall Trends
4.2.1. Slight Increase in Autumnal Rainfall
4.2.2. Winter Rainfall Has Sharp Decreasing Trend
4.2.3. Spring Rainfall Decline
4.2.4. Summer Rainfall Trend
4.3. Monthly Rainfall Trend
5. Discussion
6. Conclusions
- A pronounced negative trend was observed for annual rainfall in almost all stations in the series, mainly concentrated in the areas between Taza and Jabal Oudka. Sen’s slope ranged between −9.7 mm and −58 mm per decade.
- At the seasonal scale, we noted a slight increasing trend in autumn rainfall and a downward trend in summer rainfall, but most prominently, a decreasing trend in winter and spring rainfall ranging from −7 mm and −47 mm/10 years in winter months and −12 mm/10 years on average in spring.
- Most of the winter decrease occurred in December and February, while spring rainfall decreased, especially in March and April.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schilling, J.; Freier, K.P.; Hertig, E.; Scheffran, J. Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agric. Ecosyst. Environ. 2012, 156, 12–26. [Google Scholar] [CrossRef]
- Knippertz, P.; Christoph, M.; Speth, P. Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorol. Atmos. Phys. 2003, 83, 67–88. [Google Scholar] [CrossRef]
- Stour, L.; Agoumi, A. Sécheresse climatique au Maroc durant les dernières décennies. Hydroécol. Appl. 2008, 16, 215–232. [Google Scholar] [CrossRef] [Green Version]
- Ouatiki, H.; Boudhar, A.; Leblanc, M.; Fakir, Y.; Chehbouni, A. When climate variability partly compensates for groundwater depletion: An analysis of the GRACE signal in Morocco. J. Hydrol. Reg. Stud. 2022, 42, 101177. [Google Scholar] [CrossRef]
- Fofack, R. The social and political impact of the privatization of groundwater: Conflict and cooperation around the aquifer of Sais, Morocco. Water Soc. III 2015, 200, 11143. [Google Scholar]
- Luterbacher, J.; Xoplaki, E. 500-year Winter Temperature and Precipitation Variability over the Mediterranean Area and its Connection to the Large-scale Atmospheric Circulation. In Mediterranean Climate: Variability and Trends; Bolle, H.-J., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 133–153. ISBN 978-3-642-55657-9. [Google Scholar]
- Trigo, R.; Xoplaki, E.; Zorita, E.; Luterbacher, J.; Krichak, S.O.; Alpert, P.; Jacobeit, J.; Sáenz, J.; Fernández, J.; González-Rouco, F.; et al. Chapter 3 Relations between variability in the Mediterranean region and mid-latitude variability. In Mediterranean; Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Eds.; Developments in Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2006; Volume 4, pp. 179–226. [Google Scholar]
- Born, K.; Fink, A.H.; Paeth, H. Dry and wet periods in the northwestern Maghreb for present day and future climate conditions. Meteorol. Z. 2008, 17, 533–551. [Google Scholar] [CrossRef]
- Filahi, S.; Tramblay, Y.; Mouhir, L.; Diaconescu, E.P. Projected changes in temperature and precipitation indices in Morocco from high-resolution regional climate models. Int. J. Climatol. 2017, 37, 4846–4863. [Google Scholar] [CrossRef]
- Zittis, G. Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean, Middle East and North Africa. Theor. Appl. Climatol. 2018, 134, 1207–1230. [Google Scholar] [CrossRef]
- Fragaszy, S.R.; Jedd, T.; Wall, N.; Knutson, C.; Fraj, M.B.; Bergaoui, K.; Svoboda, M.; Hayes, M.; McDonnell, R. Drought Monitoring in the Middle East and North Africa (MENA) Region: Participatory Engagement to Inform Early Warning Systems. Bull. Am. Meteorol. Soc. 2020, 101, E1148–E1173. [Google Scholar] [CrossRef] [Green Version]
- Tuel, A.; Eltahir, E.A.B. Why Is the Mediterranean a Climate Change Hot Spot? J. Clim. 2020, 33, 5829–5843. [Google Scholar] [CrossRef]
- Tomaszkiewicz, M.A. Future Seasonal Drought Conditions over the CORDEX-MENA/Arab Domain. Atmosphere 2021, 12, 856. [Google Scholar] [CrossRef]
