FLOWERING LOCUS T Triggers Early and Fertile Flowering in Glasshouse Cassava (Manihot esculenta Crantz)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Expression Vector Assembly and Bacterial Transformation
4.2. Agrobacterium-Mediated Cassava Transformation
4.3. Cassava Regeneration and Glasshouse Cultivation
4.4. PCR Amplification to Screen Putative Transgenic Plantlets
4.5. Southern Blot Analysis
4.6. RT-PCR for AtFT Transgene Expression
4.7. Flowering, Pollination, and Seed Germination
4.8. Grafting of Cassava Stems
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Van Nocker, S.; Gardiner, S.E. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 2014, 1, 14022. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Altpeter, F.; Springer, N.M.; Bartley, L.E.; Blechl, A.E.; Brutnell, T.P.; Citovsky, V.; Conrad, L.J.; Gelvin, S.B.; Jackson, D.P.; Kausch, A.P.; et al. Advancing crop transformation in the era of genome editing. Plant Cell 2016, 28, 1510–1520. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, S.M.; Nakata, P.A. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Plant Sci. 2015, 240, 130–142. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, E.J.; Vilela de Resende, M.D.; da Silva Santos, V.; Fortes Ferreira, C.; Alvarenga Fachardo Oliveira, G.; Suzarte da Silva, M.; Alves de Oliveira, L.; Aguilar-Vildoso, C.I. Genome-wide selection in cassava. Euphytica 2012, 187, 263–276. [Google Scholar] [CrossRef]
- FAO. Save and Grow: Cassava. A Guide to Sustainable Production Intensification; FAO: Rome, Italy, 2013; pp. 1–142. [Google Scholar]
- Balat, M.; Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86, 2273–2282. [Google Scholar] [CrossRef]
- Byrne, D. Breeding cassava. Plant Breed. Rev. 1984, 2, 73–133. [Google Scholar]
- Ceballos, H.; Iglesias, C.A.; Pérez, J.C.; Dixon, A.G. Cassava breeding: Opportunities and challenges. Plant Mol. Biol. 2004, 56, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.F.; Cappadocia, M.; Byrne, D. In vitro flowering in cassava (Manihot esculenta Cranz). Plant Cell Tissue Organ Cult. 1983, 2, 199–206. [Google Scholar] [CrossRef]
- Halsey, M.E.; Olsen, K.M.; Taylor, N.J.; Chavarriaga-Aguirre, P. Reproductive biology of cassava (Manihot esculenta Crantz) and isolation of experimental field trials. Crop Sci. 2008, 48, 49–58. [Google Scholar] [CrossRef]
- Perera, P.I.; Quintero, M.; Dedicova, B.; Kularatne, J.D.; Ceballos, H. Comparative morphology, biology and histology of reproductive development in three lines of Manihot esculenta Crantz (Euphorbiaceae: Crotonoideae). AoB Plant. 2013, 5, pls046. [Google Scholar] [CrossRef] [PubMed]
- Rudi, N.; Norton, G.W.; Alwang, J.; Asumugha, G. Economic impact analysis of marker-assisted breeding for resistance to pests and post-harvest deterioration in cassava. Afr. J. Agric. Resour. Econ. 2010, 4, 110–122. [Google Scholar]
- Chavarriaga-Aguirre, P.; Brand, A.; Medina, A.; Prías, M.; Escobar, R.; Martinez, J.; Díaz, P.; López, C.; Roca, W.M.; Tohme, J. The potential of using biotechnology to improve cassava: A review. In Vitro Cell. Dev. Biol. Plant 2016, 52, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Corbesier, L.; Vincent, C.; Jang, S.; Fornara, F.; Fan, Q.; Searle, I.; Giakountis, A.; Farrona, S.; Gissot, L.; Turnbull, C.; et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 2007, 316, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Andrés, F.; Kanehara, K.; Liu, Y.C.; Dörmann, P.; Coupland, G. Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nat. Commun. 2014, 5, 3553. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Kobayashi, Y.; Yamamoto, S.; Daimon, Y.; Yamaguchi, A.; Ikeda, Y.; Ichinoki, H.; Notaguchi, M.; Goto, K.; Araki, T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 2005, 309, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Wigge, P.A.; Kim, M.C.; Jaeger, K.E.; Busch, W.; Schmid, M.; Lohmann, J.U.; Weigel, D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 2005, 309, 1056–1059. [Google Scholar] [CrossRef] [PubMed]
- Andrés, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Klocko, A.L.; Ma, C.; Robertson, S.; Esfandiari, E.; Nilsson, O.; Strauss, S.H. FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus. Plant Biotechnol. J. 2016, 14, 808–819. [Google Scholar] [CrossRef] [PubMed]
- McGarry, R.C.; Prewitt, S.; Ayre, B.G. Overexpression of FT in cotton affects architecture but not floral organogenesis. Plant Signal. Behav. 2013, 8, e23602. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.; Scorza, R.; Wheeler, R.; Smith, B.; Dardick, C.; Dixit, A.; Raines, D.; Callahan, A.; Srinivasan, C.; Spencer, L.; et al. Over-expression of FT1 in plum (Prunus domestica) results in phenotypes compatible with spaceflight: A potential new candidate crop for bioregenerative life support systems. Gravit. Space Res. 2015, 3, 39–50. [Google Scholar]
