Characterization of PcLEA14, a Group 5 Late Embryogenesis Abundant Protein Gene from Pear (Pyrus communis)
Abstract
:1. Introduction
2. Results
2.1. Phylogenetic Analysis and Low-Temperature Induced Expression of the Pear Homolog of LEA14: PcLEA14
2.2. Seasonal Changes in PcLEA14 Expression
2.3. Bioinformatic Analysis of Promoter Sequences
2.4. Seasonal Changes in the Expression of the Pear Homologs of DREB1: PcDREB1s
2.5. Stress Tolerance in Arabidopsis Expressing PcLEA14
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Sequences Used for Phylogenetic Analysis
4.3. Expression Analyses
4.4. Environmental Stress Treatment
4.5. Bioinformatic Analysis of Promoter Sequences
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kanayama, Y.; Kochetov, A.V. Abiotic Stress Biology in Horticultural Plants; Springer: New York, NY, USA, 2015. [Google Scholar]
- Liu, Y.; Wang, L.; Jiang, S.; Pan, J.; Cai, G.; Li, D. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast. Plant Physiol. Biochem. 2014, 84, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, Y.; Watanabe, M.; Moriguchi, R.; Deguchi, M.; Kanahama, K.; Yamaki, S. Effects of low temperature and abscisic acid on the expression of the sorbitol-6-phosphate dehydrogenase gene in apple leaves. J. Jpn. Soc. Hortic. Sci. 2006, 75, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Kanayama, Y.; Mizutani, R.; Yaguchi, S.; Hojo, A.; Ikeda, H.; Nishiyama, M.; Kanahama, K. Characterization of an uncharacterized aldo-keto reductase gene from peach and its role in abiotic stress tolerance. Phytochemistry 2014, 104, 30–36. [Google Scholar] [CrossRef] [PubMed]
- El-Esawi, M.A.; Alayafi, A.A. Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton (Gossypium barbadense L.). Genes 2019, 10, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Esawi, M.A.; Al-Ghamdi, A.A.; Ali, H.M.; Alayafi, A.A. Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ. Exp. Bot. 2019, 159, 55–65. [Google Scholar] [CrossRef]
- Uozumi, A.; Ikeda, H.; Hiraga, M.; Kanno, H.; Nanzyo, M.; Nishiyama, M.; Kanahama, K.; Kanayama, Y. Tolerance to salt stress and blossom-end rot in an introgression line, IL8-3, of tomato. Sci. Hortic. 2012, 138, 1–6. [Google Scholar] [CrossRef]
- Battaglia, M.; Olvera-Carrillo, Y.; Garciarrubio, A.; Campos, F.; Covarrubias, A.A. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 2008, 148, 6–24. [Google Scholar] [CrossRef] [Green Version]
- Ciccarelli, F.D.; Bork, P. The WHy domain mediates the response to desiccation in plants and bacteria. Bioinformatics 2005, 21, 1304–1307. [Google Scholar] [CrossRef]
- Hunault, G.; Jaspard, E. LEAPdb: A database for the late embryogenesis abundant proteins. BMC Genom. 2010, 11, 221. [Google Scholar] [CrossRef] [Green Version]
- Jaspard, E.; Hunault, G. Comparison of amino acids physico-chemical properties and usage of late embryogenesis abundantproteins, hydrophilins and WHy domain. PLoS ONE 2015, 9, e109570. [Google Scholar]
- Park, S.C.; Kim, Y.H.; Jeong, J.C.; Kim, C.Y.; Lee, H.S.; Bang, J.W.; Kwak, S.S. Sweet potato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. Planta 2011, 233, 621–634. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Tan, L.; Hu, Z.; Chen, G.; Wang, G.; Hu, T. Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Mol. Genet. Genom. 2012, 287, 39–54. [Google Scholar]
