Ethnobotany, Phytochemistry and Pharmacological Activity of Kigelia africana (Lam.) Benth. (Bignoniaceae)
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Botanical Description
3.2. Ethnobotany
3.3. Phytochemistry
3.4. Pharmacological Activity of Kigelia africana
3.4.1. Antibacterial and Antifungal Activity
3.4.2. Analgesic and Anti-Inflammatory Activity
3.4.3. Antidiabetic Activity
3.4.4. Antiprotozoal Activity
3.4.5. Antiurolithiatic Activity
3.4.6. Anticonvulsant Activity
3.4.7. Antidiarrheal Activity
3.4.8. Treatment of Sexually Transmitted Diseases
3.4.9. Diuretic Activity
3.4.10. Antioxidant Activity
3.4.11. Anticancer Activity
3.4.12. Toxicological Evidence
4. Conclusions
5. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Tabuti, J.R.S.; Kukunda, C.B.; Kaweesi, D.; Kasilo, O.M. Herbal medicine use in the districts of Nakapiripirit, Pallisa, Kanungu, and Mukono in Uganda. J. Ethnobiol. Ethnomed. 2012, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.L.; Yu, H.; Luo, H.M.; Wu, Q.; Li, C.F.; Steinmetz, A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin. Med. 2016, 11, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grace, O.M.; Light, M.L.; Lindsey, K.L.; Mulholland, D.A.; van Staden, J.; Jager, A.K.; Eloff, J.N. Antibacterial activity and isolation of active compounds from fruit of the traditional African medicinal tree Kigelia africana. S. Afr. J. Bot. 2002, 68, 220–222. [Google Scholar] [CrossRef]
- Priya, B.; Menkudale, A.; Gahlot, M.; Joshi, P.; Agarwal, M. Pharmacognostical study, phytochemical analysis and phenolic content of Kigelia africana leaves. Int. J. Pharm. Pharm. Sci. 2013, 5, 163–166. [Google Scholar]
- Chih-Cheng, L.; Lu-Te, C.; Yuan-Chen, W.; Yan-Hong, T.; Jia-Shang, L.; Boakye, A.; Glew, R.H.; Glew, R.S. Polyphenol and Antioxidant Content of Kigelia africana Leaves from Ghana. Food 2012, 6, 1–5. [Google Scholar]
- Singh, A.; Kumari, S.; Singh, A.K.; Singh, N.K. Ethnopharmacology and pharmacology of Kigelia africana (Lam.) Benth. Int. J. Green Pharm. 2018, 11, S23–S31. [Google Scholar]
- Halder, S. A Review on Kigelia africana. World J. Pharm. Res. 2017, 6, 389–411. [Google Scholar] [CrossRef] [Green Version]
- Komakech, R.; Omujal, F. Kigelia africana. A Medicinal Plant with a Cosmetic Potential. South World News and Views from Emerging Countries. 2017. Available online: https://www.southworld.net/kigelia-africana-a-medicinal-plant-with-a-cosmetic-potential/ (accessed on 12 February 2020).
- Van Wyk, B.E. A review of ethnobotanical research in southern Africa. S. Afr. J. Bot. 2002, 68, 1–13. [Google Scholar] [CrossRef]
- Nsubuga, U. The Fruit that Cures Syphilis. New Vision. Uganda’s Leading Daily. 2018. Available online: https://www.newvision.co.ug/new_vision/news/1475477/fruit-cures-syphilis (accessed on 5 January 2020).
- Dhungana, B.R.; Jyothi, Y.; Das, K. Kigelia pinnata: Exploration of Potential Medicinal Usage in Human Ailments. J. Pharm. Res. 2017, 15, 138. [Google Scholar] [CrossRef]
- Adam, I.Y.; Alhameed, I.A. Kigelia africana Fruits’ Extracts anti Hepato-Toxic Effects on Male Wistar Rats Liver Destruction Induced by CCL4. Asian J. Med. Sci. 2013, 5, 26–32, ISSN: 2040-8765, e-ISSN: 2040-8773. [Google Scholar]
- Cragg, G.M.; Newman, D.J. Medicinals for the millennia. Ann. N. Y. Acad. Sci. 2001, 953, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Sidjui, S.L.; Zeuko’o Menkem, E.; Marie, R.; Toghueo, K.; Olivier Noté, O.; Mahiou-Leddet, V.; Herbette, G.; Boyom, F.F.; Ollivier, E.; Folefoc, G.N. SHORT REPORT Secondary Metabolites from Jacaranda mimosifolia and Kigelia africana (Bignoniaceae) and their Anticandidal Activity. Rec. Nat. Prod. 2014, 83, 307–311. [Google Scholar]
- Burkill, H.M. The Useful Plants of West Tropical Africa; Royal Botanic Gardens: Kew, UK, 1985; pp. 254–257. [Google Scholar]
- Hussain, T.; Fatima, K.F.; Rafay, M.; Shabir, S.; Akram, M.; Bano, S. Evaluation of antibacterial and antioxidant activity of leaves, fruit and bark of Kigelia africana. Pak. J. Bot. 2016, 48, 277–283. [Google Scholar]
- Fitriyani, D.P.S.G.S. Phytochemicals and cytotoxicity of sausage fruit (Kigelia africana) extract against breast cancer cells MCF-7 in vitro. J. Pharm. Res. 2018, 12, 288–292. Available online: http://jprsolutions.info/article_detail.php?article_id=2011 (accessed on 14 January 2020).
- Olubunmi, A.; Olatunji, A.G.; Adeyemi, O.S.; Scott, F.O. Antioxidant and antimicrobial activity of cuticular wax from Kigelia africana. FABAD J. Pharm. Sci. 2009, 34, 187–194. [Google Scholar]
- Kakembo, T. Sausage Tree Demystified. A Convert to Herbal Medicines Muses about the Sausage Tree Fruit in Kidepo Valley National Park. 2017. Available online: https://www.newvision.co.ug/new_vision/news/1451939/sausage-tree-demystified (accessed on 9 March 2020).
