Salt Stress Enhances Aroma Component 2-Acetyl-1-Pyrroline in Aromatic Coconut (Cocos nucifera Linn.)
Abstract
1. Introduction
2. Results
2.1. Aromatic Coconut Is a Moderately Salt-Tolerant Plant
2.2. Expression Profiles of Differentially Expressed Genes Under Varied Salt Stress
2.3. Salinity Triggers Salt-Tolerant Gene and 2AP-Synthesis-Related Gene Expression
2.4. High Salinity Induces the Synthesis of 2AP
3. Discussion
4. Materials and Methods
4.1. Plants Culture and Salt Stress Treatment
4.2. RNA Extraction and RNA-Seq Analysis
4.3. qRT-PCR to Analyze Target Gene Transcript Levels
4.4. Determination of 2AP Contents in Leaves
4.5. Measurement of Physiological Indicators
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 2AP | 2-acetyl-1-pyrroline |
| P5CS | pyrroline-5-carboxylate synthetase |
| GABA | γ-aminobutyric acid |
| P5C | pyrroline-5-carboxylic acid |
| OAT | ornithine aminotransferase |
| PRODH | proline dehydrogenase |
| P5CR | pyrroline-5-carboxylate reductase |
| P5CDH | pyrroline-5-carboxylate dehydrogenase |
| ROS | reactive oxygen species |
| POD | peroxidase |
| SOD | superoxide dismutase |
| CAT | catalase |
| SODCP | superoxide dismutase |
| ABA | abscisic acid |
| DEGs | differentially expressed genes |
| GO | Gene Ontology |
References
- Vongvanrungruang, A.; Mongkolsiriwatana, C.; Boonkaew, T.; Sawatdichaikul, O.; Srikulnath, K.; Peyachoknagul, S. Single base substitution causing the fragrant phenotype and development of a type-specific marker in aromatic coconut (Cocos nucifera). Genet. Mol. Res. 2016, 15, gmr.15038748. [Google Scholar] [CrossRef]
- Dumhai, R.; Wanchana, S.; Saensuk, C.; Choowongkomon, K.; Mahatheeranont, S.; Kraithong, T.; Toojinda, T.; Vanavichit, A.; Arikit, S. Discovery of a novel CnAMADH2 allele associated with higher levels of 2-acetyl-1-pyrroline (2AP) in yellow dwarf coconut (Cocos nucifera L.). Sci. Hortic. 2019, 243, 490–497. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Eichelsheim, C.; Mumm, R.; Hall, R.D. Chemical and Sensory Characteristics of Soy Sauce: A Review. J. Agric. Food Chem. 2020, 68, 11312–11630. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, J.; Cao, X.; Wei, C.; Kuang, J.; Chen, K.; Zhang, B. Peach fruit PpNAC1 activates PpFAD3-1 transcription to provide ω-3 fatty acids for the synthesis of short-chain flavor volatiles. Hortic. Res. 2022, 9, uhac085. [Google Scholar] [CrossRef] [PubMed]
- Wongpornchai, S.; Sriseadka, T.; Choonvisase, S. Identification and quantitation of the rice aroma compound, 2-acetyl-1-pyrroline, in bread flowers (Vallaris glabra Ktze). J. Agric. Food Chem. 2003, 51, 457–462. [Google Scholar] [CrossRef]
- Bennett, C.; Sriyotai, W.; Wiratchan, S.; Semakul, N.; Mahatheeranont, S. Determination of 2-Acetyl-1-pyrroline via a Color-Change Reaction Using Chromium Hexacarbonyl. Molecules 2022, 27, 3957. [Google Scholar] [CrossRef]
- Huang, S.; Deng, Q.; Zhao, Y.; Chen, C.; Geng, A.; Wang, X. L-glutamate seed priming enhances 2-acetyl-1-pyrroline formation in fragrant rice seedlings in response to arsenite stress. J. Agric. Food Chem. 2023, 71, 18443–18453. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hua, X.; Li, S.; Zhao, J.; Yu, H.; Wang, D.; Yang, J.; Liu, L. Aromatic compound 2-acetyl-1-pyrroline coordinates nitrogen assimilation and methane mitigation in fragrant rice. Curr. Biol. 2024, 34, 3429–3438. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, T.; Zheng, A.; He, L.; Lai, R.; Liu, J.; Xing, P.; Tang, X. Exogenous proline induces regulation in 2-acetyl-1-pyrroline (2-AP) biosynthesis and quality characters in fragrant rice (Oryza sativa L.). Sci. Rep. 2020, 10, 13971. [Google Scholar] [CrossRef] [PubMed]
