Implications of Regional Droughts and Transboundary Drought Risks on Drought Monitoring and Early Warning: A Review
Abstract
:1. Introduction
2. Characterizing the Transboundary Nature of Droughts
2.1. Understanding Regional Droughts and Transboundary Drought Risks
2.2. Understanding the Impacts of Regional Droughts
2.2.1. In-Country Regional Droughts
2.2.2. Multi-Country Regional Droughts
2.3. Drivers of Transboundary Drought Risks
2.3.1. Intrinsic Drivers
2.3.2. Extrinsic Drivers
Climate Change as a Driver
2.4. Risk Transmission Pathways and Transboundary Drought Impacts
3. Implications for Drought Monitoring and Early Warning
3.1. Implications for the Design of Drought Early Warning Systems
3.1.1. Complexity
3.1.2. Geographical Scale
3.1.3. Timeliness
3.2. Implications for Drought Risk Communication
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Apurv, T.; Cai, X. Regional Drought Risk in the Contiguous United States. Geophys. Res. Lett. 2021, 48, e2020GL092200. [Google Scholar] [CrossRef]
- Halbac-Cotoara-Zamfir, R.; Eslamin, S. Functional analysis of regional drought management. In Handbook of Drought and Water Scarcity: Management of Drought and Water Scarcity; CRC Press: Boca Raton, FL, USA, 2018; pp. 120–145. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Paulo, A.A.; Pereira, L.S. Drought Concepts and Characterization: Comparing Drought Indices Applied at Local and Regional Scales. Water Int. 2006, 31, 37–49. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Mishra, V. Drought detection and declaration in India. Water Secur. 2021, 14, 100104. [Google Scholar] [CrossRef]
- Eslamian, S.; Eslamian, F. Management of Drought and Water Scarcity; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Singh, J.; Ashfaq, M.; Skinner, C.B.; Anderson, W.B.; Mishra, V.; Singh, D. Enhanced risk of concurrent regional droughts with increased ENSO variability and warming. Nat. Clim. Chang. 2022, 12, 163–170. [Google Scholar] [CrossRef]
- Aadhar, S.; Mishra, V. On the occurrence of the worst drought in South Asia in the observed and future climate. Environ. Res. Lett. 2021, 16, 024050. [Google Scholar] [CrossRef]
- Maia, R.; Costa, M.; Mendes, J. Improving Transboundary Drought and Scarcity Management in the Iberian Peninsula through the Definition of Common Indicators: The Case of the Minho-Lima River Basin District. Water 2022, 14, 425. [Google Scholar] [CrossRef]
- UNDRR. Special Report on Drought 2021; UNDRR: Geneva, Switzerland, 2021. [Google Scholar]
- Ercin, E.; Veldkamp, T.I.E.; Hunink, J. Cross-border climate vulnerabilities of the European Union to drought. Nat. Commun. 2021, 12, 3322. [Google Scholar] [CrossRef]
- Garrick, D.E.; Schlager, E.; Stefano, L.D.; Villamayor-Tomas, S. Managing the Cascading Risks of Droughts: Institutional Adaptation in Transboundary River Basins. Earth’s Future 2018, 6, 809–827. [Google Scholar] [CrossRef] [Green Version]
- Pulwarty, R.S.; Sivakumar, M.V.K. Information systems in a changing climate: Early warnings and drought risk management. Weather. Clim. Extrem. 2014, 3, 14–21. [Google Scholar] [CrossRef] [Green Version]
- NDMC. U.S. Drought Monitor. Available online: https://droughtmonitor.unl.edu/About/WhatistheUSDM.aspx (accessed on 27 April 2022).
- NIDIS. DEWS Regions Drought Information. Available online: https://www.drought.gov/dews (accessed on 27 April 2022).
- NOAA. North American Drought Monitor (NADM). 27 April 2022. Available online: https://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/ (accessed on 27 April 2022).
- NACP. Drought Monitor. 27 April 2022. Available online: https://www.nacp.org.au/drought_monitor (accessed on 27 April 2022).
- IIT-GN. India Drought Monitor. 27 April 2022. Available online: https://sites.google.com/a/iitgn.ac.in/india_drought_monitor/home (accessed on 27 April 2022).