- IPCC. Working Group, II. Third Assesment Report Climate Change 2001: Impacts, Adaptation, and Vulnerability; Cambridge University Press: New York, NY, USA, 2001. [Google Scholar]
- IPCC. Climate Change 2014 Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Driouech, F.; ElRhaz, K.; Moufouma-Okia, W.; Arjdal, K.; Balhane, S. Assessing Future Changes of Climate Extreme Events in the CORDEX-MENA Region Using Regional Climate Model ALADIN-Climate. Earth Syst. Environ. 2020, 4, 477–492. [Google Scholar] [CrossRef]
- Longobardi, A.; Villani, P. Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int. J. Climatol. 2010, 30, 1538–1546. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38, 4–7. [Google Scholar] [CrossRef]
- Cannarozzo, M.; Noto, L.V.; Viola, F. Spatial distribution of rainfall trends in Sicily (1921–2000). Phys. Chem. Earth Parts A/B/C 2006, 31, 1201–1211. [Google Scholar] [CrossRef]
- Jain, S.K.; Kumar, V. Trend analysis of rainfall and temperature data for India. Curr. Sci. 2012, 102, 37–49. [Google Scholar]
- Becker, S.; Gemmer, M.; Jiang, T. Spatiotemporal analysis of precipitation trends in the Yangtze River catchment. Stoch. Environ. Res. Risk Assess. 2006, 20, 435–444. [Google Scholar] [CrossRef]
- Sonali, P.; Nagesh Kumar, D. Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol. 2013, 476, 212–227. [Google Scholar] [CrossRef]
- Valdes-Abellan, J.; Pardo, M.A.; Tenza-Abril, A.J. Observed precipitation trend changes in the western Mediterranean region. Int. J. Climatol. 2017, 37, 1285–1296. [Google Scholar] [CrossRef] [Green Version]
- Achite, M.; Wałęga, A.; Toubal, A.K.; Mansour, H.; Krakauer, N. Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria. Water 2021, 13, 3103. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Shahid, S.; Ismail, T.; Chung, E.-S.; Wang, X.-J. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorol. Atmos. Phys. 2019, 131, 263–277. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, S.; Zhong, G.; Lin, H.; Zhou, Z. Modified Mann-Kendall trend test for hydrological time series under the scaling hypothesis and its application. Hydrol. Sci. J. 2020, 65, 2419–2438. [Google Scholar] [CrossRef]
- Mallick, J.; Talukdar, S.; Alsubih, M.; Salam, R.; Ahmed, M.; Kahla, N.B.; Shamimuzzaman, M. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor. Appl. Climatol. 2021, 143, 823–841. [Google Scholar] [CrossRef]
- Şen, Z. Innovative Trend Analysis Methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Seenu, P.Z.; Jayakumar, K.V. Comparative study of innovative trend analysis technique with Mann-Kendall tests for extreme rainfall. Arab. J. Geosci. 2021, 14, 536. [Google Scholar] [CrossRef]
- Serinaldi, F.; Chebana, F.; Kilsby, C.G. Dissecting innovative trend analysis. Stoch. Environ. Res. Risk Assess. 2020, 34, 733–754. [Google Scholar] [CrossRef]
- Ouatiki, H.; Boudhar, A.; Ouhinou, A.; Arioua, A.; Hssaisoune, M.; Bouamri, H.; Benabdelouahab, T. Trend analysis of rainfall and drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab. J. Geosci. 2019, 12, 128. [Google Scholar] [CrossRef]
- Kessabi, R.; Hanchane, M.; Guijarro, J.A.; Krakauer, N.Y.; Addou, R.; Sadiki, A.; Belmahi, M. Homogenization and Trends Analysis of Monthly Precipitation Series in the Fez-Meknes Region, Morocco. Climate 2022, 10, 64. [Google Scholar] [CrossRef]
- Driouech, F.; Stafi, H.; Khouakhi, A.; Moutia, S.; Badi, W.; ElRhaz, K.; Chehbouni, A. Recent observed country-wide climate trends in Morocco. Int. J. Climatol. 2021, 41, E855–E874. [Google Scholar] [CrossRef]
- ABHS. Inventaire du degré de Pollution des Ressources en Eau dans le Bassin du Sebou. 2015. Available online: https://www.abhsebou.ma/wp-content/uploads/2016/09/Inv_degre_pollution_2007.pdf (accessed on 24 September 2022).