- Payaka, A.; Kongdin, M.; Teepoo, S.; Sansenya, S. Gamma Irradiation and Exogenous Proline Enhanced the Growth, 2AP Content, and Inhibitory Effects of Selected Bioactive Compounds against α-Glucosidase and α-Amylase in Thai Rice. Prev. Nutr. Food Sci. 2024, 29, 354–364. [Google Scholar] [CrossRef]
- Xie, W.; Kong, L.; Ma, L.; Ashraf, U.; Pan, S.; Duan, M.; Tian, H.; Wu, L.; Tang, X.; Mo, Z. Enhancement of 2-acetyl-1-pyrroline (2AP) concentration, total yield, and quality in fragrant rice through exogenous γ-aminobutyric acid (GABA) application. J. Cereal Sci. 2020, 91, 102900. [Google Scholar] [CrossRef]
- Li, M.; Ashraf, U.; Tian, H.; Mo, Z.; Pan, S.; Anjum, S.A.; Duan, M.; Tang, X. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice. Plant Physiol. Biochem. 2016, 103, 167–175. [Google Scholar] [CrossRef]
- Yoshihashi, T.; Huong, N.T.T.; Inatomi, H. Precursors of 2-acetyl-1-pyrroline, a potent favor compound of an aromatic rice variety. J. Agric. Food Chem. 2002, 50, 2001–2004. [Google Scholar] [CrossRef] [PubMed]
- Costello, P.J.; Henschke, P.A. Mousy of-favor of wine: Precursors and biosynthesis of the causative N-Heterocycles 2-ethyltetrahydropyridine, 2-acetyltetrahydropyridine, and 2-acetyl-1-pyrroline by Lactobacillus hilgardii DSM 20176. J. Agric. Food Chem. 2002, 50, 7079–7087. [Google Scholar] [CrossRef]
- Imran, M.; Liu, Y.; Shafiq, S.; Abbas, F.; Ilahi, S.; Rehman, N.; Ahmar, S.; Fiaz, S.; Baran, N.; Pan, S.; et al. Transcriptional cascades in the regulation of 2-AP biosynthesis under Zn supply in fragrant rice. Physiol. Plant. 2022, 174, e13721. [Google Scholar] [CrossRef]
- Hinge, V.R.; Patil, H.B.; Nadaf, A.B. Nadaf, Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice 2016, 9, 38. [Google Scholar] [CrossRef]
- Renuka, N.; Barvkar, V.T.; Ansari, Z.; Zhao, C.; Wang, C.; Zhang, Y.; Nadaf, A.B. Co-functioning of 2AP precursor amino acids enhances 2-acetyl-1-pyrroline under salt stress in aromatic rice (Oryza sativa L.) cultivars. Sci. Rep. 2022, 12, 3911. [Google Scholar] [CrossRef]
- Okpala, N.E.; Mo, Z.; Duan, M.; Tang, X. The genetics and biosynthesis of 2-acetyl-1-pyrroline in fragrant rice. Plant Physiol. Biochem. 2019, 135, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Qian, L.; Chi, Z.; Jia, X.; Qi, F.; Yuan, F.; Liu, Z.; Zheng, Y. Combined metabolomic and quantitative RT-PCR analyses revealed the synthetic differences of 2-Acetyl-1-pyrroline in aromatic and non-aromatic vegetable soybeans. Int. J. Mol. Sci. 2022, 23, 14529. [Google Scholar] [CrossRef] [PubMed]
- Saensuk, C.; Wanchana, S.; Choowongkomon, K.; Wongpornchai, S.; Kraithong, T.; Imsabai, W. De novo transcriptome assembly and identification of the gene conferring a “pandan-like” aroma in coconut (Cocos nucifera L.). Plant Sci. 2016, 252, 324–334. [Google Scholar] [CrossRef]
- Ding, H.; Lv, X.; Zhou, G.; Liu, X.; Sun, X.; Li, J.; Iqbal, A.; Yang, Y. Genome-wide association analysis reveals regulatory genes for the metabolite synthesis of 2-acetyl-1-pyrroline in aromatic coconut (Cocos nucifera L.). J. Genet. Genom. 2025, 52, 179–188. [Google Scholar] [CrossRef]
- Poonlaphdecha, J.; Maraval, I.; Roques, S.; Audebert, A.; Boulanger, R.; Bry, X.; Gunata, Z. Effect of timing and duration of salt treatment during growth of a fragrant rice variety on yield and 2-acetyl-1-pyrroline, proline, and GABA levels. J. Agric. Food Chem. 2012, 60, 3824–3830. [Google Scholar] [CrossRef]