- IWMI. South Asia Drought Monitoring System (SADMS). 27 April 2022. Available online: http://dms.iwmi.org/ (accessed on 27 April 2022).
- Heim, R.R.; Brewer, M.J. The Global Drought Monitor Portal: The Foundation for a Global Drought Information System. Earth Interact. 2012, 16, 1–28. [Google Scholar] [CrossRef]
- Mittal, A. The 2008 Food Price Crisis: Rethinking Food Security Policies; United Nations Conference on Trade and Development: New York, NY, USA, 2009. [Google Scholar]
- Rao, S.A.; Chaudhari, H.; Pokhrel, S. Unusual Central Indian Drought of Summer Monsoon 2008: Role of Southern Tropical Indian Ocean Warming. J. Clim. 2010, 23, 5163–5174. [Google Scholar] [CrossRef]
- Mishra, V.; Thirumalai, K.; Jain, S.; Aadhar, S. Unprecedented drought in South India and recent water scarcity. Environ. Res. Lett. 2021, 16, 054007. [Google Scholar] [CrossRef]
- Gogoi, A.; Tripathi, B. 42% of India’s Land Area under Drought, 500 Mn People Severely Affected. 2019. Available online: https://www.business-standard.com/article/current-affairs/nearly-half-of-india-under-drought-40-population-severely-affected-119040300143_1.html (accessed on 10 May 2022).
- Bureau of Meteorology. Special Climate Statement 70 Update—Drought Conditions in Australia and Impact on Water Resources in the Murray–Darling Basin; Bureau of Meteorology: Melbourne, Australia, 2020. [Google Scholar]
- Wittwer, G.; Waschik, R. Estimating the economic impacts of the 2017–2019 drought and 2019–2020 bushfires on regional NSW and the rest of Australia. Aust. J. Agric. Resour. Econ. 2021, 65, 918–936. [Google Scholar] [CrossRef]
- Wittwer, G. Estimating the Regional Economic Impacts of the 2017 to 2019 Drought on NSW and the Rest of Australia; Centre of Policy Studies: Melbourne, Australia, 2020. [Google Scholar]
- Zhao, S.; Cong, D.; He, K.; Yang, H.; Qin, Z. Spatial-Temporal Variation of Drought in China from 1982 to 2010 Based on a modified Temperature Vegetation Drought Index (mTVDI). Sci. Rep. 2017, 7, 17473. [Google Scholar] [CrossRef]
- Han, R.; Li, Z.; Li, Z.; Han, Y. Spatial-Temporal Assessment of Historical and Future Meteorological Droughts in China. Atmosphere 2021, 12, 787. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, W.; Fang, X.; Zhang, Q.; Zhang, C.; Chen, D.; Cheng, C. Identification of Regional Drought Processes in North China using MCI analysis. Land 2021, 10, 1390. [Google Scholar] [CrossRef]
- World Bank. China Climate Change Knowledge Portal. 25 March 2021. Available online: https://climateknowledgeportal.worldbank.org/country/china/vulnerability (accessed on 20 April 2022).
- Barriopedro, D.; Gouveia, C.M.; Trigo, R.M.; Wang, L. The 2009/10 Drought in China: Possible Causes and Impacts on Vegetation. J. Hydrometeorol. 2012, 13, 1251–1267. [Google Scholar] [CrossRef] [Green Version]
- World Bank. India Trade Summary 2002. 26 April 2022. Available online: https://wits.worldbank.org/CountryProfile/en/Country/IND/Year/2002/Summarytext (accessed on 5 May 2022).
- United Nations. Drought—Pakistan Update No. 12; UN Humanitarian Coordinator for Pakistan: Islamabad, Pakistan, 2001. [Google Scholar]
- FAO. Food and Agricultural Trade Dataset. 26 April 2021. Available online: https://www.fao.org/faostat/en/#data/TCL (accessed on 26 April 2021).
- OCHA. Southeast Asia: Drought—2019–2020. 26 07 2021. Available online: https://reliefweb.int/disaster/dr-2019-000113-phl (accessed on 27 July 2022).
