Edible Substrates for Ready-to-Eat Microgreen Pots: “Farm on the Fork” Concept
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimization and Selection of the Edible Substrate and Packaging System
2.2. Characterization of Mustard Microgreens Growth with the Optimized Edible Substrate-Packaging System
2.2.1. Biometric Parameters: Germination Rate, Fresh Weight, Hypocotyl Length, Cotyledon Surface Area and Dry Weight
2.2.2. Pigments
2.2.3. Total Flavonoid Content, Total Phenolic Content, Total Antioxidant Capacity and Malonaldehyde
2.2.4. Phytomelatonin Content
2.3. Effect of the Essential Oil Supplementation of the Edible Substrate on the Mustard Microgreen Growth
2.3.1. Biometric Parameters: Germination Rate, Fresh Weight, Hypocotyl Length, Cotyledon Surface Area and Dry Weight
2.3.2. Bioactive Compounds
3. Materials and Methods
3.1. Materials and Cultivation Conditions
3.2. Optimization and Selection of the Edible Substrate and Packaging System
3.2.1. Optimization and Selection of the Edible Substrate
3.2.2. Optimization and Selection of the Packaging System
3.3. Effect of Supplementation of the Edible Substrate with EOs During Microgreen Production
3.4. Biometric Parameters: Germination, Hypocotyl Length, Cotyledon Surface Area, Fresh Weight, Moisture Content and Pigments
3.5. Total Flavonoid Content, Total Phenolic Content, Total Antioxidant Capacity and Malondialdehyde Determination
3.6. Phytomelatonin Content
3.7. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waterland, N.L.; Moon, Y.; Tou, J.C.; Kim, M.J.; Pena-Yewtukhiw, E.M.; Park, S. Mineral content differs among microgreen, baby leaf, and adult stages in three cultivars of kale. HortScience 2017, 52, 566–571. [Google Scholar] [CrossRef]
- European Union. EU COMMISSION IMPLEMENTING REGULATION (EU) No 208/2013 of 11 March 2013 on traceability requirements for sprouts and seeds intended for the production of sprouts. Off. J. Eur. Union 2013, 68, 16–18. [Google Scholar]
- European Union. EU COMMISSION REGULATION (EU) No 210/2013 of 11 March 2013 on the approval of establishments producing sprouts pursuant to Regulation (EC) No 852/2004 of the European Parliament and of the Council. Off. J. Eur. Union 2013, 68, 24–25. [Google Scholar]
- BOE Real Decreto 379/2014, de 30 de mayo, por el que se regulan las condiciones de aplicación de la normativa comunitaria en materia de autorización de establecimientos, higiene y trazabilidad, en el sector de los brotes y de las semillas destinadas a la prod. Boletín Of. Estado 2014, 139, 1–8.
- FDA. Guidance for Industry: Standards for the Growing, Harvesting, Packing, and Holding of Sprouts for Human Consumption; FDA: Silver Spring, MD, USA, 2023. [Google Scholar]
- MAPA. Guía de Buenas Prácticas de Higiene en la Producción Primaria de Brotes Vegetales; Ministerio de Agricultura y Pesca, Alimentacion y Medio Ambiente: Madrid, Spain, 2016. [Google Scholar]
- Artés–Hernández, F.; Miranda-Molina, F.D.; Klug, T.V.; Martínez–Hernández, G.B. Enrichment of glucosinolate and carotenoid contents of mustard sprouts by using green elicitors during germination. J. Food Compos. Anal. 2022, 110, 104546. [Google Scholar] [CrossRef]
- Alloggia, F.P.; Bafumo, R.F.; Ramirez, D.A.; Maza, M.A.; Camargo, A.B. Brassicaceae microgreens: A novel and promissory source of sustainable bioactive compounds. Curr. Res. Food Sci. 2023, 6, 100480. [Google Scholar] [CrossRef]
- Manchester, L.C.; Tan, D.-X.; Reiter, R.J.; Park, W.; Monis, K.; Qi, W. High levels of melatonin in the seeds of edible plants: Possible function in germ tissue protection. Life Sci. 2000, 67, 3023–3029. [Google Scholar] [CrossRef]