- Oyelami, O.A.; Yusuf, K.O.; Oyelami, A.O. The Use of Kigelia africana in the Management of polycystic Ovary Syndrome (PCOS). Chin. Med. J. (Engl.) 2012, 3, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Eldeen, I.M.S.; Van Staden, J. In vitro pharmacological investigation of extracts from some trees used in Sudanese traditional medicine. S. Afr. J. Bot. 2007, 73, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Saini, S.; Kaur, H.; Verma, B.; Ripudaman, S.S.K. Kigelia africana (Lam.) Benth—An overview. Indian J. Nat. Prod. Resour. 2008, 2, 190–197. [Google Scholar]
- Van Wyk, B.E.; de Wet, H.; Van Heerden, F.R. An ethnobotanical survey of medicinal plants in the southeastern Karoo, South Africa. S. Afr. J. Bot. 2008, 74, 696–704. [Google Scholar] [CrossRef] [Green Version]
- Takeda, N. Picornaviruses (ピコルナウイルス’). Uirusu (ウイルス) 2002, 51, 1–5. [Google Scholar] [CrossRef]
- Wickens, G.E.; Oliver-Bever, B. Medicinal Plants in Tropical West Africa. Kew Bull. 2007. [Google Scholar] [CrossRef] [Green Version]
- De Wet, H.; Ngubane, S.C. Traditional herbal remedies used by women in a rural community in northern Maputaland (South Africa) for the treatment of gynaecology and obstetric complaints. S. Afr. J. Bot. 2014, 94, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Olufemi, A.E.; Omotayo, O.I.; Akinbo, B.D.; Monjeed, I.; Adebola, O.; Bilikis, S.; Temitope, A. Kigelia africana Stem Bark, Fruit and Leaf Extracts Alleviate Benzene-induced Leukaemia in Rats. J. Pharm. Res. Int. 2017, 18, 1–10. [Google Scholar] [CrossRef]
- Agyare, C.; Serwaa Dwobeng, A.; Agyepong, N.; Boakye, Y.D.; Mensah, K.B.; Ayande, P.G.; Adarkwa-Yiadom, M. Antimicrobial, Antioxidant, and Wound Healing Properties of Kigelia africana. Adv. Pharmacol. Sci. 2013, 2013, 692613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyebanji, B.; Olatoye, O.; Oyewole, O. Effects of methanolic leaf, bark and fruit extracts of Kigelia africana on haematology and erythrocyte membrane stability in rats. Sokoto J. Vet. Sci. 2015, 13, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Grace, O.M.; Prendergast, H.D.V.; Jäger, A.K.; van Staden, J.; van Wyk, A.E. Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: An inventory. S. Afr. J. Bot. 2003, 69, 301–363. [Google Scholar] [CrossRef] [Green Version]
- Palmer, E.; Norah Pitman, N. Trees of Southern Africa, Covering All Known Indigenous Species in the Republic of South Africa, South-West Africa, Botswana, Lesotho & Swaziland; A.A. Balkema: Cape Town, South Africa, 1972. [Google Scholar]
- Abdalla, A.N. Antimicrobial and Wound Healing Activity of Some Sudanese Medicinal Plants. Master’s Thesis, Department of Pharmaceutics, University of Khartoum, Khartoum, Sudan, 2004; p. 199. [Google Scholar]
- Akintunde, J.K.; Akintunde, D.G.; Irondi, E.A.; Babaita, K. Antioxidants from stem bark of Kigelia africana inhibits free radicals and membrane lipid damage in rat testes in vitro. Oxid Antioxid. Med. Sci. 2016, 5, 63–69. [Google Scholar] [CrossRef]
- Hutchinson, J.; Daziel, J.M. Flora of West Tropical Africa, 2nd ed.; Hepper, N., Ed.; Crown Agents for Overseas Governments & Administrations: London, UK, 1993; Volume 11, p. 385. [Google Scholar]
- Houghton, P.J.; Jâger, A.K. The sausage tree (Kigelia pinnata): Ethnobotany and recent scientific work. S. Afr. J. Bot. 2016, 68, 14–20. [Google Scholar] [CrossRef]
- Olubunmi, A.; Adeyemi, S.O.; Akpan, E.; Adeosun, C.B.; Olatunji, G.A. Chemical composition and antioxidant potentials of Kigelia pinnata root oil and extracts. Excli J. 2011, 10, 264–273. [Google Scholar]
- Akah, P.A. Antidiarrheal Activity of Kigelia africana in Experimental Animals. J. Herbs Spices Med. Plants 1996, 4, 31–38. [Google Scholar] [CrossRef]
- Azu, O.O.; Duru, F.; Abraham, A.; Osinubi, A.A.; Oremosu, A.; Noronha, C.C.; Elesha, S.O. Histomorphometric effects of Kigelia africana (Bignoniaceae) fruit extract on the testis following short-term treatment with cisplatin in male Sprague-Dawley rats. Fertil. Soc. J. 2010, 15, 200–208. [Google Scholar] [CrossRef]
- Otimenyin, S.O.; Uzochukwu, D.C. Spasmolytic and anti-diarrhea effects of the bark of Erythrina senegalensis and root of Kigelia africana. Asian J. Pharm. Clin. Res. 2010, 3, 11–14. [Google Scholar]
- Iwu, M.M.; Obidoa, O.; Anazodo, M. Biochemical mechanism of the antimalarial activity of Azadirachta indica leaf extract. Pharmacol. Res. Commun. 1986, 18, 81–91. [Google Scholar] [CrossRef]
- Lamorde, M.; Tabuti, J.R.; Obua, C.; Kukunda-Byobona, C.; Lanyero, H.; Byakika-Kibwika, P.; Bbosa, G.S.; Lubega, A.; Ogwal-Okeng, J.; Ryan, M.; et al. Medicinal plants used by traditional medicine practitioners for the treatment of HIV/AIDS and related conditions in Uganda. J. Ethnopharmacol. 2010, 130, 43–53. [Google Scholar] [CrossRef]
- Njogu, S.M.; Arika, W.M.; Machocho, A.K.; Ngeranwa, J.J.N.; Njagi, E.N.M. In vivo Hypoglycemic Effect of Kigelia africana (Lam): Studies with Alloxan-Induced Diabetic Mice. J. Evid. Based Integr. Med. 2018, 23, 2515690X18768727. [Google Scholar] [CrossRef] [PubMed]
- Anvesh; Hemamalini; Vimal, K.V.; Shailaja; Rajyalaxmi. Antiulcer effect of the methanolic extract of Kigelia africana Lam. Benth (Bignoniaceae). Pharmacologyonline 2010, 351, 344–351. [Google Scholar]
- Food and Agricultural Organisation (FAO). Some Medicinal Forest Plants of Africa and Latin America; FAO forestry papers; FAO: Rome, Italy, 1986; Volume 67, p. 274. [Google Scholar]