- Born, K.; Fink, A.H.; Knippertz, P.P. Meteorological Processes Influencing the Weather and Climate of Morocco. In Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa; Speth, P., Christoph, M., Diekkruger, B., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics; Macmillan: New York, NY, USA, 1977; Volume 1. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wahba, G.; Wendelberger, J. Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation. Mon. Weather Rev. 1980, 108, 1122–1143. [Google Scholar] [CrossRef]
- Eckstein, B.A. Evaluation of spline and weighted average interpolation algorithms. Comput. Geosci. 1989, 15, 79–94. [Google Scholar] [CrossRef]
- Hutchinson, M.F.; Gessler, P.E. Splines—More than just a smooth interpolator. Geoderma 1994, 62, 45–67. [Google Scholar] [CrossRef]
- Apaydin, H.; Sonmez, F.K. Spatial interpolation techniques for climate data in the GAP region in Turkey. Clim. Res. 2004, 28, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Bergonse, R.; Reis, E. Reconstructing pre-erosion topography using spatial interpolation techniques: A validation-based approach. J. Geogr. Sci. 2015, 25, 196–210. [Google Scholar] [CrossRef] [Green Version]
- Kamaruddin, S.A.; Nasir, N.A.H.A.; Rahim, N.S.; Shuhaime, N.; Hashim, M.A.; Khazali, A.S.; Aziz, K.N.A.; Roslani, M.A. A Comparative Accuracy of Regularized and Tension Spline Methods to Estimate and Model the Surface Water pH of Pulau Tuba, Langkawi, Kedah. Sci. Lett. 2021, 15, 116–134. [Google Scholar] [CrossRef]
- Hakam, O.; Baali, A.; Ait Brahim, Y.; El Kamel, T.; Azennoud, K. Regional and global teleconnections patterns governing rainfall in the Western Mediterranean: Case of the Lower Sebou Basin, North-West Morocco. Model. Earth Syst. Environ. 2022, 8, 5107–5128. [Google Scholar] [CrossRef]
- Singla, S.; Mahé, G.; Dieulin, C.; Driouech, F.; Milano, M.; El Guelai, F.Z.; Ardoin-Bardin, S. Evolution des relations pluie-débit sur des bassins versants du Maroc. IAHS-AISH Publ. 2010, 340, 679–687. Available online: https://iahs.info/uploads/dms/15275.94-679-687-340-85-T5_Singla.pdf (accessed on 29 September 2022).
- Benazizi, A. With Dams below Average Filling Rate, Morocco Faces Worst Drought in 40 Years. 2022. Available online: https://www.moroccoworldnews.com/2022/07/350366/with-dams-below-average-filling-rate-morocco-faces-worst-drought-in-40-years (accessed on 29 September 2022).