- Mekong River Commission. Dry Season Situation Report for the Mekong River Basin; Mekong River Commission: Vientiane, Laos, 2019. [Google Scholar]
- IFRC. Operation Update Report Viet Nam: Drought and Saltwater Intrusion; IFRC: Hanoi, Vietnam, 2020. [Google Scholar]
- MOFA. Water Agreements. Ministry of Foreign Affairs. 2022. Available online: https://www.mfa.gov.sg/SINGAPORES-FOREIGN-POLICY/Key-Issues/Water-Agreements (accessed on 13 June 2022).
- Chuah, C.J.; Ho, B.H.; Chow, W.T.L. Transboundary variations of urban drought vulnerability and its impact on water resource management in Singapore and Johor, Malaysia. Environ. Res. Lett. 2018, 13, 074011. [Google Scholar] [CrossRef]
- Gaupp, F. Extreme Events in a Globalized Food System. One Earth 2020, 2, 518–521. [Google Scholar] [CrossRef]
- IFRC. World Disasters Report 2020; IFRC: Geneva, Switzerland, 2020. [Google Scholar]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; p. 36. [Google Scholar]
- Opitz-Stapleton, S.; Cramer, L.; Kaba, F.; Gichuki, L.; Borodyna, O.; Crane, T.; Diabang, S.; Bahadur, S.; Diouf, A.; Seck, E. Transboundary Climate and Adaptation Risks in Africa; Supporting Pastoralism and Agriculture in Recurrent and Protracted Crises (SPARC): London, UK, 2021. [Google Scholar]
- FAO. Southern Africa. 2022. Available online: https://www.fao.org/emergencies/regions/southern-africa/intro/en/?page=39&ipp=10&tx_dynalist_pi1[par]=YToxOntzOjE6IkwiO3M6MToiMCI7fQ== (accessed on 10 June 2022).
- Zhang, X.; Obringer, R.; Wei, C.; Chen, N.; Niyogi, D. Droughts in India from 1981 to 2013 and Implications to Wheat Production. Sci. Rep. 2017, 7, 44552. [Google Scholar] [CrossRef] [Green Version]
- Goldin, T. India's drought below ground. Nat. Geosci. 2016, 9, 98. [Google Scholar] [CrossRef]
- Banerjee, P.S.; Silva, S.D. Pro-Poor Groundwater Development: The Case of the Barind Experiment in Bangladesh; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Siddique, A. Bangladesh to Declare Water Emergency in Northwest. 2020. Available online: https://www.thethirdpole.net/en/climate/bangladesh-to-declare-water-emergency-in-northwest/ (accessed on 28 April 2022).
- Loiseleur, E.; Magnan, A.K.; Anisimov, A. The Transboundary Implications of Climate-Related Coastal Migration: State of Knowledge, Factors of Influence and Policy Pathways; Adaptation Without Borders and IDDRI: Paris, France, 2021. [Google Scholar]
- Rüttinger, L.; Stang, G.; Smith, D.; Tänzler, D.; Vivekananda, J. A New Climate for Peace—Taking Action on Climate and Fragility Risks—Executive Summary; Adelphi: Berlin, Germany; London, UK; Washington, DC, USA; Paris, France, 2014. [Google Scholar]
- Prabhakar, S.V.R.K.; Shaw, R.; Ruttinger, L.; Mori, H. Climate Fragility Risks in Asia: The Development Nexus; Adelphi: Berlin, Germany, 2017. [Google Scholar]
- Islam, S.N.; Winkel, J. Climate Change and Social Inequality; UN Department of Economic & Social Affairs: New York, NY, USA, 2017. [Google Scholar]
- McGowan, H.; Campbell, M.; Callow, J.N.; Lowry, A.; Wong, H. Evidence of wet-dry cycles and mega-droughts in the Eemian climate of southeast Australia. Sci. Rep. 2020, 10, 18000. [Google Scholar] [CrossRef]
- Lorenz, E. The butterfly effect. In The Chaos Avant-Garde: Memories of the Early Days of Chaos Theory; World Scientific: Singapore, 2000; pp. 91–94. [Google Scholar]
- Adger, W.N.; Eakin, H.; Winkels, A. Nested and teleconnected vulnerabilities to environmental change. Front. Ecol. Environ. 2008, 7, 150–157. [Google Scholar] [CrossRef]