- Arkhipov, A.; Shalom, J.; Matthews, B.; Ian Edwin Cock, I.E. Metabolomic profiling of Kigelia africana extracts with anti-cancer activity by high resolution tandem mass spectroscopy. Pharmacogn. Commun. 2014, 4, 10–32. [Google Scholar] [CrossRef]
- Sidjui, L.S.; Melong, R.; Mahiou-Leddet, V.; Herbette, G.; Tchinda, A.T.; Ollivier, E.; Folefoc, G.N. Triterpenes and lignans from Kigelia africana. J. Appl. Pharm. Sci. 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Jackson, S.J.; Houghton, P.J.; Retsas, S.; Photiou, A. Cytotoxicity of Norviburtinal and Isopinnatal from Kigelia pinnata against cancer cell lines. Planta Med. 2000, 66, 758–761. [Google Scholar] [CrossRef]
- Binutu, O.A.; Adesogan, K.E.; Okogun, J.I. Antibacterial and antifungal compounds from Kigelia pinnata. Planta Med. 1996, 62, 352–353. [Google Scholar] [CrossRef]
- Akunyili, D.N.; Houghton, P.J. Meroterpenoids and naphthaquinones from Kigelia pinnata. Phytochemistry 1993, 32, 1015–1018. [Google Scholar] [CrossRef]
- Saraswathy, A.; Purushothaman, K.K.; Patra, A.; Dey, A.K.; Kundu, A.B. Shoreaphenol, a polyphenol from Shorea robusta. Phytochemistry 1992, 31, 2561–2562. [Google Scholar] [CrossRef]
- Zofou, D.K.A.B.O.; Kengne, M.; Tene, M.; Ngemenya, M.N.; Tane, P.; Titanji, V.P.K. In vitro anti-plasmodial activity and cytotoxicity of crude extracts and compounds from the stem bark of Kigelia africana (Lam.) Benth (Bignoniaceae). Parasitol. Res. 2011, 108, 1383–1390. [Google Scholar] [CrossRef]
- Dorcas, O.; Moronkola, D.O.; Olaoluwa, O.O.; Oladosu, I.A.; Aboaba, S.A.; Aiyelaagbe, O.O. Phytochemical and Antimicrobial Activities of Extracts from Six Medicinal Plants Utilized as Antimalarials in Ethno-Medicine. Pharm. Chem. J. 2018, 5, 52–61. [Google Scholar]
- Govindachari, T.R.; Patankar, S.J.; Viswanathan, N. Isolation and structure of two new dihydroisocoumarins from Kigelia pinnata. Phytochemistry 1971, 10, 1603–1606. [Google Scholar] [CrossRef]
- Harborne, J.B. Dictionary of natural products. Phytochemistry 2003. [Google Scholar] [CrossRef]
- Idris, A.; Al-tahir, I.; Idris, E. Antibacterial activity of endophytic fungi extracts from the medicinal plant Kigelia africana. Egypt. Acad. J. Biol. Sci. 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Atolani, O.; Olatunji, G.A.; Fabiyi, O.A.; Adeniji, A.J.; Ogbole, O.O. Phytochemicals from Kigelia pinnata leaves show antioxidant and anticancer potential on human cancer cell line. J. Med. Food. 2013, 16, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, A.G.; Olubunmi, A. Comprehensive scientific demystification of Kigelia africana: A review. Afr. J. Pure Appl. Chem. 2009, 3, 158–164. [Google Scholar]
- Moideen, S.V.K.; Houghton, P.J.; Rock, P.; Croft, S.L.; Aboagye-Nyame, F. Activity of extracts and naphthoquinones from Kigelia pinnata against Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. Planta Med. 1999, 65, 536–540. [Google Scholar] [CrossRef]
- Joshi, K.C.; Singh, P.; Taneja, S.; Cox, P.J.; Howie, R.A.; Thomson, R.H. New terpenoid aldehydes from Kigelia pinnata: Crystal structure of pinnatal. Tetrahedron 1982, 38, 2703–2708. [Google Scholar] [CrossRef]
- Atawodi, S.; Olowoniyi, O. Pharmacological and Therapeutic Activities of Kigelia africana (Lam.) Benth. Annu. Res. Rev. Biol. 2014, 5, 1–17. [Google Scholar] [CrossRef]
- Bharti, N.; Singh, S.; Fermida, N.; Amir, A. Isolation and in vitro anti-amoebic activity of iridoids isolated from Kigelia pinnata. Arkivoc 2006, 10, 69–76. [Google Scholar]
- Gouda, Y.G.; Abdel-baky, A.M.; Darwish, F.M.; Mohamed, K.M.; Kasai, R.; Yamasaki, K. Iridoids from Kigelia pinnata fruits. Phytochemistry 2003, 3, 887–892. [Google Scholar] [CrossRef]
- Sainadh, N.S.; Nagarathna, P.K.M.; Kumar, V.C.; Kulkarni, S.C. Evaluation of Anti-Cancer Activity of Kigelia africana on EAC Induced Breast Tumors. Int. J. Pharm. Sci. Rev. Res. 2013, 2, 78–84. [Google Scholar]
- Zom, B.; Garcia-Piñeres, A.J.; Castro, V.; Murillo, R.; Mora, G.; Merfort, I. 3-Desoxyanthocyanidins from Arrabidaea chica. Phytochemistry 2001, 56, 831–835. [Google Scholar]
- Reller, L.B.; Weinstein, M.; Jorgensen, J.H.; Ferraro, J.M. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Arch. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar] [CrossRef]
- Hamza, O.J.; Bout-vanden Beukel, C.J.; Matee, M.I.; Moshi, M.J.; Mikx, F.H.; Selemani, H.O.; Mbwambo, Z.H.; Van der Ven, A.J.; Verweij, P.E. Antifungal activity of some Tanzanian plants used traditionally for the treatment of fungal infections. Arch. Clin. Infect. Dis. 2006, 108, 124–132. [Google Scholar] [CrossRef]
- King, A. Recommendations for susceptibility tests on fastidious organisms and those requiring special handling. J. Antimicrob. Chemother. 2001, 48, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Wood, G.L. In vitro testing antimicrobial agents. Infect. Dis. Clin. N. Am. 1995, 9, 463–481. [Google Scholar]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, J.F.; Noakes, T.D.; Schwellnus, M.P.; Windt, A.; Bowerbank, P. Non-steroidal anti-inflammatory drugs fail to enhance healing of acute hamstring injuries treated with physiotherapy. SAMJ S. Afr. Med. 1995, 85, 517–522. [Google Scholar]
- Vane, J.R.; Botting, R.M. Anti-inflammatory drugs and their mechanism of action. J. Inflamm. Res. 1998, 47, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Maroon, J.C.; Bost, J.W.; Maroon, A. Natural anti-inflammatory agents for pain relief. Surg. Neurol. Int. 2010, 1, 25–32. [Google Scholar]