- Jia, F.; Qi, S.; Li, H.; Liu, P.; Wu, C.; Zheng, C.; Huang, J. Overexpression of late embryogenesis abundant 14 enhances Arabidopsis salt stress tolerance. Biochem. Biophys. Res. Commun. 2014, 454, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 2012, 1819, 86–96. [Google Scholar] [CrossRef]
- Jin, C.; Li, K.Q.; Xu, X.Y.; Zhang, H.P.; Chen, H.X.; Chen, Y.H.; Hao, J.; Wang, Y.; Huang, X.S.; Zhang, S.L. A novel NAC transcription factor, pbenac1, of Pyrus betulifolia confers cold and drought tolerance via interacting with pbeDREBs and activating the expression of stress-responsive genes. Front. Plant. Sci. 2017, 8, 1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nashima, K.; Shimizu, T.; Nishitani, C.; Yamamoto, T.; Takahashi, H.; Nakazono, M.; Itai, A.; Isuzugawa, K.; Hanada, T.; Takashina, T.; et al. Microarray analysis of gene expression patterns during fruit development in European pear (Pyrus communis). Sci. Hortic. 2013, 164, 466–473. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Agarwal, P.; Reddy, M.K.; Sopory, S.K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006, 25, 1263–1274. [Google Scholar] [CrossRef]
- Cao, P.B.; Azar, S.; SanClemente, H.; Mounet, F.; Dunand, C.; Marque, G.; Marque, C.; Teulieères, C. Genome-wide analysis of the AP2/ERF family in eucalyptus grandis: An intriguing over-representation of stress-responsive. PLoS ONE 2015, 10, e0121041. [Google Scholar] [CrossRef]
- Saito, T.; Bai, S.; Ito, A.; Sakamoto, D.; Saito, T.; Ubi, B.E.; Imai, T.; Moriguchi, T. Expression and genomic structure of the dormancy-associated MADS box genes MADS13 in Japanese pears (Pyrus pyrifolia Nakai) that differ in their chilling requirement for endodormancy release. Tree Physiol. 2013, 33, 654–667. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yan, X.; Yang, Q.; Ma, Y.; Yang, B.; Tian, J.; Teng, Y.; Bai, S. PpCBFs selectively regulate PpDAMs and contribute to the pear bud endodormancy process. Plant Mol. Biol. 2019, 99, 575–586. [Google Scholar] [CrossRef]
- Gabay, G.; Faigenboim, A.; Dahan, Y.; Izhaki, Y.; Itkin, M.; Malitsky, S.; Elkind, Y.; Flaishman, M.A. Transcriptome analysis and metabolic profiling reveal the key role of α-linolenic acid in dormancy regulation of European pear. J. Exp. Bot. 2019, 70, 1017–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlot, S.; Gosti, F.; Guerrier, D.; Vavasseur, A.; Giraudat, J. The ABI1 and ABI2 protein phosphatases 2C act in anegative feedback regulatory loop of the abscisic acid signalling pathway. Plant J. 2001, 25, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.P. Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Res. 2002, 30, e77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, G.P. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J. 2003, 33, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Svensson, J.T.; Crosatti, C.; Campoli, C.; Bassi, R.; Stanca, A.M.; Close, T.J.; Cattivelli, L. Transcriptome analysis of cold acclimation in barley albina and xantha mutants. Plant Physiol. 2006, 141, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Dubouzet, J.G.; Sakuma, Y.; Ito, Y.; Kasuga, M.; Dubouzet, E.G.; Miura, S.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003, 33, 751–763. [Google Scholar] [CrossRef]
- Qin, F.; Sakuma, Y.; Li, J.; Liu, Q.; Li, Y.Q.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 2004, 45, 1042–1052. [Google Scholar] [CrossRef] [Green Version]