- Bafumo, R.F.; Alloggia, F.P.; Ramirez, D.A.; Maza, M.A.; Camargo, A.B.; Ramirez, D.A.; Camargo, A.B.; Maza, M.A.; Fontana, A.; Moreno, D.A. Optimal Brassicaceae family microgreens from a phytochemical and sensory perspective. Food Res. Int. 2024, 193, 114812. [Google Scholar] [CrossRef]
- Topalcengiz, Z.; Chandran, S.; Gibson, K.E. A comprehensive examination of microbial hazards and risks during indoor soilless leafy green production. Int. J. Food Microbiol. 2024, 411, 110546. [Google Scholar] [CrossRef]
- Balik, S.; Dasgan, H.Y.; Ikiz, B.; Gruda, N.S. The performance of growing-media-shaped microgreens: The growth, yield, and nutrient profiles of broccoli, red beet, and black radish. Horticulturae 2024, 10, 1289. [Google Scholar] [CrossRef]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, Microgreens and “baby leaf” vegetables. In Food Engineering Series; Springer: Berlin/Heidelberg, Germany, 2017; pp. 403–432. [Google Scholar]
- Paradiso, V.M.; Castellino, M.; Renna, M.; Gattullo, C.E.; Calasso, M.; Terzano, R.; Allegretta, I.; Leoni, B.; Caponio, F.; Santamaria, P. Nutritional characterization and shelf-life of packaged microgreens. Food Funct. 2018, 9, 5629–5640. [Google Scholar] [CrossRef] [PubMed]
- Cebrián-Lloret, V.; Martínez-Abad, A.; López-Rubio, A.; Martínez-Sanz, M. Exploring alternative red seaweed species for the production of agar-based hydrogels for food applications. Food Hydrocoll. 2024, 146, 109177. [Google Scholar] [CrossRef]
- Calvarro, J.; Perez-Palacios, T.; Ruiz, J. Modification of gelatin functionality for culinary applications by using transglutaminase. Int. J. Gastron. Food Sci. 2016, 5, 27–32. [Google Scholar] [CrossRef]
- Gomes, D.; Batista-Silva, J.P.; Sousa, A.; Passarinha, L.A. Progress and opportunities in gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydr. Polym. 2023, 311, 120782. [Google Scholar] [CrossRef]
- Baenas, N.; García-Viguera, C.; Moreno, D.A. Biotic elicitors effectively increase the glucosinolates content in Brassicaceae sprouts. J. Agric. Food Chem. 2014, 62, 1881–1889. [Google Scholar] [CrossRef]
- Hassini, I.; Baenas, N.; Moreno, D.A.; Carvajal, M.; Boughanmi, N.; Martinez Ballesta, M.D.C. Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of Brassica oleracea var. capitata (white and red varieties) sprouts. J. Sci. Food Agric. 2017, 97, 2291–2299. [Google Scholar] [CrossRef]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef]
- Viacava, G.E.; Roura, S.I. Principal component and hierarchical cluster analysis to select natural elicitors for enhancing phytochemical content and antioxidant activity of lettuce sprouts. Sci. Hortic. 2015, 193, 13–21. [Google Scholar] [CrossRef]
- Evensen, E.; Teng, Z.; Mao, Y.; Chen, P.Y.; Ortiz, I.; Li, Y.; Yang, T.; Fonseca, J.M.; Wang, Q.; Luo, Y. Optimizing microgreen cultivation through post-crosslinked alginate-gellan gum hydrogel substrates with enhanced porosity and structural integrity. Int. J. Biol. Macromol. 2025, 309, 142905. [Google Scholar] [CrossRef]
- Gvozdenac, S.; Indjic, D.; Vukovic, S. Phytotoxicity of chlorpyrifos to white mustard (Sinapis alba L.) and maize (Zea mays L.): Potential indicators of insecticide presence in water. Pestic. Fitomedicina 2013, 28, 265–271. [Google Scholar] [CrossRef]
- Khaliq, G.; Saleh, A.; Bugti, G.A.; Hakeem, K.R. Guggul gum incorporated with basil essential oil improves quality and modulates cell wall-degrading enzymes of jamun fruit during storage. Sci. Hortic. 2020, 273, 109608. [Google Scholar] [CrossRef]
- Pavan, B.; Naik, K.; Sekhar, G.; Shiva, G.; Rajulu, G.; Akhila, L.; Deepika, S.; Suryakumari, A.; Harshini, K. Effect of growth and yield of mustard (Brassica juncea) microgreens on different growing media in indoor conditions. Int. J. Res. Agron. 2022, 5, 40–42. [Google Scholar] [CrossRef]
