Climate Change Enhanced Carotenoid Pro-Vitamin A Levels of Selected Plantain Cultivars
Abstract
1. Introduction
2. Materials and Methods
3. Carotenoid Analysis
4. Results and Discussion
Carotenoid Contents Depending on Maturation and Seasonality
5. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Shetty, P. Addressing Micronutrient Malnutrition to Achieve Nutrition Security. In Combating Micronutrient Deficiencies: Food-based Approaches; Thompson, B., Amoroso, L., Eds.; CAB International: Wallingford, UK; FAO: Rome, Italy, 2011; pp. 28–40. [Google Scholar]
- Grieger, J.A.; Clifton, V.L. A review of the impact of dietary intakes in human pregnancy on infant birthweight. Nutrients 2014, 7, 153–178. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; De, O.M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Micronutrient Deficiency. Our World in Data. 2017. Available online: https://ourworldindata.org/micronutrient-deficiency#citation (accessed on 17 December 2019).
- Ghana Micronutrient Survey Final Report. 2017. Available online: https://osf.io/j7bp9/ (accessed on 19 March 2020).
- Melendez-Martinez, A.J.; Vicario, I.M.; Heredia, F.J. Nutritional importance of carotenoid pigments. Arch. Latinoam. Nutr. 2004, 54, 149–154. [Google Scholar]
- IFPRI (International Food Policy Research Institute). Global Nutrition Report: From Promise to Impact: Ending Malnutrition by 2030. 2016. Available online: www.data.unicef.org/wp-content/uploads/2016/06/130565-1.pdf (accessed on 17 December 2019).
- WHO (World Health Organization). 2009. Available online: http://www.who.int/nutrition/topics/vad/en/ (accessed on 28 January 2009).
- HarvestPlus. 2009. Available online: http://www.harvestplus.org/vita.html (accessed on 28 January 2018).
- Welch, R.M.; Graham, R.D. Agriculture: The real nexus for enhancing bioavailable micronutrients in food crops. J. Trace Elem. Med. Biol. 2005, 18, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Genc, Y.; Humphries, J.M.; Lyons, G.H.; Graham, R.D. Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency in populations. J. Trace Elem. Med. Biol. 2005, 18, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Lockyer, S.; White, A.; Buttriss, J.L. Biofortified crops for tackling micronutrient deficiencies—What impact are these having in developing countries and could they be of relevance within Europe? Nutr. Bull. 2018, 319–357. [Google Scholar] [CrossRef]
- Gibson, R.S. Strategies for Preventing Multi-micro nutrient Deficiencies: A Review of Experiences with Food-based Approaches in Developing Countries. In Combating Micronutrient Deficiencies: Food-based Approaches; Thompson, B., Amoroso, L., Eds.; CAB International: Wallingford, UK; FAO: Rome, Italy, 2011; pp. 7–27. [Google Scholar]
- Gibson, R.S.; Anderson, V.P. A review of interventions based on dietary diversification/modification strategies with the potential to enhance intakes of total and absorbable zinc. Food Nutr. Bull. 2009, 30, S108–S143. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Safety and Nutritional Adequacy of Irradiated Food; WHO: Geneva, Switzerland, 1994. [Google Scholar]
- Lu, Q.Y.; Zhang, Y.; Wang, Y.; Wang, D.; Lee, R.P.; Gao, K.; Byrns, R.; Heber, D. California Hass avocado: Profiling of carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas. J. Agric. Food Chem. 2009, 57, 10408–10413. [Google Scholar] [CrossRef]
- Dhuique-Mayer, C.; Fanciullino, A.L.; Dubois, C.; Ollitrault, P. Effect of genotype and environment on citrus juice carotenoid content. J. Agric. Food Chem. 2009, 57, 9160–9168. [Google Scholar] [CrossRef]
- González-Molina, E.; Moreno, D.A.; García-Viguera, C. Genotype and harvest time influence the phytochemical quality of Fino lemon juice (Citrus limon (L.) Burm. F.) for industrial use. J. Agric. Food Chem. 2008, 56, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
- FAO (Food and Agriculture Organization). 2009. Available online: http://faostat.fao.org/site/567/default.aspx#ancor (accessed on 28 January 2009).
- Global Trade. Africa’s Plantain Market to Reach Over 30M Tonnes by 2025. IndexBox AI Platform. 2019. Available online: https://www.globaltrademag.com/africas-plantain-market-to-reach-over-30m-tonnes-by-2025 (accessed on 12 January 2020).