- Skinner, J.S.; von Zitzewitz, J.; Szucs, P.; Marquez-Cedillo, L.; Filichkin, T.; Amundsen, K.; Stockinger, E.J.; Thomashow, M.F.; Chen, T.H.; Hayes, P.M. Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol. Biol. 2005, 59, 533–551. [Google Scholar] [CrossRef]
- Baker, S.S.; Wilhelm, K.S.; Thomashow, M.F. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 1994, 24, 701–713. [Google Scholar] [CrossRef]
- Jiang, C.; Iu, B.; Singh, J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol. Biol. 1996, 30, 679–684. [Google Scholar] [CrossRef]
- Kitashiba, H.; Ishizaka, T.; Isuzugawa, K.; Nishimura, K.; Suzuki, T. Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J. Plant Physiol. 2004, 161, 1171–1176. [Google Scholar] [CrossRef]
- Gu, X.; Gao, Z.; Zhuang, W.; Qiao, Y.; Wang, X.; Mi, L.; Zhang, Z.; Lin, Z. Comparative proteomic analysis of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low temperature. J. Plant Physiol. 2013, 170, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Kitashiba, H.; Matsuda, N.; Ishizaka, T.; Nakano, H.; Suzuki, T. Isolation of genes similar to DREB1/CBF from sweet cherry (Prunus avium L.). J. Jpn. Soc. Hortic. Sci. 2002, 71, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Kitashiba, H.; Ban, Y.; Honda, C.; Moriguchi, T. Nuclear localization of sweet cherry DREB1/CBF ortholog (CIG) and low temperature-inducible activity of CIG promoter. Plant Biotechnol. 2006, 23, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Li, J.; Yang, Q.; Jamil, W.; Teng, Y.; Bai, S. Phylogenetic, molecular, and functional characterization of PpyCBF proteins in Asian pears (Pyrus pyrifolia). Int. J. Mol. Sci. 2019, 20, 2074. [Google Scholar] [CrossRef] [Green Version]
- El-Esawi, M.A.; Alayafi, A.A. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes 2019, 10, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, F.; Tanabe, K.; Itai, A.; Morimoto, M. Variation in the chilling requirements for breaking leaf bud endodormancy in wild pear species and pear cultivars. J. Jpn. Soc. Hortic. Sci. 2001, 70, 596–598. [Google Scholar] [CrossRef]
- Yamane, H.; Kashiwa, Y.; Kakehi, E.; Yonemori, K.; Mori, H.; Hayashi, K.; Iwamoto, K.; Tao, R.; Kataoka, I. Differential expression of dehydrin in flower buds of two Japanese apricot cultivars requiring different chilling requirements for bud break. Tree Physiol. 2006, 26, 1559–1563. [Google Scholar] [CrossRef] [Green Version]
- Kagaya, H.; Ito, N.; Shibuya, T.; Komori, S.; Kato, K.; Kanayama, Y. Characterization of FLOWERING LOCUS C homologs in apple as a model for fruit trees. Int. J. Mol. Sci. 2020, 21, 4562. [Google Scholar] [CrossRef]
- Hatsuda, Y.; Nishio, S.; Komori, S.; Nishiyama, M.; Kanahama, K.; Kanayama, Y. Relationship between MdMADS11 gene expression and juvenility in apple. J. Jpn. Soc. Hortic. Sci. 2011, 80, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, H.; Shibuya, T.; Imanishi, S.; Aso, H.; Nishiyama, M.; Kanayama, Y. Dynamic metabolic regulation by a chromosome segment from a wild relative during fruit development in a tomato introgression line, IL8-3. Plant Cell Physiol. 2016, 57, 1257–1270. [Google Scholar] [CrossRef] [Green Version]
- Kanayama, Y.; Sato, K.; Ikeda, H.; Tamura, T.; Nishiyama, M.; Kanahama, K. Seasonal changes in abiotic stress tolerance and concentrations of tocopherol, sugar, and ascorbic acid in sea buckthorn leaves and stems. Sci. Hortic. 2013, 164, 232–237. [Google Scholar] [CrossRef]