- Sánchez-Pérez, M.I.; Yazmín Muñoz-Mejía, C.; Quiroz-Velásquez, J.C.; Mayek-Pérez, N.; Hernández-Mendoza, J.L. Physical-chemical changes during maize seed germination. Rev. Mex. Ciencias Agrícolas 2010, 1, 89–93. [Google Scholar]
- Hanway, J.J.; Thompson, H.E. How a Soybean Plant Develops. Special Report No. 53; Iowa State University of Science and Technology, Cooperative Extension Service: Ames, IA, USA, 1967. [Google Scholar]
- Brazaitytė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Laužikė, K.; Duchovskis, P.; Małek, S. Effect of different ratios of blue and red led light on brassicaceae microgreens under a controlled environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
- Dhaka, A.S.; Dikshit, H.K.; Mishra, G.P.; Tontang, M.T.; Meena, N.L.; Kumar, R.R.; Ramesh, S.V.; Narwal, S.; Aski, M.; Thimmegowda, V.; et al. Evaluation of growth conditions, antioxidant potential, and sensory attributes of six diverse microgreens species. Agriculture 2023, 13, 676. [Google Scholar] [CrossRef]
- Alloggia, F.P.; Bafumo, R.F.; Ramírez, D.A.; Heredia Martín, J.P.; Maza, M.A.; Camargo, A.B. Enhancement of yield and functional quality of Brassica microgreens: Effects of fertilization and substrate. Food Chem. 2025, 470, 142594. [Google Scholar] [CrossRef]
- Baenas, N.; Gómez-Jodar, I.; Moreno, D.A.; García-Viguera, C.; Periago, P.M. Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biol. Technol. 2017, 127, 60–67. [Google Scholar] [CrossRef]
- Ben Saad, R.; Ben Romdhane, W.; Wiszniewska, A.; Baazaoui, N.; Taieb Bouteraa, M.; Chouaibi, Y.; Alfaifi, M.Y.; Kačániová, M.; Čmiková, N.; Ben Hsouna, A.; et al. Rosmarinus officinalis L. essential oil enhances salt stress tolerance of durum wheat seedlings through ROS detoxification and stimulation of antioxidant defense. Protoplasma 2024, 261, 1207–1220. [Google Scholar] [CrossRef]
- Li, Z.; Di, H.; Cheng, W.; Zhang, Y.; Ren, G.; Ma, J.; Yang, J.; Huang, Z.; Tang, Y.; Zheng, Y.; et al. Variation in health-promoting compounds and antioxidant activities in mustard (Brassica juncea) sprouts. Sci. Hortic. 2023, 309, 111673. [Google Scholar] [CrossRef]
- Craver, J.K.; Gerovac, J.R.; Lopez, R.G.; Kopsell, D.A. Light intensity and light quality from sole-source light-emitting diodes impact phytochemical concentrations within Brassica Microgreens. J. Am. Soc. Hortic. Sci. 2017, 142, 3–12. [Google Scholar] [CrossRef]
- Gudžinskaitė, I.; Laužikė, K.; Pukalskas, A.; Samuolienė, G. The effect of light intensity during cultivation and postharvest storage on mustard and kale microgreen quality. Antioxidants 2024, 13, 1075. [Google Scholar] [CrossRef] [PubMed]
- Ali, V.; Mandal, J.; Vyas, D. Insights into light-driven dynamics of phytochemicals in sprouts and microgreens. Plant Growth Regul. 2024, 105, 129–152. [Google Scholar] [CrossRef]
- Frosch, S.; Mohr, H. Analysis of light-controlled accumulation of carotenoids in mustard (Sinapis alba L.) seedlings. Planta 1980, 148, 279–286. [Google Scholar] [CrossRef]
- Von Lintig, J.; Welsch, R.; Bonk, M.; Giuliano, G.; Batschauer, A.; Kleinig, H. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J. 1997, 12, 625–634. [Google Scholar] [CrossRef]
- Welsch, R.; Beyer, P.; Hugueney, P.; Kleinig, H.; von Lintig, J. Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta 2000, 211, 846–854. [Google Scholar] [CrossRef]