- Deitch, M.J.; Sapundjieff, M.J.; Feirer, S.T. Characterizing Precipitation Variability and Trends in the World’s Mediterranean-Climate Areas. Water 2017, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Bouklikha, A.; Habi, M.; Elouissi, A.; Benzater, B.; Hamoudi, S. The innovative trend analysis applied to annual and seasonal rainfall in the tafna watershed (Algeria). Rev. Bras. Meteorol. 2020, 35, 631–647. [Google Scholar] [CrossRef]
- Knippertz, P.; Ulbrich, U.; Marques, F.; Corte-Real, J. Decadal changes in the link between El Niño and springtime North Atlantic oscillation and European-North African rainfall. Int. J. Climatol. 2003, 23, 1293–1311. [Google Scholar] [CrossRef]
- Benzater, B.; Elouissi, A.; Dabanli, I.; Harkat, S.; Hamimed, A. New approach to detect trends in extreme rain categories by the ITA method in northwest Algeria. Hydrol. Sci. J. 2021, 66, 2298–2311. [Google Scholar] [CrossRef]
- Salhi, A.; Martin-Vide, J.; Benhamrouche, A.; Benabdelouahab, S.; Himi, M.; Benabdelouahab, T.; Casas Ponsati, A. Rainfall distribution and trends of the daily precipitation concentration index in northern Morocco: A need for an adaptive environmental policy. SN Appl. Sci. 2019, 1, 277. [Google Scholar] [CrossRef] [Green Version]
- Chehlafi, A.; Kchikach, A.; Derradji, A.; Mequedade, N. Highway cutting slopes with high rainfall erosion in Morocco: Evaluation of soil losses and erosion control using concrete arches. Eng. Geol. 2019, 260, 105200. [Google Scholar] [CrossRef]
- Benzougagh, B.; Meshram, S.G.; Abdallah, D.; Larbi, B.; Drisss, S.; Khalid, M.; Khedher, K.M. Mapping of soil sensitivity to water erosion by RUSLE model: Case of the Inaouene watershed (Northeast Morocco). Arab. J. Geosci. 2020, 13, 1153. [Google Scholar] [CrossRef]
- Jaafari, Y.; Benabdelhadi, M. Assessment of Rainfall Soil Loss in Allal El Fassi Watershed (Mean Atlas Morocco) Using RUSLE Method Combining to GIS and Remote Sensing. In Geospatial Technology: Application in Water Resources Management; Oulidi, H.J., Fadil, A., Semane, N.E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 95–103. ISBN 978-3-030-24974-8. [Google Scholar]
- Rahhou, J. Siltation Causes Moroccan Dams to Lose 70 Million Cubic Meters of Water. 2022. Available online: https://www.moroccoworldnews.com/2022/06/349522/siltation-causes-moroccan-dams-to-lose-70-million-cubic-meters-of-water (accessed on 3 October 2022).
- El Fathi, B.; El Hassani, F.; Moukhliss, M.; Mazigh, N.; Dra, A.; Ouallali, A.; Kherbeche, A.; Taleb, A. Flood forecast and flood vulnerability modeling in case of Wadi Fez, Morocco. Arab. J. Geosci. 2022, 15, 525. [Google Scholar] [CrossRef]
- Benzougagh, B.; Frison, P.-L.; Meshram, S.G.; Boudad, L.; Dridri, A.; Sadkaoui, D.; Mimich, K.; Khedher, K.M. Flood Mapping Using Multi-temporal Sentinel-1 SAR Images: A Case Study—Inaouene Watershed from Northeast of Morocco. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 1481–1490. [Google Scholar] [CrossRef]