- Englberger, L.; Aalbersberg, W.; Ravi, P.; Bonnin, E.; Marks, G.C.; Fitzgerald, M.H.; Elymore, J. Further analyses on Micronesian banana, taro, breadfruit and other foods for provitamin A carotenoids and minerals. J. Food Compos. Anal. 2003, 16, 219–236. [Google Scholar] [CrossRef]
- Englberger, L.; Schierle, J.; Marks, G.C.; Fitzgerald, M.H. Micronesian banana, taro, and other foods: Newly recognized sources of provitamin A and other carotenoids. J. Food Compos. Anal. 2003, 16, 3–19. [Google Scholar] [CrossRef]
- Englberger, L.; Schierle, J.; Aalbersberg, W.; Hofmann, P.; Humphries, J.; Huang, A.; Lorens, A.; Levendusky, A.; Daniells, J.; Marks, G.C.; et al. Carotenoid and vitamin content of Karat and other Micronesian banana cultivars. Int. J. Food Sci. Nutr. 2006, 57, 399–418. [Google Scholar] [CrossRef] [PubMed]
- Englberger, L.; Wills, R.B.H.; Blades, B.; Dufficy, L.; Daniells, J.W.; Coyne, T. Carotenoid content and flesh color of selected banana cultivars growing in Australia. Food Nutr. Bull. 2006, 27, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.W.; Garming, H.; Ekesa, B.; Roux, N.; Van den Bergh, I. Exploiting banana biodiversity to reduce vitamin A deficiency-related illness: A fast and cost-effective strategy. In Proceedings of the Tropical Fruits in Human Health and Nutrition Conference, Brisbane, Australia, 5–8 November 2008. in press. [Google Scholar]
- Davey, M.W.; Van den Bergh, I.; Markham, R.; Swennen, R.; Keulemans, J. Genetic variability in Musa fruit provitamin A carotenoids and mineral micronutrient contents. Food Chem. 2009, in press. [Google Scholar] [CrossRef]
- Davey, M.W.; Saeys, W.; Hof, E.; Ramon, H.; Swennen, R.; Keulemans, J. Application of near- infrared reflectance spectroscopy (NIRS) to the evaluation of carotenoids in Musa fruit pulp. J. Agric. Food Chem. 2009, 57, 1742–1751. [Google Scholar] [CrossRef]
- Garming, H.; Ekesa, B. An Ex-Ante Assessment of the Impact of Musa Cultivars with High Levels of Beta-Carotenes on the Burden of Vitamin A Deficiency Related Illness in Three Sub-Saharan Africa Countries; Bioversity International, Montpellier 2008.
- Khawas, P.; Das, A.J.; Sit, N.; Badwaik, L.S.; Deka, S.C. Nutritional Composition of Culinary Musa ABB at Different Stages of Development. Am. J. Food Sci. Technol. 2014, 2, 80–87. [Google Scholar] [CrossRef]
- Adepoju, O.T.; Sunday, B.E.; Folaranmi, O.A. Nutrient composition and contribution of plantain (Musa paradisiacea) products to dietary diversity of Nigerian consumers. Afr. J. Biotechnol. 2012, 11, 13601–13605. [Google Scholar] [CrossRef]
- Egbebi, A.O.; Bademosi, T.A. Chemical compositions of ripe and unripe banana and plantain. Int. J. Trop. Med. Public Health 2011, 1, 1–5. [Google Scholar]
- Davey, M.V.; Stals, E.; Ngoh-Newilah, G.; Tomekpe, K.; Lusty, C.; Markham, R.; Swennen, R.; Keulemans, J. Sampling strategies and variability in fruit pulp micronutrient contents of West and Central African bananas and plantains (Musa species). J. Agric. Food Chem. 2007, 55, 2633–2644. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.l.; Ziska, L.H. Increases in atmospheric carbon dioxide: Anticipated negative effects on food quality. PLoS Med. 2018, 15, e1002600. [Google Scholar] [CrossRef] [PubMed]