- Frantz, B.; Nordby, E.C.; Bren, G.; Steffan, N.; Paya, C.V.; Kincaid, R.L.; O’neill, E.A. Calcineurin acts in synergy with PMA to inactivate I kappa B/MAD3, an inhibitor of NF-kappa B. EMBO J. 1994, 13, 861–869. [Google Scholar] [CrossRef]
- Kamau, K.J. Antipyretic and Anti-Inflammatory Properties of Methanolic Extracts of Kigelia africana (Lam.) Benth and Acacia hockii de Wild in Animal Models. Master’s Thesis, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya, 2016. [Google Scholar]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Bamgbose, S.O.A.; Noamesi, B.K. Studies on cryptolepine inhibition of carrageenan-induced edema. Planta Med. J. 1981, 41, 392–396. [Google Scholar] [CrossRef]
- Namita, P.; Mukesh, R.; Tirath, K. Evaluation of anti-inflammatory potential of Kigelia pinnata leaf extract in wistar rats. Asian J. Pharm. Clin. Res. 2012, 5, 95–97. [Google Scholar]
- Irwin, S.; Houde, R.W.; Bennett, D.R.; Hendershot, L.C.; Seevers, M.H. The effects of morphine methadone and meperidine on some reflex responses of spinal animals to nociceptive stimulation. J. Pharmacol. Exp. Ther. 1951, 101, 132–143. [Google Scholar]
- Karau, G.M.; Njagi, E.N.M.; Machocho, A.K.; Wangai, L.N.; Kamau, P.N. Hypoglycemic activity of aqueous and ethyl acetate leaf and stem bark extracts of Pappea capensis in alloxan-induced diabetic BALB/C mice. Br. J. Pharmacol. Toxicol. 2012, 3, 251–258. [Google Scholar]
- World Health Organisation (WHO). World Malaria Report; WHO: Geneva, Switzerland, 2018; ISBN 978-92-4-156483-0. [Google Scholar]
- Akah, P.A.; Orisakwe, E.A.; Gamaniel, K.S.; Shittu, A. Evaluation of Nigerian traditional medicines: II. Effects of some Nigerian folk remedies on peptic ulcer. J. Ethnopharmacol. 1998, 62, 123–127. [Google Scholar] [CrossRef]
- Weiss, C.R.; Moideen, S.V.K.; Croft, S.L.; Houghton, P.J. Activity of extracts and isolated naphthoquinones from Kigelia pinnata against Plasmodium falciparum. J. Nat. 2000, 63, 1306–1309. [Google Scholar] [CrossRef]
- Gesslera, M.C.; Nkunyab, M.H.H.; Mwasumbic, L.B.; Heinrichd, M.; Tannera, M. Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop. 1994, 56, 65–77. [Google Scholar] [CrossRef]
- Akeng’a Ayuko, T.A.; Njau, R.N.; Wanjala, C.; Nyangasi, L.; Ndiege, O.I. In vitro anti-plasmodial activity and toxicity assessment of plant extracts used in traditional malaria therapy in the Lake Victoria Region. Mem. Inst. Oswaldo Cruz. 2009, 104, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Desjadins, R.E.; Canfield, C.J.; Haynes, J.D.; Chulay, J.D. Quantitative assessment of anti-malarial activity in-vitro by semi-automated microdilution technique. Antimicrob. Agents Chemother. 1979, 16, 710–718. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, M.J.; Bray, D.H.; Boardmann, P.; Phillipson, J.D.; Warhurst, D.C. Plants as sources of anti-malarial drugs. Part 1. In vitro test method for the evaluation of crude extracts from plants. Planta Med. 1985, 51, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Deharo, E.; Bourdy, G.; Quenevo, C.; Munoz, V.; Ruiz, G.; Sauvain, M. A search for natural bioactive compounds in Bolivia through multidisciplinary approach. Part V. Evaluation of the anti-malarial activity of plants used by the Tacana Indians. J. Ethnopharmacol. 2001, 77, 91–98. [Google Scholar] [CrossRef]
- Krettli, A.U.; Andrade-Neto, V.F.; Brandão, L.M.; Ferrari, W.M.S. The search for new anti-malarial drugs from plants used to treat fever and malaria or plants randomly selected: A review. Mem. Inst. Oswaldo Cruz. 2001, 96, 1033–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiatt, R.A.; Dales, L.G.; Friedman, G.D.; Hunkeler, E.M. Frequency of urolithiasis in a prepaid medical care program. Am. J. Epidemiol. 1982, 115, 255–265. [Google Scholar] [CrossRef]
- Anderson, E.E.; Rundles, R.W.; Silberman, H.R.; Metz, E.N. Allopurinol control of hyperuricosuria: A new concept in the prevention of uric acid stones. J. Urol. 1967, 97, 344–347. [Google Scholar] [CrossRef]
- Robertson, W.O.; Peacock, M. The pattern of urinary stone disease in Leeds and in the United Kingdom in relation to animal protein intake during the period 1960–1980. Urol. Int. 1982, 37, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Road, P.M.; Nadu, T. Biological actions and mechanisms underpinning the Anti-urolithiatic effectiveness of various natural herbal compounds. Int. J. Pharm. Bio. Sci. 2013, 4, 535–547. [Google Scholar]
- Gupta, A.K.; Kothiyal, P.; Pandey, S. Evaluation of anti-urolithiatic potential of Kigelia africana fruits in albino rats. FABAD J. Pharm. Sci. 2011, 36, 197–205. [Google Scholar]
- Abhishek, S.; Umesh, K.S.; Umashankar, S.; Niranjan, S.; Vimlesh, M.; Garima, Y. Anti-convulsant activity of Kigelia pinnata bark extract. Int. J. Pharm. Pharm. Sci. 2010, 2, 147–149. [Google Scholar]
- Owolabi, O.J.; Omogbai, E.K.I. Studies on the anti-diarrhoeal properties of the ethanolic extract of Kigelia africana (Bignoniaceae). Pharmacologyonline 2009, 1, 243–251. [Google Scholar]
- Akunyili, D.N.; Houghton, P.J.; Raman, A. Anti-microbial activities of the stem bark of Kigelia pinnata. J. Ethnopharmacol. 1991, 35, 173–177. [Google Scholar] [CrossRef]
- Omonkhelin, J.; Owolabi, O.J.; Omogbai, E.K.I.; Obasuyi, O. Anti-fungal and anti-bacterial activities of the ethanolic and aqueous extract of Kigelia africana (Bignoniaceae) stem bark. Afr. J. Biotechnol. 2007, 6, 1677–1680, ISSN 1684-5315. [Google Scholar]