- Böhlenius, H.; Huang, T.; Charbonnel-Campaa, L.; Brunner, A.M.; Jansson, S.; Strauss, S.H.; Nilsson, O. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 2006, 312, 1040–1043. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, N.; Ikeda, K.; Kurosaka, M.; Takashina, T.; Isuzugawa, K.; Endo, T.; Omura, M. Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J. Jpn. Soc. Hortic. Sci. 2009, 78, 410–416. [Google Scholar] [CrossRef]
- Tränkner, C.; Lehmann, S.; Hoenicka, H.; Hanke, M.V.; Fladung, M.; Lenhardt, D.; Dunemann, F.; Gau, A.; Schlangen, K.; Malnoy, M.; et al. Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 2010, 232, 1309–1324. [Google Scholar] [CrossRef] [PubMed]
- Khatodia, S.; Bhatotia, K.; Passricha, N.; Khurana, S.M.P.; Tuteja, N. The CRISPR/Cas genome-editing tool: Application in improvement of crops. Front. Plant Sci. 2016, 7, 506. [Google Scholar] [CrossRef] [PubMed]
- McGarry, R.C.; Klocko, A.L.; Pang, M.; Strauss, S.H.; Ayre, B.G. Virus-induced flowering: An application of reproductive biology to benefit plant research and breeding. Plant Physiol. 2017, 173, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, H.; Jaramillo, J.J.; Salazar, S.; Pineda, L.M.; Calle, F.; Setter, T. Induction of flowering in cassava through grafting. J. Plant Breed. Crop Sci. 2017, 9, 19–29. [Google Scholar]
- Blümel, M.; Dally, N.; Jung, C. Flowering time regulation in crops—What did we learn from Arabidopsis? Curr. Opin. Biotechnol. 2015, 32, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, H.; Kawuki, R.; Gracen, V.; Yencho, G.C.; Hershey, C. Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: A case study for cassava. Theor. Appl. Genet. 2015, 128, 1647–1667. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, M.D.; Pino del Carpio, D.; Alabi, O.; Egesi, C.; Ezenwaka, L.C.; Ikeogu, U.N.; Kawuki, R.S.; Kayondo, I.S.; Kulakow, P.; Lozano, R.; et al. Prospects for genomic selection in cassava breeding. BioRxiv 2017. [Google Scholar] [CrossRef]
- Rey, M.E.C.; Vanderschuren, H. Cassava mosaic and brown streak diseases: Current perspectives and beyond. Ann. Rev. Virol. 2017, 4. in press. [Google Scholar]
- Østerberg, J.T.; Xiang, W.; Olsen, L.I.; Edenbrandt, A.K.; Vedel, S.E.; Christiansen, A.; Landes, X.; Andersen, M.M.; Pagh, P.; Sandøe, P.; et al. Accelerating the domestication of new crops: Feasibility and approaches. Trends Plant Sci. 2017, 22, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Curtis, M.; Grossniklaus, U. A Gateway™ cloning vector set for high-throughput functional analysis of genes in plants. Plant Physiol. 2003, 133, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Bull, S.E.; Owiti, J.A.; Niklaus, M.; Beeching, J.R.; Gruissem, W.; Vanderschuren, H. Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nat. Protoc. 2009, 4, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Gresshoff, P.; Doy, C. Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of the anthers for haploid culture of this and other genera. Z. Pflanzenphysiol. 1974, 73, 132–141. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Soni, R.; Murray, J.A.H. Isolation of intact DNA and RNA from plant tissues. Anal. Biochem. 1994, 218, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 1975, 98, 503–517. [Google Scholar] [CrossRef]
- Wojtusik, T.; Felker, P. Interspecific graft incompatibility in Prosopis. For. Ecol. Manag. 1993, 59, 329–340. [Google Scholar] [CrossRef]
- Moreno, I.; Gruissem, W.; Vanderschuren, H. Reference genes for reliable potyvirus quantitation in cassava and analysis of Cassava brown streak virus load in host varieties. J. Virol. Methods 2011, 177, 49–54. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bull, S.E.; Alder, A.; Barsan, C.; Kohler, M.; Hennig, L.; Gruissem, W.; Vanderschuren, H. FLOWERING LOCUS T Triggers Early and Fertile Flowering in Glasshouse Cassava (Manihot esculenta Crantz). Plants 2017, 6, 22. https://doi.org/10.3390/plants6020022
Bull SE, Alder A, Barsan C, Kohler M, Hennig L, Gruissem W, Vanderschuren H. FLOWERING LOCUS T Triggers Early and Fertile Flowering in Glasshouse Cassava (Manihot esculenta Crantz). Plants. 2017; 6(2):22. https://doi.org/10.3390/plants6020022
Chicago/Turabian StyleBull, Simon E., Adrian Alder, Cristina Barsan, Mathias Kohler, Lars Hennig, Wilhelm Gruissem, and Hervé Vanderschuren. 2017. "FLOWERING LOCUS T Triggers Early and Fertile Flowering in Glasshouse Cassava (Manihot esculenta Crantz)" Plants 6, no. 2: 22. https://doi.org/10.3390/plants6020022
APA StyleBull, S. E., Alder, A., Barsan, C., Kohler, M., Hennig, L., Gruissem, W., & Vanderschuren, H. (2017). FLOWERING LOCUS T Triggers Early and Fertile Flowering in Glasshouse Cassava (Manihot esculenta Crantz). Plants, 6(2), 22. https://doi.org/10.3390/plants6020022