- Baicharoen, A.; Vijayan, R.; Pongprayoon, P. Structural insights into betaine aldehyde dehydrogenase (BADH2) from Oryza sativa explored by modeling and simulations. Sci. Rep. 2018, 8, 12892. [Google Scholar] [CrossRef] [PubMed]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savouré, A. Savouré, Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef]
- Lamers, J.; Zhang, Y.; van Zelm, E.; Leong, C.K.; Meyer, A.J.; de Zeeuw, T.; Verstappen, F.; Veen, M.; Deolu-Ajayi, A.O.; Gommers, C.M.M.; et al. Abscisic acid signaling gates salt-induced responses of plant roots. Proc. Natl. Acad. Sci. USA 2025, 122, e2406373122. [Google Scholar] [CrossRef]
- Akter, S.; Huang, J.; Waszczak, C.; Jacques, S.; Gevaert, K.; Van Breusegem, F.; Messens, J. Cysteines under ROS attack in plants: A proteomics view. J. Exp. Bot. 2015, 66, 2935–2944. [Google Scholar] [CrossRef]
- Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. [Google Scholar] [CrossRef]
- Eraslan, F.; Inal, A.; Pilbeam, D.J.; Gunes, A. Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. CV. Matador) grown under boron toxicity and salinity. Plant Growth Regul. 2008, 55, 207–219. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Jiang, Y.; Li, A.; Cheng, B.; Wu, J. OsASR6 enhances salt stress tolerance in rice. Int. J. Mol. Sci. 2022, 23, 9340. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, T.; Hatta, M.A.M. Improving coconut using modern breeding technologies: Challenges and opportunities. Plants 2022, 11, 3414. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bocs, S.; Fan, H.; Armero, A.; Baudouin, L.; Xu, P.; Xu, J.; This, D.; Hamelin, C.; Iqbal, A.; et al. Coconut genome assembly enables evolutionary analysis of palms and highlights signaling pathways involved in salt tolerance. Commun. Biol. 2021, 10, 105. [Google Scholar]
- Singh, A.; Jha, S.K.; Bagri, J.; Pandey, G.K. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis. PLoS ONE 2015, 10, e0125168. [Google Scholar] [CrossRef]
- Lima, B.L.C.; Lacerda, C.F.; Ferreira, M.; Ferreira, J.F.S.; Bezerra, A.M.E.; Marques, E.C. Marques, Physiological and ionic changes in dwarf coconut seedlings irrigated with saline water. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 122–127. [Google Scholar] [CrossRef]
- Hebbar, K.B.; Santhosh, A.; Sukumar, A.P.; Neethu, P.; Ramesh, S.V.; Selvamani, V. Effect of sea water substitution on growth, physiological and biochemical processes of coconut (Cocos nucifera L.) seedlings—A hydroponic study. Sci. Hortic. 2021, 280, 109935. [Google Scholar] [CrossRef]
- Duan, W.; Lu, B.; Liu, L.; Meng, Y.; Ma, X.; Li, J.; Zhang, K.; Sun, H.; Zhang, Y.; Dong, H.; et al. Effects of exogenous melatonin on root physiology, transcriptome and metabolome of cotton seedlings under salt stress. Int. J. Mol. Sci. 2022, 23, 9456. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, J.; Wang, Z.; Liu, J.; Wang, Y.; Liao, Y.; Gao, Z.; Lu, Z.; Zhu, B.; Yao, F. Analysis of effect of compound salt stress on seed germination and salt tolerance analysis of pepper (Capsicum annuum L.). J. Vis. Exp. 2022, 189, e64702. [Google Scholar]
- Yuan, S.; Li, Z.; Li, D.; Yuan, N.; Hu, Q.; Luo, H. Constitutive Expression of Rice MicroRNA528 Alters Plant Development and Enhances Tolerance to Salinity Stress and Nitrogen Starvation in Creeping Bentgrass. Plant Physiol. 2015, 169, 576–593. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Tomar, N.S.; Tittal, M.; Argal, S.; Agarwal, R.M. Agarwal, Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol. Mol. Biol. Plants 2017, 23, 731–744. [Google Scholar] [CrossRef]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Guo, Y.; Liu, Y.; Zhang, F.; Wang, Z.; Wang, H.; Wang, F.; Li, D.; Mao, D.; Luan, S.; et al. 9-cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice. Front. Plant Sci. 2018, 9, 162. [Google Scholar] [CrossRef]