- Sharma, U.S.; Singh, A.; Agarwal, V. Diuretic activity of Kigelia pinnata bark extract. J. Pharmacol. Res. 2010, 1, 17–20. [Google Scholar]
- Owolabi, O.J.; Nworgu, Z.A.M. Anti-inflammatory and anti-nociceptive activities of Costus lucanusianus (Costaceae). Pharmacologyonline 2009, 1, 1230–1238. [Google Scholar]
- Ponnan, A.; Perumal, R.; Sathiyavedu, T.S.; Arabandi, R. Antioxidant activity measured in different solvent fractions obtained from Mentha spicata Linn.: An analysis by ABTS decolorization assay. Asia Pac. J. Clin. Nutr. 2006, 15, 119–124. [Google Scholar]
- Halliwell, B. Oxidative stress and neurodegeneration: Where are we now? J. Chem. 2006, 97, 1634–1658. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ursini, F.; Maiorino, M.; Morazzoni, P.; Roveri, A.; Pifferi, G. A novel antioxidant flavonoid (IdB 1031) affecting molecular mechanisms of cellular activation. Free Radic. Biol. Med. 1994, 16, 547–553. [Google Scholar] [CrossRef]
- Emeka, G.; Emmanuel, N.; Victor, N.S.I. Effect of Methanol Leaf and Fruit Extracts of Kigelia africana on Some Biochemical Parameters of Normal Albino Rats. World Appl. Sci. J. 2014, 31, 1689–1694. [Google Scholar]
- Olaleye, M.T.; Rocha, J.B. Commonly used medicinal plants exhibit distinct in-vitro antioxidant activities against hepatotoxins in rat liver. Exp. Toxicol. Pathol. 2007, 58, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Negulescu, G.P. Methods for total antioxidant activity determination: A review. Anal. Biochem. 2011, 1, 106. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.R.; Gorinstein, S.; Böhm, V.; Schaich, K.; Özyürek, M.; Güçlü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.R.; Mlungwana, S.M. γ-Sitosterol. A cytotoxic sterol from Markhamia zanzibarica and Kigelia africana. Fitoterapia 1999, 70, 96–97. [Google Scholar] [CrossRef]
- Houghton, P.J.; Photion, A.; Uddin, S.; Shah, P.; Browning, M.; Jackson, S.J.; Retsas, S. Activity of Extracts of Kigelia pinnata against Melanoma and Renal Carcinoma cell lines. Planta Med. 1994, 60, 430–433. [Google Scholar] [CrossRef]
- Azuine, M.A.; Ibrahim, K.; Enwerem, N.M.; Wambebe, C.; Kolodziej, H. Protective role of Kigelia africana fruits against benzo[a]pyrene-induced forestomach tumorigenesis in mice and against albumen-induced inflammation in rats. Pharm. Pharmacol. Lett. 1997, 7, 67–70. [Google Scholar]
- Momekov, G.; Guenova, M.; Konstantinov, S.; Ionkova, L.; Stoyanov, N.; Yosifov, D. Apoptotic mechanisms of the biotechnologically produced arylnaphtalene lignan justicidin B in the acute myeloid leukemia-derived cell line HL-60. Pharmacol. Rep. 2014, 66, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Higgins, C.; Bell, T.; Delbederi, Z.; Feutren-Burton, S.; McClean, B.; O’Dowd, C.; Watters, W.; Armstrong, P.; Waugh, D.; Van den Berg, H. Growth inhibitory activity of extracted material and isolated compounds from the fruits of Kigelia pinnata. Planta Med. 2010, 76, 1840–1846. [Google Scholar] [CrossRef] [PubMed]
- Msonthi, J.D.; Magombo, D. Medicinal herbs in Malawi and their uses. Hamdard Med. 1983, 26, 94–100. [Google Scholar]
- Chivandi, E.; Cave, E.; Davidson, B.C.; Eriwanger, K.H.; Mayo, D.; Madziva, M.T.I. Suppression of Caco-2 and HEK-293 cell proliferation by Kigelia africana, Mimusops zeyheri and Ximenia caffra seed oils. Vivo 2012, 26, 99–105. [Google Scholar]
- Hussain, H.; Krohn, K.; Ahmad, U.V.; Miana, G.A.G.I. Lapachol: An overview. Arkivoc 2007, 2, 145–171. [Google Scholar]
- Tsao, A.S.; Kim, E.S.; Hong, W.K. Chemoprevention of Cancer. CA Cancer J. Clin. 2004, 54, 150–180. [Google Scholar] [CrossRef] [Green Version]
- Nyarko, A.K.; Okine, L.K.N.; Wedzi, R.K.; Addo, P.A.; Ofosuhene, M. Sub-chronic toxicity studies of the antidiabetic herbal preparation ADD-199 in the rat: Absence of organ toxicity and modulation of cytochrome P450. J. Ethnopharmacol. 2005, 97, 319–325. [Google Scholar] [CrossRef]
- Firenzuoli, F.; Gori, L. Herbal Medicine Today: Clinical and Research Issues. Evid. Based Complement. Alternat. Med. 2007, 4, 37–40. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2013, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Vanherweghem, J.L.; Degaute, J.P. The policy of admission to the education in medicine and dentistry in the French-speaking community of Belgium. Acta Clin. Belg. 1998, 53, 2–3. [Google Scholar] [CrossRef]
- Cosyns, J.P.; Jadoul, M.; Squifflet, J.P.; Wese, F.X.; van Ypersele de Strihou, C. Urothelial lesions in Chinese-herb nephropathy. Am. J. Kidney Dis. 1999, 33, 1011–1017. [Google Scholar] [CrossRef]
- Ernst, E. Toxic heavy metals and undeclared drugs in Asian herbal medicines. Trends Pharmacol. Sci. 2002, 23, 136–139. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). WHO Policy Perspectives on Medicines—Effective Medicines Regulation: Ensuring Safety, Efficacy and Quality; WHO Headquarter: Geneva, Switzerland, 2003; Available online: https://apps.who.int/medicinedocs/pdf/s4921e/s4921e.pdf (accessed on 2 February 2020).
- Atanasova, A.G.; Waltenbergerb, B.; Pferschy-Wenzig, E.; Linderd, T.; Wawroscha, C.; Uhrine, P.; Temmlf, V.; Wanga, L.; Schwaigerb, S.; Heissa, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonn Guidelines on Access to Genetic Resources and Fair and Equitable Sharing of the Benefits Arising out of their Utilization. Secretariat of the Convention on Biological Diversity. UNEP. 2002. Available online: http://www.cbd.int/abs/bonn.shtml (accessed on 19 November 2019).