- Cavanaugh, G. Direct Climate Markets: The Prospects for Trading Teleconnection Risk; University of Kentucky: Lexington, KY, USA, 2013. [Google Scholar]
- Moser, S.C.; Hart, J.A.F. The long arm of climate change: Societal teleconnections and the future of climate change impacts studies. Clim. Chang. 2015, 129, 13–26. [Google Scholar] [CrossRef]
- Galaz, V.; Gars, J.; Moberg, F.; Nykvist, B.; Repinski, C. Why Ecologists Should Care about Financial Markets. Trends Ecol. Evol. 2015, 30, 571–580. [Google Scholar] [CrossRef]
- Clark, J.; Jones, A. Geopolitical teleconnections. Polit. Geogr. 2019, 75, 1–34. [Google Scholar] [CrossRef]
- Cardille, J.A.; Bennett, E.M. Tropical teleconnections. Nat. Geosci. 2010, 3, 154–155. [Google Scholar] [CrossRef]
- Eakin, H.; Winkels, A.; Sendzimir, J. Nested vulnerability: Exploring cross-scale linkages and vulnerability teleconnections in Mexican and Vietnamese coffee systems. Environ. Sci. Policy 2009, 12, 398–412. [Google Scholar] [CrossRef]
- D’Amour, C.B.; Wenz, L.; Kalkuhl, M.; Steckel, J.C.; Creutzig, F. Teleconnected food supply shocks. Environ. Res. 2016, 11, 035007. [Google Scholar]
- Huang, L.-S.; Chiu, H.-W. Peri-urbanization, land teleconnections, and the equality of ecological exchange: An energy approach. Landsc. Urban Plan. 2020, 198, 103781. [Google Scholar] [CrossRef]
- Adams, K.; Benzie, M.S.C.; Sadowski, S. Climate Change, Trade, and Global Food Security: A Global Assessment of Transboundary Climate Risks in Agricultural Commodity Flows; Stockholm Environment Institute: Stockholm, Sweden, 2021. [Google Scholar]
- Opitz-Stapleton, S.; Cramer, L.; Kaba, F.; Gichuki, L.; Borodyna, O.; Crane, T.; Diabang, S.; Bahadur, S.; Diouf, A.; Seck, E. Transboundary Climate and Adaptation Risks in Africa: Perceptions from 2021; Overseas Development Institute: London, UK, 2021. [Google Scholar]
- Benzie, M.; Harris, K. Transboundary Climate Risks and Adaptation; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Prabhakar, S.V.R.K.; Shaw, R. Globalization of Local Risks through International Investments and Businesses: A Case for Risk Communication and Climate Fragility Reduction; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2019. [Google Scholar]
- Prabhakar, S.V.R.K.; Shaw, R. International investments and businesses as enablers of globalization of local risks: A case for risk communication and climate fragility reduction. Prog. Disaster Sci. 2020, 8, 100125. [Google Scholar]
- Prabhakar, S.V.R.K.; Siva, B.; Corral, A.F. Transboundary Impacts of Climate Change in Asia: Making a Case for Regional Adaptation Planning and Cooperation; Institute for Global Environmental Strategies: Hayama, Japan, 2018. [Google Scholar]
- Lager, F.; Adams, K.M.; Dzebo, A.; Eriksson, M.; Klein, R.J.; Klimes, M. A Just Transition for Climate Change Adaptation: Towards Just Resilience and Security in a Globalising World; Stockholm Environment Institute: Stockholm, Sweden, 2021. [Google Scholar]
- Adams, K.M.; Harris, K.; Klein, R.J.; Lager, F.; Benzie, M. Climate-Resilient Trade and Production: The Transboundary Effects of Climate Change and Their Implications for EU Member States; Stockholm Environmental Institute: Stockholm, Sweden, 2020. [Google Scholar]
- Hoff, H.; Monjeau, A.; Gomez-Paredes, J.; Frank, F.; Rojo, S.; Malik, A.; Adams, K. International Spill overs in SDG Implementation: The Case of Soy from Argentina; Stockholm Environment Institute: Stockholm, Sweden, 2019. [Google Scholar]
- Magnan, A.K.; Chalastani, V.I. Towards a Global Adaptation Progress Tracker: First Thoughts; IDDRI: Paris, France, 2019. [Google Scholar]