- Omari, A.F. A Comprehensive Analysis of the 9-Cis Epoxy Carotenoid Dioxygenase Gene Family and Their Responses to Salt Stress in Hordeum vulgare L. Plants 2024, 13, 3327. [Google Scholar] [CrossRef]
- Takahashi, F.; Suzuki, T.; Osakabe, Y.; Betsuyaku, S.; Kondo, Y.; Dohmae, N.; Fukuda, H.; Yamaguchi-Shinozaki, K.; Shinozaki, K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 2018, 556, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, M.; Wang, P.; Cox, K.L., Jr.; Duan, L.; Dever, J.K.; Shan, L.; Li, Z.; He, P. Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. New Phytol. 2017, 215, 1462–1475. [Google Scholar] [CrossRef]
- Luo, H.; Du, B.; He, L.; He, J.; Hu, L.; Pan, S.; Tang, X. Exogenous application of zinc (Zn) at the heading stage regulates 2-acetyl-1-pyrroline (2AP) biosynthesis in different fragrant rice genotypes. Sci. Rep. 2019, 9, 19513. [Google Scholar] [CrossRef]
- Wu, M.; Chou, K.; Wu, C.; Chen, J.; Huang, T. Characterization and the possible formation mechanism of 2-acetyl-1-pyrroline in aromatic vegetable soybean (Glycine max L.). J. Food Sci. 2009, 74, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Xing, P.; Luo, H.; He, Z.; He, L.; Zhao, H.; Tang, X.; Duan, M. Trans-Zeatin induced regulation of the biosynthesis of 2-acetyl-1-pyrroline in fragrant rice (Oryza sativa L.) seedlings. BMC Plant Biol. 2023, 23, 88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, D.; Zhou, R.; Wang, X.; Dossa, K.; Wang, L.; Zhang, Y.; Yu, J.; Gong, H.; Zhang, X.; et al. Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. BMC Plant Biol. 2019, 19, 66. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, S.; Li, J.; Chen, T.; Gu, Q.; Yang, T.; Zhang, Z. Theanine Improves Salt Stress Tolerance via Modulating Redox Homeostasis in Tea Plants (Camellia sinensis L.). Front. Plant Sci. 2021, 12, 770398. [Google Scholar] [CrossRef]
- Mo, Z.; Li, W.; Pan, S.; Fitzgerald, T.L.; Xiao, F.; Tang, Y.; Wang, Y.; Duan, M.; Tian, H.; Tang, X. Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. Rice 2015, 8, 9. [Google Scholar] [CrossRef]
- Jirapong, C.; Uthairatanakij, A.; Noichinda, S.; Kanlayanarat, S.; Wongs-Aree, C. Comparison of volatile compounds between fresh and heat-processed aromatic coconut. Acta Hortic. 2010, 943, 111–115. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant. 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yin, J.; Luo, D.; Shi, C.; Ding, H.; Li, J.; Sun, X.; Shen, X.; Liu, X.; Iqbal, A.; Yang, Y. Salt Stress Enhances Aroma Component 2-Acetyl-1-Pyrroline in Aromatic Coconut (Cocos nucifera Linn.). Plants 2026, 15, 174. https://doi.org/10.3390/plants15020174
Yin J, Luo D, Shi C, Ding H, Li J, Sun X, Shen X, Liu X, Iqbal A, Yang Y. Salt Stress Enhances Aroma Component 2-Acetyl-1-Pyrroline in Aromatic Coconut (Cocos nucifera Linn.). Plants. 2026; 15(2):174. https://doi.org/10.3390/plants15020174
Chicago/Turabian StyleYin, Jinyao, Dan Luo, Cuinan Shi, Hao Ding, Jing Li, Xiwei Sun, Xiaojun Shen, Xiaomei Liu, Amjad Iqbal, and Yaodong Yang. 2026. "Salt Stress Enhances Aroma Component 2-Acetyl-1-Pyrroline in Aromatic Coconut (Cocos nucifera Linn.)" Plants 15, no. 2: 174. https://doi.org/10.3390/plants15020174
APA StyleYin, J., Luo, D., Shi, C., Ding, H., Li, J., Sun, X., Shen, X., Liu, X., Iqbal, A., & Yang, Y. (2026). Salt Stress Enhances Aroma Component 2-Acetyl-1-Pyrroline in Aromatic Coconut (Cocos nucifera Linn.). Plants, 15(2), 174. https://doi.org/10.3390/plants15020174