Region/Country | Plant Part/Preparations | Traditional Use | Reference |
---|---|---|---|
South Africa | Fruits | Solar keratosis, malignant melanoma, dysentery, worm infestations, pneumonia, toothache, malaria, diabetes, venereal diseases, convulsions, antidote for snakebite, postparturition hemorrhage, solar keratoses and skin cancer | [3,6,9,11,20,21] |
Roasted seeds | Pneumonia, fungal infections, eczema, malaria, diabetes and waist pain | [6,22] | |
Stem and root bark | Ulcers, pneumonia and toothache | [23] | |
South Africa and Zimbabwe | Fruits | Crude fruit creams for freckles | [24] |
South Africa and Ethiopia | Hot root macerate | Gynecological complaints, constipation and tapeworm infections | [6] |
Root bark | Uterine cancer, venereal diseases, hemorrhoids and rheumatism | [6,25] | |
Stem bark | Rheumatism, dysentery, venereal diseases, gynecological conditions, hemorrhages, epilepsy, wounds, sores, abscesses, diarrhea and edema | [6] | |
South Africa and Cameroon | Stem bark decoction mixed in porridge | Infertility | [23,26] |
South Africa and Namibia | Stem and leaves decoction | Eczema and herpes | [27] |
Fruits and stem bark decoction | Worm infections in children | [22] | |
Zambezi Valley | Fruits | Crude fruit cosmetic preparation used by Tsonga women, dressing for ulcers, purgative and galactagogue | [22,23] |
Zambia | Bark | Syphilis and gonorrhea | [23] |
Botswana | Fruits boiled with milk | Sexually transmitted diseases | [22] |
West Africa (general) | Leaves | Gastrointestinal ailments | [22,28] |
Bark water macerate | Antidote for snakebite, sores, skin fungal infections, dysentery and syphilis | [29,30] | |
Ground bark and fruit infusion | Stomach problems in children | [22] | |
Root and bark | Pneumonia, tapeworms, ulcers and gynecological complaints | [15,22,31] | |
Fruits | Wounds, abscesses, antimalaria, febrile jaundice and menorrhagia | [27,32] | |
Aqueous bark extract | Backache, stomach pains and dysentery | [32] | |
Leaves and twigs | Constipation, gynecological disorders, hemorrhoids, lumbago, dysentery, wounds kidney disorders, snakebite and rheumatism | [22,27] | |
Leaves | Stomach and kidney ailments, antidote for snakebites and wounds | [16,27] | |
Stem and twigs | Wounds, antidote for snakebites, rheumatism, stomach and kidney ailments | ||
Fruits, roots and leaves | Sexual complaints, viz., poor libido, sexual asthenia and impotence | ||
Fruits | Dermatitis—fruit ointment, constipation, gynecological disorders, hemorrhoids, psoriasis, eczema, diarrhea, malaria, rheumatism, retained placenta, dressing for wounds, purgative, galactagogue and dizziness | [16,22,25,33,34] | |
Bark | Antimicrobial, cytotoxicity and anti-implantation activities | [3,22,35,36] | |
Cameroon | Stem bark decoction | Abortifacient, filariasis and cataract | [22] |
Ghana | Bark preparation | Dysentery and rheumatism | [37] |
Togo | Fruits | Cancer | [9] |
Ivory Coast | Fruit infusion | Rheumatism and back pains | [22] |
Benin, Ivory Coast, and South Africa | Leaf decoction | Jaundice | [6] |
Nigeria | Bark | Anti-inflammatory, dysentery and anticancer | [5,12,37] |
Fruits | Psoriasis, eczema, leprosy, rheumatism, snakebites, syphilis and chronic abdominal pain | [38,39] | |
Root decoction | Ante and postnatal disorders, fibroid and conception | [6] | |
Fruits and flowers mixed with alcohol or water | Fertility treatment among women and men of childbearing age | [36] | |
Leaves | Diarrhea, abortifacient, aphrodisiac, tonic and impotence | [40] | |
Central Africa | Unripe fruit | Dressing for wounds, hemorrhoids and rheumatism | [6,39] |
Kenya | Roasted seeds mixed with beer | Enlargement of sexual organs | [23,38] |
Kenya, Embu community | Fruits | Cold, flu, inflammation and dysentery | [41] |
Tanzania | Stem bark infusion | Hyperpyrexia and gonorrhea | [6] |
Fruits boiled | Anemia, especially in pregnant women | ||
East and West Africa | Bark | Convulsions | [9] |
Tanzania and Nigeria | Hot decoction of stem bark | Galactagogue | [26] |
Africa (general) | Bark decoction | Laxative | [27] |
Ash leaves mixed with honey | High blood pressure | [22] | |
Fruits | Mature fruit is used for treating wounds, abscesses, dressing wounds, skin cancer, reducing breast metastasis, ulcers, syphilis, rheumatism, fungal infections, boils, psoriasis, leprosy, venereal diseases and acne | [3,14,22,23,27,35,42] | |
Leaves | Malaria, rheumatism, wounds, ulcers, retained placenta, venereal diseases and diarrhea | [43] | |
Fruit and bark (lesser extent) extracts | Dysentery, hemorrhoids, constipation, wounds, ulcers, boils, abscesses, rheumatism, syphilis and gonorrhea | [30,33] | |
Fruit and root decoction | Postparturition hemorrhage | [44] | |
Stem bark decoction of K. africana and the leaves of Irvingia gabonensis | Spleen infection | ||
Powdered fruit mixed with palm oil | Dizziness | ||
Leaves and stem bark decoction | Malaria | ||
Decoction (stem bark of K. africana and leaves of Cassia occidentalis and potash) | Gonorrhea and syphilis | ||
Mixture of ground K. africana young fruit and snails rolled into balls and allowed to dry is eaten with a cup of tea every day | Infertility | ||
Bark | Rheumatism, regularizing menstrual flow, epilepsy and dysentery | ||
Stem bark paste mixed with palm oil and salt | Expelling retained placenta | ||
Beer from fruit extract | Children’s bath for the treatment of measles | [22] | |
Stem bark and root decoction | Blood cleansing and pelvic pains during pregnancy | ||