- Benzie, M.; Adams, K.M.; Roberts, E.; Magnan, A.K.; Persson, Å.; Nadin, R.; Klein, R.J.; Harris, K.; Treyer, S.; Kirbyshire, A. Meeting the Global Challenge of Adaptation by Addressing Transboundary Climate Risk; Stockholm Environment Institute: Stockholm, Sweden, 2018. [Google Scholar]
- Nadin, R.; Roberts, E. Moving towards a Growing Global Discourse on Transboundary Adaptation; Overseas Development Institute: London, UK, 2018. [Google Scholar]
- Gardner, T.; Benzie, M.; Börner, J.; Dawkins, E.; Fick, S.; Garrett, R.; Godar, J.; Grimard, A.; Lake, S.; Larsen, R.; et al. Transparency and sustainability in global commodity supply chains. World Dev. 2019, 121, 163–177. [Google Scholar] [CrossRef]
- Persson, Å. Global adaptation governance: An emerging but contested domain. WIRE’s Clim. Change 2017, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Benzie, M.; Davis, M.; Barrott, J. Transnational Climate Change Impacts: An Entry Point to Enhanced Global Cooperation on Adaptation? Stockholm Environment Institute: Stockholm, Sweden, 2016. [Google Scholar]
- Benzie, M.; Hedlund, J.; Carlsen, H. Introducing the Transnational Climate Impacts Index: Indicators of Country-Level Exposure—Methodology Report; Stockholm Environment Institute: Stockholm, Sweden, 2017. [Google Scholar]
- Benzie, M.; John, A. Reducing Vulnerability to Food Price Shocks in a Changing Climate; Stockholm Environment Institute: Stockholm, Sweden, 2015. [Google Scholar]
- Benzie, M.; Davis, M. National Adaptation Plans and the Indirect Impacts of Climate Change; Stockholm Environment Institute: Stockholm, Sweden, 2014. [Google Scholar]
- Hedlund, J.; Fick, S.; Carlsen, H.; Benzie, M. Quantifying transnational climate impact exposure: New perspectives on the global distribution of climate risk. Glob. Environ. Change 2018, 52, 75–85. [Google Scholar] [CrossRef]
- Benzie, M.; Persson, Å. Governing borderless climate risks: Moving beyond the territorial framing of adaptation. Int. Environ. Agreem. 2019, 19, 369–393. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Causes of the 2007–2008 Global Food Crisis Identified; European Commission DG Environment: Brussels, Belgium, 2011. [Google Scholar]
- Hunt, E.; Femia, F.; Werrell, C.; Christian, J.I.; Otkin, J.A.; Basara, J.; Anderson, M.; White, T.; Hain, C.; Randall, R.; et al. Agricultural and food security impacts from the 2010 Russia flash drought. Weather Clim. Extrem. 2021, 34, 100383. [Google Scholar] [CrossRef]
- FAO. FAO Food Price Index. 8 April 2022. Available online: https://www.fao.org/worldfoodsituation/foodpricesindex/en (accessed on 20 April 2022).
- Masters, J. Extreme Weather and Pandemic Help Drive Global Food Prices to 46-Year High. Available online: https://yaleclimateconnections.org/2021/12/extreme-weather-and-pandemic-help-drive-global-food-prices-to-46-year-high/ (accessed on 6 December 2021).
- JICA. Ex-Post Evaluation of Japanese Grant Aid Project the Project for Nam Ngum I Hydropower Station Rehabilitation in the Lao People’s Democratic Republic; JICA: Tokyo, Japan, 2010. [Google Scholar]
- Luo, T.; Krishnan, D.; Sen, S. Parched Power: Water Demands, Risks, and Opportunities for India’s Power Sector; World Resources Institute: Washington, DC, USA, 2018. [Google Scholar]
- Sengupta, D. Power Prices Rise on NTPC Farakka Shutdown. 16 March 2016. Available online: https://economictimes.indiatimes.com/industry/energy/power/power-prices-rise-on-ntpc-farakka-shutdown/articleshow/51428636.cms (accessed on 16 March 2016).