- Pilbeam, D.J. Breeding crops for improved mineral nutrition under climate change conditions. J. Exp. Bot. 2015, 66, 3511–3521. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.C.; Santos, C.S.; Carvalho, S.M.P.; Pintado, M.M.; Vasconcelos, M.W. Preserving the nutritional quality of crop plants under a changing climate: Importance and strategies. Plant Soil 2019. [Google Scholar] [CrossRef]
- Björn, L.O.; Widell, S.; Wang, T. Evolution of UV-B regulation and protection in plants. Adv. Space Res. 2002, 30, 1557–1562. [Google Scholar] [CrossRef]
- Sullivan, J.H.; Teramura, A.H. Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth of soybean. Plant Physiol. 1990, 92, 141–146. [Google Scholar] [CrossRef]
- Gwynn-Jones, D. Short-term impacts of enhanced UV-B radiation on photoassimilate allocation and metabolism: A possible interpretation for time-dependent inhibition of growth. Plant Ecol. 2001, 154, 67–73. [Google Scholar] [CrossRef]
- Kyparissis, A.; Drilias, P.; Petropoulou, Y.; Grammatikopoulos, G.; Manetas, Y. Effects of UV-B radiation and additional irrigation on the Mediterranean evergreen sclerophyll Ceratonia siliqua L. under field conditions. Plant Ecol. 2001, 154, 189–193. [Google Scholar] [CrossRef]
- Eichhorn, M.; Dohler, M.; Austen, H. Impact of UV-B radiation on photosynthetic electron transport of Wolffa arrhiza (L) Wimm. Photosynthetica 1993, 39, 613–618. [Google Scholar]
- Reed, J.; Van de Staaij, J.; Bjorn, L.O.; Caldwell, M.M. UV-B as an environmental factor in plant life: Stress and regulation. Trends Ecol. Evol. 1992, 12, 22–28. [Google Scholar]
- Barnes, P.W.; Maggard, S.; Holman, S.R.; Vergara, B.S. Interspecific variation in sensitivity to UV-B radiation in rice. Crop Sci. 1993, 33, 1041–1046. [Google Scholar] [CrossRef]
- Correia, C.M.; Areal, E.L.V.; Torres-Pereira, M.S.; Torres-Pereira, J.M.G. Interspecific variation in sensitivity to UV-B radiation in maize grown under field conditions. I growth and morphological aspects. Field Crops Res. 1998, 59, 81–89. [Google Scholar]
- Wald, J.P.; Nohr, D.; Biesalski, H.K. Rapid and easy carotenoid quantification in Ghanaian starchy staples using RP-HPLC-PDA. J. Food Compos. Anal. 2018, 67, 119–127. [Google Scholar] [CrossRef]
- Shen, J.; Jiang, C.Q.; Yan, Y.F.; Liu, B.R.; Zu, C. Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves. Genet Mol. Res. 2017, 16, 1–11. [Google Scholar] [CrossRef]
- Mark, U.; Tevini, M. Effects of solar ultraviolet -B radiation, temperature and carbon dioxide on growth and physiology of sunflower and maize seedlings. Plant Ecol. 1997, 128, 224–234. [Google Scholar] [CrossRef]
- Pérez, C.P.; Ulrichs, C.; Huyskens-Keil, S.; Schreiner, M.; Krumbein, A.; Schwarz, D.; Kläring, H.-P. Composition of Carotenoids in Tomato Fruits as Affected by Moderate UV-B Radiation before Harvest. Acta Hort. 2009, 821, 217–222. [Google Scholar] [CrossRef]
- Hu, L.; Yang, C.; Zhang, L.; Feng, J.; Xi, W. Irradiation on the Soluble Sugar, Organic Acid, and Carotenoid Content of Postharvest Sweet Oranges (Citrus sinensis (L.) Osbeck). Molecules 2019, 24, 3440. [Google Scholar] [CrossRef] [PubMed]
- Fedina, I.; Hidema, J.; Velitchkova, M.; Georgieva, K.; Nedeva, D. UV-B induced stress responses in three rice cultivars. Biol. Plant 2010, 54, 571–574. [Google Scholar] [CrossRef]
- Mpoloka, S.W. Effects of prolonged UV-B exposure in plants. Afr. J. Biotechnol. 2008, 7, 4874–4883. [Google Scholar]