- Feng, H.L.; Ma, N.; Meng, X.; Zhang, S.; Wang, J.; Chai, S.; Meng, Q. A novel tomato MYC-type ICE1-like transcription factor, SlICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco. Plant. Physiol. Biochem. 2013, 73, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Higo, K.; Ugawa, Y.; Iwamoto, M.; Korenaga, T. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 1999, 27, 297–300. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Gene ID P. bretschneideri | Gene ID P. communis | CBFHV a | DRECRT- COREAT b | LTRECORE-ATCOR15 c | Total Counts | Sequence Length (bp) |
---|---|---|---|---|---|---|---|
Motif: RYCGAC | Motif: RCCGAC | Motif: CCGAC | |||||
PcLEA14 | - | PCP029268.1 | 2 | 1 | 1 | 2 | 1500 |
FT-interacting protein 1-like | LOC103967842 | PCP000690.1 | 1 | - | - | 1 | 507 |
MADS-box protein AGL24-like | LOC103964948 | PCP022935.1 | - | - | 1 | 1 | 866 |
MADS-box protein AGL24-like | LOC103964950 | PCP022936.1 | 1 | 1 | 1 | 1 | 1500 |
MADS-box protein AGL24-like | LOC103964952 | PCP005825.1 | 2 | 2 | 2 | 2 | 1500 |
3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ-like | LOC103967963 | PCP000700.1 | - | - | 1 | 1 | 1500 |
chlorophyll a-b binding protein CP24 10A, chloroplastic | LOC103967973 | PCP000701.1 | 2 | - | 2 | 4 | 1500 |
12-oxophytodienoate reductase 2-like | LOC103967564 | PCP032234.1 | - | - | - | - | 1500 |
palmitoyl-monogalactosyldiacylglycerol delta-7 desaturase, chloroplastic-like | LOC103954983 | PCP032515.1 | 1 | 1 | 1 | 1 | 1500 |
thymidine kinase a | LOC103955051 | PCP029243.1 | - | - | 1 | 1 | 1500 |
chlorophyll a-b binding protein 151, chloroplastic-like | LOC103955064 | PCP029251.1 | - | - | - | - | 1500 |
cytochrome b6-f complex iron-sulfur subunit, chloroplastic-like | LOC103944475 | PCP007373.1 | - | - | - | - | 1500 |
protein phosphatase 2C 56-like | LOC103943902 | PCP028125.1 | 1 | - | 1 | 2 | 1500 |
uncharacterized | LOC103964940 | PCP005820.1 | 1 | - | 1 | 2 | 1500 |
uncharacterized | LOC103944526 | PCP040740.1 | 1 | - | - | 1 | 1500 |
uncharacterized | LOC103944497 | PCP007115.1 | 1 | - | - | 1 | 1500 |
uncharacterized | LOC103954139 | PCP002349.1 | - | - | - | - | 1500 |
uncharacterized | LOC103943904 | PCP028129.1 | 2 | - | 2 | 4 | 1500 |
uncharacterized | LOC103943918 | PCP033851.1 | 1 | - | - | 1 | 1500 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibuya, T.; Itai, R.; Maeda, M.; Kitashiba, H.; Isuzugawa, K.; Kato, K.; Kanayama, Y. Characterization of PcLEA14, a Group 5 Late Embryogenesis Abundant Protein Gene from Pear (Pyrus communis). Plants 2020, 9, 1138. https://doi.org/10.3390/plants9091138
Shibuya T, Itai R, Maeda M, Kitashiba H, Isuzugawa K, Kato K, Kanayama Y. Characterization of PcLEA14, a Group 5 Late Embryogenesis Abundant Protein Gene from Pear (Pyrus communis). Plants. 2020; 9(9):1138. https://doi.org/10.3390/plants9091138
Chicago/Turabian StyleShibuya, Tomoki, Ryota Itai, Minori Maeda, Hiroyasu Kitashiba, Kanji Isuzugawa, Kazuhisa Kato, and Yoshinori Kanayama. 2020. "Characterization of PcLEA14, a Group 5 Late Embryogenesis Abundant Protein Gene from Pear (Pyrus communis)" Plants 9, no. 9: 1138. https://doi.org/10.3390/plants9091138
APA StyleShibuya, T., Itai, R., Maeda, M., Kitashiba, H., Isuzugawa, K., Kato, K., & Kanayama, Y. (2020). Characterization of PcLEA14, a Group 5 Late Embryogenesis Abundant Protein Gene from Pear (Pyrus communis). Plants, 9(9), 1138. https://doi.org/10.3390/plants9091138