- The Times of India. Court Stays Karnataka Ban on Export of Power; The Times of India: Thiruvananthapuram, India, 2014. [Google Scholar]
- Bergner, M. Developing Nepal’s Hydroelectric Resources: Policy Alternatives; University of Virginia: Charlottesville, VA, USA, 2013. [Google Scholar]
- Rahman, S.H.; Wijayatunga, P.D.C.; Gunatilake, H.; Fernando, P.N. Energy Trade in South Asia: Opportuniites and Challenges; ADB: Manila, Philippines, 2011. [Google Scholar]
- Basist, A.; Williams, C. Monitoring the Quantity of Water Flowing through the Upper Mekong Basin under Natural (Unimpeded) Conditions; Sustainable Infrastructure Partnership and Lower Mekong Initiative: Washington, DC, USA, 2020. [Google Scholar]
- Mekong River Commission. Mekong Low Flow and Drought Conditions in 2019–2021: Hydrological Conditions in the Lower Mekong River Basin; Mekong River Commission: Vientiane, Laos, 2022. [Google Scholar]
- Chandrasekara, S.S.; Kwon, H.-H.; Vithanage, M.; Obeysekera, J. Drought in South Asia: A Review of Drought Assessment and Prediction in South Asian Countries. Atmosphere 2021, 12, 369. [Google Scholar] [CrossRef]
- Ginkel, M.; Biradar, C. Drought Early Warning in Agri-Food Systems. Climate 2021, 9, 134. [Google Scholar] [CrossRef]
- Pozzi, W.; Sheffield, J.; Stefanski, R.; Cripe, D.; Pulwarty, R.; Vogt, J.V.; Heim, R.R., Jr.; Brewer, M.J.; Svoboda, M.; Westerhoff, R.; et al. Toward global drought early warning: Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting. Bull. Am. Meteorol. Soc. 2013, 94, 776–785. [Google Scholar] [CrossRef]
- Acácio, V.; Andreu, J.; Assimacopoulos, D.; Bifulco, C.; Carli, A.d.; Dias, S.; Kampragou, E.; Monteagudo, D.H.; Rego, F.; Seidl, I.; et al. Review of Current Drought Monitoring Systems and Identification of (Further) Monitoring Requirements; Alterra: Wageningen, The Netherlands, 2013. [Google Scholar]
- Sun, W.; Areikat, S. Establishing Drought Early Warning Systems in West Asia and North Africa; United Nations: Geneva, Switzerland, 2013. [Google Scholar]
- Funk, C.; Shukla, S. Drought Early Warning and Forecasting; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Barker, L.J.; Hannaford, J.; Ma, M. Drought monitoring and early warning in China: A review of research to pave the way for operational systems. Proc. Int. Assoc. Hydrol. Sci. 2020, 383, 273–279. [Google Scholar] [CrossRef]
- Bhuiyan, C.; Singh, R.P.; Kogan, F.N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 289–302. [Google Scholar] [CrossRef]
- Mlenga, D.H.; Jordaan, A.J.; Mandebvu, B. Integrating Standard Precipitation Index and Normalised Difference Vegetation Index for near-real-time drought monitoring in Eswatini. Jamba 2019, 11, 917. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, C.; Meng, F.-R.; Bourque, C.P.-A.; Zhang, C. Evaluation of the suitability of six drought indices in naturally growing, transitional vegetation zones in Inner Mongolia (China). PLoS ONE 2020, 15, e0233525. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Gamage, M.S.D.N.; Smakhtin, V.U. The Use of Remote Sensing Data for Drought Assessment and Monitoring in Southwest Asia; IWMI: Colombo, Sri Lanka, 2004. [Google Scholar]
- Sheffield, J.; Wood, E.F.; Chaney, N.; Guan, K.; Sadri, S.; Yuan, X.; Olang, L.; Amani, A.; Ali, A.; Demuth, S.; et al. A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security. Bull. Am. Meteorol. Soc. 2014, 95, 861–882. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Horion, S.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef] [Green Version]
- Hudlow, M.D. Technological developments in real-time operational hydrologic forecasting in the United States. J. Hydrol. 1998, 102, 69–92. [Google Scholar] [CrossRef]
- Denaro, S.; Anghileri, D.; Giuliani, M.; Castelletti, A. Informing the operations of water reservoirs over multiple temporal scales by direct use of hydro-meteorological data. Adv. Water Resour. 2017, 103, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Cardenal, S.J.; Riegels, N.D.; Berry, P.A.M.; Smith, R.G.; Yakovlev, A.; Siegfried, T.U.; Bauer-Gottwein, P. Real-time remote sensing driven river basin modelling using radar altimetry. Hydrol. Earth Syst. Sci. 2011, 15, 241–254. [Google Scholar] [CrossRef]
- Government of India. An Introduction to Real-Time Hydrological Information System; Ministry of Water Resources, River Development and Ganga Rejuvenation: New Delhi, India, 2018.