- Kramer, G.F.; Norman, H.A.; Krizek, D.T.; Mirecki, R.M. Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochemistry 1991, 30, 2101–2108. [Google Scholar] [CrossRef]
- Lidon, F.C.; Ramalho, J.C. Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L. J. Photochem. Photobiol. B Biol. 2011, 104, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.H. Effects of increasing UV-B radiation and atmospheric carbon dioxide on photosynthesis and growth implications for terrestrial ecosystems. Plant Ecol. 1997, 128, 194–206. [Google Scholar] [CrossRef]
- Hunt, J.E.; McNeil, D.L. Nitrogen status affects UV-B sensitivity of cucumber. Aust. J. Plant Physiol. 1998, 25, 79–86. [Google Scholar] [CrossRef]
- Correia, C.M.; Coutinho, J.F.; Bjorn, L.O.; Torres-Pereira, J.M.G. Ultravoilet-B radiation and nitrogen effects on growth and yield of maize under Mediterranean field conditions. Eur. J. Agron. 2000, 12, 117–125. [Google Scholar] [CrossRef]
- Musil, C.F.; Chimphango, S.B.M.; Dakora, F.D. Effects of ultraviolet-B radiation on native and cultivated plants of southern Africa. Ann. Bot. 2002, 90, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Adel, A.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- De Pee, S.; West, C.E. Dietary carotenoids and their role in combating vitamin A deficiency: A review of the literature. Eur. J. Clin. Nutr. 1996, 50, S38–S53. [Google Scholar]
- Klein, B.P.; Perry, A.K. Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. J. Food Sci. 1982, 47, 941–945. [Google Scholar] [CrossRef]
- Nguyen, C.T.T.; Lim, S.; Lee, J.G.; Lee, E.J. VcBBX, VcMYB21, and VcR2R3MYB transcription factors are involved in UV-B-induced anthocyanin. J. Agric. Food Chem. 2017, 65, 2066–2073. [Google Scholar] [CrossRef]
- Wang, H.; Gui, M.; Tian, X.; Xin, X.; Wang, T.; Li, J. Effects of UVB on vitamin C, phenolics, flavonoids and their related enzyme activities in mung bean sprouts (Vigna radiata). Int. J. Food Sci. Technol. 2017, 52, 827–833. [Google Scholar] [CrossRef]
- Wu, G.; Bornman, J.F.; Bennett, S.J.; Clarke, M.W.; Fang, Z.; Johnson, S.K. Individual polyphenolic profiles and antioxidant activity in sorghum grains are influenced by very low and high solar UV radiation and genotype. J. Cereal Sci. 2017, 77, 17–23. [Google Scholar] [CrossRef]
- Choudhary, K.K.; Agrawal, S.B. Assessment of fatty acid profile and seed mineral nutrients of two soybean (Glycine max L.) cultivars under elevated ultraviolet-B: Role of ROS, pigments and antioxidants. Photochem. Photobiol. 2016, 92, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Patro, H.; Lokhande, S.; Bellaloui, N.; Gao, W. Ultraviolet-B radiation alters soybean growth and seed quality. Food Nutr. Sci. 2016, 7, 55–66. [Google Scholar] [CrossRef]
- Tripathi, R.; Agrawal, S.B. Effect of supplemental UV-B on yield, seed quality, oil content and fatty acid composition of Brassica campestris L. under natural field conditions. Qual. Assur. Saf. Crops Foods 2016, 8, 11–20. [Google Scholar] [CrossRef]
- Pfündel, E.E. Action of UV and visible radiation on chlorophyll fluorescence from dark-adapted grape leaves (Vitis vinifera L.). Photosynth. Res. 2003, 75, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Salama, H.M.H.; Al Watban, A.A.; Al-Fughom, A.T. Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants. Saudi J. Biol. Sci. 2011, 18, 79–86. [Google Scholar] [CrossRef]