- Loudyi, D.; Hasnaoui, M.D.; Fekri, A. Flood Risk Management Practices in Morocco: Facts and Challenges. In Wadi Flash Floods Challenges and Advanced Approaches for Disaster Risk Reduction; Springer: Berlin/Heidelberg, Germany, 2022; pp. 35–94. ISBN 9789811629037. [Google Scholar]
ID | Station | Lat (° N) | Long (° W) | Elevation (m) | Annual Rainfall (Mm) | Interannual Standard Deviation | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|
S1 | Ait Khabbach | 33.39 | −4.82 | 1491 | 379..2 | 111..0 | 0.17 | 0.61 |
S2 | Azzaba | 33.82 | −4.7 | 759 | 368.6 | 113.6 | 1.33 | 1.17 |
S3 | Bab Ounder | 34.53 | −4.58 | 509 | 703.3 | 255.9 | −0.22 | 0.60 |
S4 | Boured | 34.73 | −4.10 | 817 | 560.9 | 193.5 | −0.33 | 0.47 |
S5 | El Mers | 33.46 | −4.39 | 1242 | 453.2 | 136.5 | 2.07 | 1.04 |
S6 | Fez | 33.93 | −4.98 | 569 | 442.7 | 143.5 | 0.53 | 0.51 |
S7 | Ifrane | 33.53 | −5.11 | 1661 | 985.2 | 326.3 | 0.66 | 0.95 |
S8 | Jbel Oudka | 34.75 | −4.84 | 1589 | 1469.0 | 526.8 | −0.17 | 0.55 |
S9 | Meknes | 33.87 | −5.52 | 570 | 539.7 | 182.5 | 0.48 | 0.71 |
S10 | Mjaara | 34.59 | −5.24 | 128 | 600.4 | 214.8 | 0.18 | 0.71 |
S11 | Ouljet Essoultan | 33.62 | −5.86 | 334 | 456.9 | 132.3 | −0.13 | 0.51 |
S12 | Souk el Had Rdom | 34.30 | −5.77 | 34 | 412.2 | 133.6 | −0.19 | 0.43 |
S13 | Tahla | 34.05 | −4.43 | 571 | 551.0 | 170.5 | 0.28 | 0.64 |
S14 | Taza | 34.22 | −4.01 | 522 | 652.5 | 207.1 | −0.18 | 0.43 |
S15 | Tissa | 34.29 | −4.66 | 204 | 538.8 | 198.9 | 0.96 | 0.88 |
ID | Station Name | Annual | Autumn | Winter | Spring | Summer | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
TSA mm/10 y | MK | TSA mm/10 y | MK | TSA mm/10 y | MK | TSA mm/10 y | MK | TSA mm/10 y | MK | ||
S1 | Ait Khabbach | −9.71 | −1.21 | 0.71 | 0.23 | −8.46 | −2.30 * | −4.67 | −1.01 | 5.35 | 1.60 |
S2 | Azzaba | −17.03 | −2.00 * | 0.73 | 0.18 | −7.45 | −1.60 | −11.66 | −2.27 ** | −3.25 | −2.90 ** |
S3 | Bab ounder | −31.37 | −1.52 | 4.91 | 0.71 | −27.73 | −2.07 * | −6.23 | −0.60 | −1.00 | −1.58 |
S4 | Boured | −44.83 | −2.59 ** | 4.30 | 0.74 | −28.22 | −2.64 ** | −14.00 | −1.97 * | −3.20 | −2.11 * |
S5 | Elmers | −13.94 | −1.57 | 6.29 | 1.39 | −6.80 | −1.35 | −11.41 | −1.96 * | 0.08 | 0.01 |
S6 | Fes DRH | −24.88 | −2.39 * | 3.54 | 0.74 | −10.33 | −1.65 + | −15.52 | −2.49 ** | −2.06 | −3.12 ** |
S7 | Ifrane | −31.12 | −1.22 | 3.60 | 0.29 | −27.00 | −1.96 * | −14.13 | −1.66 + | −1.30 | −0.41 |
S8 | Jbel oudka | −58.00 | −1.22 | 7.54 | 0.56 | −47.52 | −1.66 + | −18.90 | −1.01 | −3.36 | −2.35 * |
S9 | Meknes | −36.53 | −2.62 ** | 2.28 | 0.48 | −19.96 | −2.49 * | −16.07 | −2.18 * | −0.47 | −0.54 |
S10 | Mjaara | −17.10 | −0.90 | 4.91 | 0.64 | −18.77 | −1.75 + | −4.00 | −0.58 | −0.71 | −1.41 |
S11 | Ouljet Essoultan | −22.48 | −1.92 + | 0.38 | 0.10 | −11.68 | −1.64 | −13.35 | −2.38 * | −0.66 | −0.98 |
S12 | Souk el Had Rdom | −15.00 | −1.41 | 6.14 | 1.07 | −16.86 | −2.51 * | −7.27 | −1.41 | −0.08 | −1.61 |
S13 | Tahla | −32.12 | −2.15 * | 5.69 | 1.14 | −15.26 | −2.07 * | −16.63 | −2.28 * | −1.43 | −1.49 |
S14 | Taza | −41.18 | −2.50 * | −0.71 | −0.08 | −22.27 | −2.21 * | −15.31 | −2.05 * | −1.09 | −1.43 |
S15 | Tissa | −15.65 | −1.05 | 2.27 | 0.42 | −15.51 | −1.60 | −8.48 | −1.11 | −0.46 | −0.88 |