Kigelia and Searsia nebulosa stem bark decoction | Dysmenorrhea | [26] | |
Kigelia africana, Hypoxis hemerocallidea and Senecio serratuloides leaves and roots decoction | Sexually transmitted infections and sores | [23] |
Classification | Phytochemicals | Plant Part | Reference |
---|---|---|---|
Phenolic Compounds | p-Coumaric acid | Stem bark, fruits, roots | [14,46,47] |
Caffeic acid | Stem bark, fruits, roots | [14,46] | |
Ferulic acid | Stem bark, fruits | [11,35,47,48,49,50] | |
Atranorin | Stem bark | [51] | |
Nonacosanoic acid, 2-(4-hydroxyphenyl) ethyl ester | Stem bark | [14,46] | |
Luteolin | Roots, leaves, wood | [12,42] | |
Luteolin 7-O-glucoside | Leaves | [35] | |
6-hydroxyluteolin | Roots, leaves, wood | [42] | |
6-p-coumaroyl-sucrose | Fruits | [52] | |
Kigeliol | Wood | [11,47,50,52] | |
Balaphonin | Stem bark | [3,6,12,42,53] | |
Coumarins | Kigelin | Roots, stem bark, leaves, wood | [14] |
8-hydroxy-6, 7-dimethoxy-3-methyl-3, 4-dihydroisocoumarin | Roots | [11,50] | |
Isokigelin | Stem bark | [52,53] | |
6-Demethylkigelin | Roots, stem bark | [52] | |
6-Methoxymellein | |||
1,3-dimethylkigelin | Stem bark | [11,12,46] | |
Sterols | β-Sitosterol | Stem bark, fruits, heartwood, roots | [14,50,53,54] |
Stigmasterol | Stem bark, roots, heartwood | [3,54,55] | |
γ-sitosterol | Stem bark, fruits | [3,47] | |
Triterpenes | Oleanolic acid | Stem bark | [3,14,46,51] |
Pomolic acid | |||
2β,3β,19α-Trihydroxy-urs-12-en-28-oic acid | |||
Diterpenes | Phytol | Leaves | [56] |
3-Hydro-4,8-phytene | |||
Unsaturated Fatty acids | (9Z,12Z)-Methyl octadeca-9,12-dienoate | Leaves | [56] |
Vernolic acid | Stem bark, roots, leaves, heartwood | [3,12,42] | |
Methyl-12-methyltetradecanoate | Leaves | [3,35] | |
Palmitic acid or hexadecanoic acid | Leaves, flowers | [52] | |
Quinones | Lapachol | Stem bark, fruits, roots, heartwood | [14,35,46,48] |
Dehydro α-lapachone | Stem bark, fruits, roots, heartwood | [14,52,53] | |
2-acetylfuro-1,4-naphthoquinone | Stem bark | [14,46,48] | |
Kigelinol | Stem bark, roots, fruits | [14,46] | |
Kigelinone | Stem bark | [49,57,58] | |
Isokigelinol | Roots, stem bark, roots, fruits | [3,41] | |
Pinnatal | Roots, fruits, stem bark | [47,49,57,58] | |
Isopinatal | Roots and fruits, stem bark | [49,54,57] | |
Norviburtinal | Root bark, stem bark, fruits | [12,47,59] | |
Sonovoburtinal | Root bark | [47] | |
2-(1-Hydroxyethyl)-naphtho[2,3-b] furan-4,9-quinone | Roots, stem bark | [58] | |
Kigelinone | Root and fruit, stem bark, heartwood | [48,54] | |
2-acetylnaphtho[2,3-b] furan-4,9-quinone | Stem bark, roots | [3] | |
2-(1-hydroxyethyl) naphtho [2,3-b] furan-4,9-dione | Stem bark, roots | [3] | |
Tecomaquinone-I | Heartwood | [60] | |
Kojic acid | Stem bark | [46] | |
Iridoids | 7-Hydroxyviteoid II | Fruits | [11,60,61,62] |
7-hydroxy-10-deoxyeucommiol | |||
10-Deoxyeucommiol | |||
Jiofuran | |||
3-(2-hydroxyethyl)-5-(2-hydroxypropyl)-4,5-dihydrofuran-2(3H)-one | |||
7-hydroxyeucommic acid | |||
7-hydroxy eucommiol | Twig, roots, leaves, wood | [3,62] | |
Jioglutolide | |||
1-Dehydroxy-3,4-dihydroaucubigenin | |||
Des-p-hydroxy benzoyl kisasagenol B | |||
Ajugol | |||
6-Trans-caffeoyl ajugol | |||
Verminoside | Stem bark, fruits, twigs leaves, roots | [12,22,23,28,36,49,61,62,63] | |
Specioside | Stem bark | [49,62,64] | |
Minecoside | Stem bark | [11] | |
Alkanes | n-hentriacontane | Leaves | [11] |
11-(2,2-dimethylpropyl) heneicosane | |||
2,6,10-trimethyldodecane | |||
4,4-dimethylundecane | [3,35] | ||
1-iodohexadecane | [35] | ||
1-iododecane | |||
Tritriacontane | [62] | ||
Hentriacontane | |||
Nonacosane | |||
Heneicosane | [11] | ||
Esters | Pentafluoro-N-heptadecyl | Leaves | [11] |
2-ethylhexyloctadecyl sulfurous acid | Leaves | ||
2-(4-hydroxyphenyl) ethyl ester | Bark | [14] | |
Ethyl linoleoate | Leaves, flowers | [52] |
Activity | Plant Part | Extract | Organism | Observed Effect | Compounds Responsible | Reference |
---|---|---|---|---|---|---|
In vitro antibacterial activity | Leaf | Ethanol | E. coli | Maximum activity (22 mm) | Specioside, verminoside | [16,42,45] |
P. vulgaris | Moderate activity | |||||
K. pneumoniae | Resistant | |||||
C. amalonaticus | Resistant | |||||
Aqueous | C. amalonaticus | Maximum activity (7 mm) | ||||
S. aureus | Moderate activity (5 mm) | |||||
P. aeruginosa | Moderate activity (4 mm) | |||||
P. vulgaris | Moderate activity (4 mm) | |||||
K. pneumoniae | Resistant | |||||
C. amalonaticus | Moderate activity | |||||
S. aureus | Moderate activity | |||||
P. aeruginosa | Moderate activity | |||||
P. vulgaris | Moderate activity | |||||
K. pneumoniae | Least activity | |||||
n-hexane | P. vulgaris | Maximum activity (6 mm) | ||||
S. aureus | Minimum activity (2 mm) | |||||
K. pneumoniae | Resistant | |||||
P. aeruginosa | Resistant | |||||
C. amalonaticus | Resistant | |||||
E. coli | Resistant | |||||
Fruit | Aqueous | P. vulgaris | Maximum activity (6 mm) | |||
C. amalonaticus | Maximum activity (6 mm) | |||||
S. aureus | Moderate activity | |||||
E. coli | Moderate activity | |||||
K. pneumoniae | Resistant | |||||
P. aeruginosa | Resistant | |||||
P. vulgaris | Maximum activity (23 mm) | |||||
C. amalonaticus | Minimum activity | |||||
Bark | Ethanol | E. coli | Maximum activity (10 mm) | |||
P. aeruginosa | Moderate activity | |||||
P. vulgaris | Moderate activity | |||||
S. aureus | Least activity (1 mm) | |||||
K. pneumoniae | Resistant | |||||
C. amalonaticus | Resistant | |||||
Bark | n-hexane | C. amalonaticus | Maximum activity (4 mm) | |||
E. coli | Minimum activity (2 mm) | |||||