- Gaddam, A.; Al-Hrooby, M.; Esmael, W.F. Designing a Wireless Sensors Network for Monitoring and Predicting Droughts. Int. J. Smart Sens. Intell. Syst. 2014, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- WMO. 2021 State of Climate Services: Water; WMO: Geneva, Switzerland, 2021. [Google Scholar]
- Calvel, A. Impact-Based Forecasting—A Risk Reduction Approach. Available online: https://www.un-igrac.org/stories/early-warning-systems-are-only-good-actions-they-catalyse (accessed on 28 April 2022).
- WMO. WMO Guidelines on Multi-Hazard Impact-Based Forecast and Warning Services; World Meteorological Organization: Geneva, Switzerland, 2021. [Google Scholar]
S No | Drought Event | Transboundary Implications |
---|---|---|
1 | India, droughts of 2008, 2016–2018, 2019 |
|
2 | Australia, the drought of 2017–2019 |
|
3 | China, the drought of 2009 |
|
4 | South Asia, the drought of 1999–2006 |
|
5 | Southeast Asia, the drought of 2019–2020 |
|
6 | North America and Eastern Europe, the drought of 2018 |
|
7 | Several drought events in Eastern Africa |
|
Name of the System | Elements Covered |
---|---|
The United States Drought Monitor (USDM) North American Drought Monitor (NADM) | CPC Soil moisture model, PDSI, SPI, stream flow |
India drought monitor | NDVI-LST, Standardized Soil Moisture Index, SPI, Standardized Runoff Index (SRI) |
Australia Combined Drought Indicator (CDI) | SPI, NDVI, soil moisture, and evapotranspiration |
Southwest Asia drought monitor and South Asia drought monitor | NDVI, drought severity index (DSI), Vegetation Condition Index (VDI), Temperature Condition Index (TVI) |
African flood and drought monitor | Employs a cascading dynamic modelling system that includes climate models, Variable Infiltration Capacity (VIC) land surface hydrological model, remotely sensed precipitation and atmospheric elements. Derives SPI, soil moisture indices, NDVI and stream flow percentiles |
European Drought Observatory (EDO) | Combined Drought Indicator (CDI) based on SPI, soil moisture anomaly, vegetation productivity anomaly, heat cold wave index, water storage anomaly, and low-flow index. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishna Prabhakar, S.V.R. Implications of Regional Droughts and Transboundary Drought Risks on Drought Monitoring and Early Warning: A Review. Climate 2022, 10, 124. https://doi.org/10.3390/cli10090124
Krishna Prabhakar SVR. Implications of Regional Droughts and Transboundary Drought Risks on Drought Monitoring and Early Warning: A Review. Climate. 2022; 10(9):124. https://doi.org/10.3390/cli10090124
Chicago/Turabian StyleKrishna Prabhakar, Sivapuram Venkata Rama. 2022. "Implications of Regional Droughts and Transboundary Drought Risks on Drought Monitoring and Early Warning: A Review" Climate 10, no. 9: 124. https://doi.org/10.3390/cli10090124