ID | Station | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | Mai | Jun | Jul | Aug |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | Ait Khabbach | 1.22 | 0.69 | −1.60 | −1.55 | −0.36 | −2.45 | −1.54 | −1.54 | 0.73 | −1.23 | −1.23 | 2.69 |
S2 | Azzaba | 1.11 | 0.87 | −0.28 | −0.92 | 0.57 | −1.33 | −2.07 | −1.35 | −0.31 | −3.94 | −3.94 | 0.23 |
S3 | Bab Ounder | 1.45 | 1.78 | 0.03 | −1.23 | −0.21 | −1.13 | −0.29 | −0.03 | −0.89 | −2.72 | −2.72 | 0.52 |
S4 | Boured | 2.17 | 1.02 | −0.19 | −1.24 | −0.69 | −0.84 | −0.33 | −2.01 | −0.63 | −3.52 | −3.52 | −0.01 |
S5 | El Mers | 2.34 | 0.50 | −0.44 | −0.90 | −0.16 | −0.79 | −2.10 | −2.05 | −0.69 | −3.40 | −3.40 | 1.69 |
S6 | Fez | −0.18 | 0.15 | 0.67 | −1.08 | 0.06 | −1.57 | −2.20 | −1.72 | −2.67 | −3.77 | −3.77 | −1.71 |
S7 | Ifrane | 0.55 | 0.94 | 0.01 | −0.86 | 0.13 | −1.25 | −0.60 | −0.86 | −1.08 | −2.45 | −2.45 | 1.66 |
S8 | Jbel Oudka | 0.97 | 1.45 | 0.41 | −0.95 | 0.27 | −1.33 | −0.71 | 0.00 | −1.43 | −3.39 | −3.39 | 0.50 |
S9 | Meknes | 0.25 | 1.29 | −0.03 | −1.70 | −0.35 | −1.52 | −1.68 | −1.24 | −0.52 | −2.02 | −2.02 | 1.33 |
S10 | Mjaara | 1.32 | 1.33 | 0.50 | −0.78 | 0.33 | −0.86 | −0.38 | −0.54 | −0.58 | −3.02 | −3.02 | 1.68 |
S11 | Ouljet Essoultan | −0.22 | 0.80 | −0.42 | −1.33 | 0.44 | −0.44 | −1.18 | −1.82 | −1.24 | −2.84 | −2.84 | 0.42 |
S12 | Souk el Had Rdom | 1.44 | 1.60 | 0.41 | −2.06 | −0.14 | −1.18 | −0.93 | −0.26 | −1.51 | −2.50 | −2.50 | 0.53 |
S13 | Tahla | 0.53 | 1.35 | 0.77 | −0.79 | −0.10 | −1.71 | −1.60 | −1.33 | −1.41 | −2.63 | −2.63 | −0.37 |
S14 | Taza | 1.14 | 1.04 | −0.25 | −1.18 | −0.41 | −1.11 | −1.32 | −1.48 | −1.20 | −3.57 | −3.57 | −0.56 |
S15 | Tissa | 1.21 | 0.47 | 0.43 | −0.62 | 0.51 | −1.16 | −0.49 | −0.63 | −0.71 | −1.69 | −1.69 | 0.27 |
Country/ Region | Data/Variable | Methods | Key Findings | References |
---|---|---|---|---|
Morocco and its vicinity | Rainfall data from 42 stations, NCEP reanalysis the period 1930–2000 | Precipitation Index anomalies, Teleconnections, Circulation weather types, models projections | The northward shift of the storm track and eastward shift of the Azores High predicted by the ECHAM model for increasing GHG concentrations would therefore be associated with decreasing precipitation and potentially serious impacts for the future water supply for parts of Morocco. | [2] |
Morocco | Rainfall from 3 stations in the lower Sebou basinthe period 1948–2017 | Mann–Kendall test and Theil–Sen slope | Notable downward trends were identified in early winter (December) and early spring (March) with rainfall decreases of 0.5 mm/year and 0.42 mm/year, respectively | [45] |
Mediterranean area | Rainfall from 211 gauged stations the period 1918–1999 | Student’s t-test Mann–Kendal test | The trends appear predominantly negative, both at the annual and seasonal scale, except for the summer period when it appears to be positive | [17] |
Morocco | Rainfall and temperature data from 30 stations data 1960–2016 | Climate indices and Mann–Kendal test | Statistically significant increasing trends in warm temperature events and the annual mean precipitation and the standardized drought index show less spatially consistent tendencies despite the predominance of negative trends | [33] |