S. aureus | Resistant | |||||
P. aeruginosa | Resistant | |||||
P. vulgaris | Resistant | |||||
K. pneumoniae | Resistant | |||||
Bark | Aqueous | S. aureus | Maximum activity (15 mm) | |||
P. aeruginosa | Moderate activity (5 mm) | |||||
P. vulgaris | Moderate activity (5 mm) | |||||
C. amalonaticus | Minimum activity | |||||
K. pneumoniae | Resistant | |||||
E. coli | Resistant | |||||
E. coli | Very good activity (20 mm) | |||||
C. amalonaticus | Least activity (3 mm) | |||||
Antifungal activity | Fruit | Methanol | P. chrysogenum | Resistant | [45] | |
A. niger, C. albicans and P. chrysogenum | Strong inhibition (1238, 841.2 and 989.7 µg/mL, respectively) | |||||
C. neoformans | Resistant | |||||
Aqueous | A. niger, C. albicans and P. chrysogenum | Strong inhibition (2487, 2060 and 2768 µg/mL, respectively) | ||||
P. chrysogenum | Resistant | |||||
Ethyl acetate | A. niger, C. albicans and P. chrysogenum | Moderate inhibition (1463, 1278 and 1744 µg/mL, respectively) | ||||
P. chrysogenum | Resistant | |||||
Anti-inflammatory and Analgesic Activity | Leaf | Methanol | Mice | First hour at the dose of 150 mg/kg and 15 mg/kg body weight for reference drug diclofenac reduced hind paw diameter by 0.21% and 1.10%, respectively | Verminoside | [45,60,74,75,76,77] |
Second hour at the dose of 100 mg/kg and 150 mg/kg body weight for reference drug diclofenac reduced hind paw diameter by 0.42% and 1.42%, respectively | ||||||
Third hour, the extract at the dose levels of 50 mg/kg, 100 mg/kg and 150 mg/kg body weight, as well as diclofenac, reduced the inflamed hind paw diameter by 0.86%, 2.25%, 3.41% and 4.02%, respectively | ||||||
Fourth hour at the doses of 50, 100 and 150 mg/kg body weight reduced inflamed hind paw diameter by 1.95%, 2.98% and 4.98% and reference drug reduced inflamed paw diameter by 4.43% | ||||||
Leaf | Methanol | Wistar rats | Higher dose (400 mg/kg) exhibited better analgesic activity than the lower dose (200 mg/kg) | |||
Antidiabetic Activity | Leaf | Aqueous and ethyl acetate | Swiss albino mice | Extracts showed a blood glucose-lowering effect | [42,79] | |
Antiprotozoal Activity | Root bark | Hexane, dichloromethane and ethyl acetate | P. falciparum, T. brucei and T. brucei rhodesiense | Significant anti-plasmodial activity | Specioside, 2β, 3β, 19α-trihydroxyurs-12-en-28-oic acid, atranorin, p-hydroxycinnamic acid, Lapachol, verminoside and minecoside | [48,61] |
Stem bark | Butanol | E. histolytica | Significant antiplasmodial activity | 2-(1-hydroxyethyl)- naphtho-[2,3-b]-furan-4,9-quinone, isopinnatal, kigelinol and isokigelinol | [58] | |
Antiurolithiatic Activity | Fruit | Ethanol | Male wistar albino rats | Reduced the elevated urinary oxalate, uric acid and phosphate | [94] | |
Anticonvulsant Activity | Bark | Aqueous and Methanol | Wistar rats | Potent anticonvulsant activity | Linoleic and cinnamic acid | [95] |
Antidiarrheal Activity | Bark | Ethanol | Mice | Significantly inhibited the castor oil-induced diarrhea in mice, with 500 mg/kg for extract and atropine (positive control) 62.7% and 82% P, respectively. | [96] | |
Treatment of Sexually Transmitted Diseases | Roots | Aqueous | C. albicans | strong activity, even in the absence of emulsin | Iridoids | [96,97] |
Antidiuretic Activity | Bark | Aqueous | Male wistar albino rats | Strong diuretic activity | [98,99] | |
Antioxidant Activity | Bark, Fruit and Leaf | Methanol | Quercetin (positive control)—94% inhibition, bark—(67.33%) inhibition, fruit—(62.66%) inhibition and leaves—(59.66%) inhibition | Phenols | [16,102] | |
Root | Ethyl acetate | High antioxidant activity | [33,103] | |||
Fruit | Methanol | Significantly reduced the production of thiobarbituric acid reactive substances (TBARS) | [104] | |||
Anticancer Activity | Stem bark | Methanol | Cytotoxic against human tumor cell lines with IC50 values of 15.1 ± 3.4, 126.0 ± 9.1, 90.7 ± 4.7, 186.0 ± 9.2, 101.0 ± 7.4, 124.1 ± 8.9, 11.8 ± 3.8 and 10.2± 2.7 µg/mL against T-cell leukemia, acute lymphoid leukemia, acute myeloid leukemia, chronic myeloid leukemia, non-Hodgkin’s lymphoma, Hodgkin’s lymphoma, breast cancer and murine lung cancer cell line, respectively | Dimethylkigelin, kigelin, ferulic acid and 2-(1-hydroxyethyl)-naphtho[2,3-b] furan-4,9-dione | [108,109] | |
Leaf | Methanol | Mice | Decrease in tumor size | [111] | ||
Fruit | Potent against melanoma and breast cancer cell lines | [112] | ||||
Toxicity | Fruit | Methanol | Male Sprague–Dawley rats | LD50 Extract was safe (LD50 was 3981.07 mg/kg) 3981.07 mg/kg | [38,51] | |
Polyherbal | Aqueous | Male Wistar albino rats | After the 30 days, there was no effect on hematological, urinary and plasma biochemical parameters | [117] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabatanzi, A.; M. Nkadimeng, S.; Lall, N.; Kabasa, J.D.; J. McGaw, L. Ethnobotany, Phytochemistry and Pharmacological Activity of Kigelia africana (Lam.) Benth. (Bignoniaceae). Plants 2020, 9, 753. https://doi.org/10.3390/plants9060753
Nabatanzi A, M. Nkadimeng S, Lall N, Kabasa JD, J. McGaw L. Ethnobotany, Phytochemistry and Pharmacological Activity of Kigelia africana (Lam.) Benth. (Bignoniaceae). Plants. 2020; 9(6):753. https://doi.org/10.3390/plants9060753
Chicago/Turabian StyleNabatanzi, Alice, Sanah M. Nkadimeng, Namrita Lall, John D. Kabasa, and Lyndy J. McGaw. 2020. "Ethnobotany, Phytochemistry and Pharmacological Activity of Kigelia africana (Lam.) Benth. (Bignoniaceae)" Plants 9, no. 6: 753. https://doi.org/10.3390/plants9060753