- Razungles, A.; Gunata, Z.; Pinatel, S.; Baumes, R.; Bayonove, C. Etude quantitative de composés terpéniques, norisoprénoïdes et de leurs précurseurs dans diverses variétés de raisins. Sci. Aliment. 1993, 13, 59–72. [Google Scholar]
Months | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec |
2014 | 12 ± 0.1 | 12 ± 0.1 | 12 ± 0.01 | 12 ± 0.1 | 12 ± 0.1 | 7 ± 0.01 | 7 ± 0.01 | 8 ± 0.01 | 8 ± 0.01 | 8 ± 0.01 | 9 ± 0.01 | 12 ± 0.01 |
2015 | 12 ± 1.0 | 12 ± 0.1 | 12 ± 0.02 | 12 ± 0.1 | 12 ± 0.1 | 7 ± 0.01 | 7 ± 0.01 | 7 ± 0.01 | 8 ± 0.01 | 8 ± 0.01 | 9 ± 0.01 | 12 ± 0.01 |
Cultivar | Maturity (Days) during the Rainy Season I | |||||
---|---|---|---|---|---|---|
Cultivar | α-carotene Levels µg/100 g Edible Pulp) at Three Maturities | β-carotene Levels µg/100 g Edible Pulp) at Three Maturities | ||||
70 | 80 | 90 | 70 | 80 | 90 | |
“Apantu” | 95.7 ± 9.11a | 108 ± 13.8a | 171 ± 32.2a | 151 + 15.7a | 142 + 9.66 | 220 ± 29.2a |
“Apem” | 78.6 ± 5.34b | 128 ± 4.31b | 291 ± 7.43b | 108 ± 9.3b | 148 + 9.25 | 386 ± 4.09b |
“Oniaba” | 83.7 ± 12.4ab | - | 328 ± 57.7c | 102 ± 22.1b | - | 400 ± 86.4b |
CV | 12.4 | 10.4 | 30.6 | 10.7 | 11.8 | 30.1 |
LSD (p < 0.05) | 12.0 | 13.2 | 20.2 | 8.9 | 10.9 | 12.3 |
Cultivar | Maturity (Days) During Rainy Season 11 | |||||
---|---|---|---|---|---|---|
α-carotene Contents at Three Maturities | β-carotene Content at Three Maturities | |||||
70 | 80 | 90 | 70 | 80 | 90 | |
“Apantu” | 297 ± 38.1a | 254 ± 36.3a | 474 ± 45.0a | 362 ± 20.7a | 288 ± 29.4a | 567 ± 59.7a |
“Apem” | 310 ± 3.26b | 356 ± 5.79b | 379 ± 2.12b | 221 ± 42.6b | 279 ± 39.3a | 210 ± 44.5b |
“Oniaba” | 160 ± 9.77c | 533 ± 60.4c | 435 ± 4.70c | 209 ± 11.8b | 558 ± 65.4b | 451 ± 3.89c |
CV | 15.1 | 20.4 | 40.6 | 10.7 | 11.8 | 45.1 |
LSD (p < 0.05) | 9.3 | 15.2 | 12.2 | 12.9 | 11.9 | 15.3 |
Maturity Date (Days) during the Dry Season | ||||||
---|---|---|---|---|---|---|
Cultivar | α-carotene Contents at Three Maturities | β-carotene Content at Three Maturities | ||||
70 | 80 | 90 | 70 | 80 | 90 | |
“Apantu” | 283 ± 5.08a | 420 ± 2.80a | 489 ± 7.57a | 358 ± 5.24a | 577 ± 4.09a | 573 ± 7.79a |
“Apem” | 310 ± 3.26a | 356 ± 5.79b | 379 ± 2.12b | 299 ± 2.31b | 371 ± 5.09b | 386 ± 4.09b |
“Oniaba” | 719 ± 6.93b | 793 ± 8.39c | 542 ± 0.36c | 685 ± 7.63c | 744 ± 10.3c | 577 ± 2.75a |
CV | 18.1 | 20.4 | 40.6 | 10.7 | 31.8 | 50.1 |
LSD (p < 0.05) | 30.3 | 15.2 | 12.2 | 12.9 | 21.9 | 16.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzomeku, B.M.; Wald, J.P.; Wünsche, J.N.; Nohr, D.; Biesalski, H.K. Climate Change Enhanced Carotenoid Pro-Vitamin A Levels of Selected Plantain Cultivars. Plants 2020, 9, 541. https://doi.org/10.3390/plants9040541
Dzomeku BM, Wald JP, Wünsche JN, Nohr D, Biesalski HK. Climate Change Enhanced Carotenoid Pro-Vitamin A Levels of Selected Plantain Cultivars. Plants. 2020; 9(4):541. https://doi.org/10.3390/plants9040541
Chicago/Turabian StyleDzomeku, Beloved Mensah, Julian P. Wald, Jens Norbert Wünsche, Donatus Nohr, and Hans K. Biesalski. 2020. "Climate Change Enhanced Carotenoid Pro-Vitamin A Levels of Selected Plantain Cultivars" Plants 9, no. 4: 541. https://doi.org/10.3390/plants9040541
APA StyleDzomeku, B. M., Wald, J. P., Wünsche, J. N., Nohr, D., & Biesalski, H. K. (2020). Climate Change Enhanced Carotenoid Pro-Vitamin A Levels of Selected Plantain Cultivars. Plants, 9(4), 541. https://doi.org/10.3390/plants9040541