Morocco | Monthly rainfall series from 50 stations in 27 watersheds in Morocco | Regional vector Pettit’s nonparametric method, Bayesian Lee and Heghinian method, and Hubert’s segmentation | The precipitations are correlated with the North Atlantic Oscillation West of the Atlas. they provide evidence of a generalized rainfall reduction by an abrupt change in the time series between 1976 and 1980 | [46] |
Morocco | Monthly rainfall data from 15 stations over a 40-years period (1970–2010) in the Oum Errabia watershed | Standardized Precipitation Index (SPI) and trend analysis using Mann–Kendal test | The results show that the OER River basin tends towards drier conditions. An abundance of deficit seasons has been noticed (50 to 63% of the seasons), especially after 1980–1981. | [31] |
Spain | Daily precipitation data were provided by the National Meteorological Agency | Student’s t-test Mann–Kendall test | Annual rainfall had decreased, with values ranging from 0 to 15%, dry periods had increased in length, and the number of rainy days had decreased | [23] |
Mediterranean area | Precipitation data were obtained through NOAA’s National Climatic Data Center for the period 1975–2015 | Mann–Kendall test | Many sites in Mediterranean-climate regions show downward trends in annual precipitation (Spain, Australia, Chile, and Northern Italy); and most of the Mediterranean basin, and Chile showed downward trends in summer precipitation. | [48] |
Western Algeria | Monthly rainfall data from 17 stations (1970–2015) | Innovative Trend Analysis (ITA) | Seasonal rainfall showed a decreasing trend in winter and spring, while increasing trend is detected in summer and autumn | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kessabi, R.; Hanchane, M.; Krakauer, N.Y.; Aboubi, I.; El Kassioui, J.; El Khazzan, B. Annual, Seasonal, and Monthly Rainfall Trend Analysis through Non-Parametric Tests in the Sebou River Basin (SRB), Northern Morocco. Climate 2022, 10, 170. https://doi.org/10.3390/cli10110170
Kessabi R, Hanchane M, Krakauer NY, Aboubi I, El Kassioui J, El Khazzan B. Annual, Seasonal, and Monthly Rainfall Trend Analysis through Non-Parametric Tests in the Sebou River Basin (SRB), Northern Morocco. Climate. 2022; 10(11):170. https://doi.org/10.3390/cli10110170
Chicago/Turabian StyleKessabi, Ridouane, Mohamed Hanchane, Nir Y. Krakauer, Imane Aboubi, Jaafar El Kassioui, and Bouchta El Khazzan. 2022. "Annual, Seasonal, and Monthly Rainfall Trend Analysis through Non-Parametric Tests in the Sebou River Basin (SRB), Northern Morocco" Climate 10, no. 11: 170. https://doi.org/10.3390/cli10110170
APA StyleKessabi, R., Hanchane, M., Krakauer, N. Y., Aboubi, I., El Kassioui, J., & El Khazzan, B. (2022). Annual, Seasonal, and Monthly Rainfall Trend Analysis through Non-Parametric Tests in the Sebou River Basin (SRB), Northern Morocco. Climate, 10(11), 170. https://doi.org/10.3390/cli10110170