- Johnson, J.B.; Mani, J.S.; Broszczak, D.; Prasad, S.S.; Ekanayake, C.P.; Strappe, P.; Valeris, P.; Naiker, M. Hitting the sweet spot: A systematic review of the bioactivity and health benefits of phenolic glycosides from medicinally used plants. Phyther. Res. 2021, 35, 3484–3508. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Lee, H.; Sung, J. Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury. J. Food Biochem. 2019, 43, e13002. [Google Scholar] [CrossRef]
- Park, C.H.; Park, Y.E.; Yeo, H.J.; Kim, J.K.; Park, S.U. Effects of light-emitting diodes on the accumulation of phenolic compounds and glucosinolates in Brassica juncea sprouts. Horticulturae 2020, 6, 77. [Google Scholar] [CrossRef]
- Aguilera, Y.; Herrera, T.; Benítez, V.; Arribas, S.M.; López De Pablo, A.L.; Esteban, R.M.; Martín-Cabrejas, M.A. Estimation of scavenging capacity of melatonin and other antioxidants: Contribution and evaluation in germinated seeds. Food Chem. 2015, 170, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.M.; Hassan, A.A.; Mansour, E.H.; Fahmy, H.A.; El-Bedawey, A.E.F.A. Melatonin, phenolics content and antioxidant activity of germinated selected legumes and their fractions. J. Saudi Soc. Agric. Sci. 2019, 18, 294–301. [Google Scholar] [CrossRef]
- Aguilera, Y.; Herrera, T.; Liébana, R.; Rebollo-Hernanz, M.; Sanchez-Puelles, C.; Martín-Cabrejas, M.A. Impact of melatonin enrichment during germination of legumes on bioactive compounds and antioxidant activity. J. Agric. Food Chem. 2015, 63, 7967–7974. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Phytomelatonin, natural melatonin from plants as a novel dietary supplement: Sources, activities and world market. J. Funct. Foods 2018, 48, 37–42. [Google Scholar] [CrossRef]
- Stege, P.W.; Sombra, L.L.; Messina, G.; Martinez, L.D.; Silva, M.F. Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. Electrophoresis 2010, 31, 2242–2248. [Google Scholar] [CrossRef]
- Moura, R.C.; Amaral, B.D.; Lima, N.K.; Lopes, A.D.; Carmo, D.F.; Guesdon, I.R.; Bardales-Lozano, R.M.; Schwartz, G.; Dionisio, L.F.; Ávila, M.D. Phytotoxicity of Piper marginatum Jacq. essential oil on detached leaves and post-emergence of plants. Rev. Bras. Eng. Agrícola Ambient. 2025, 29, e284276. [Google Scholar] [CrossRef]
- Singh, P.; Singh, S.; Kapoor, I.P.S.; Singh, G.; Isidorov, V.; Szczepaniak, L. Chemical constitution and allelopathic effects of Curcuma zedoaria essential oil on lettuce achenes and tomato seeds. Food Biosci. 2013, 3, 42–48. [Google Scholar] [CrossRef]
- Radünz, M.; Mota Camargo, T.; dos Santos Hackbart, H.C.; Inchauspe Correa Alves, P.; Radünz, A.L.; Avila Gandra, E.; da Rosa Zavareze, E. Chemical composition and in vitro antioxidant and antihyperglycemic activities of clove, thyme, oregano, and sweet orange essential oils. LWT 2021, 138, 110632. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Cervantes-Rincón, T.; Bach, H.; López-Malo, A.; Palou, E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Ind. Crops Prod. 2019, 131, 90–95. [Google Scholar] [CrossRef]
- Wu, T.L.; Zhang, B.Q.; Luo, X.F.; Li, A.P.; Zhang, S.Y.; An, J.X.; Zhang, Z.J.; Liu, Y.Q. Antifungal efficacy of sixty essential oils and mechanism of oregano essential oil against Rhizoctonia solani. Ind. Crops Prod. 2023, 191, 115975. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Pérez-Gago, M.B.; Taberner, V.; Settier-Ramírez, L.; Martínez-Blay, V.; Palou, L. Postharvest application of novel bio-based antifungal composite edible coatings to reduce sour rot and quality losses of ‘Valencia’ oranges. Coatings 2023, 13, 1412. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Niehaus, W.G.; Samuelsson, B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur. J. Biochem. 1968, 6, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Hernández-Ruiz, J.; Arnao, M.B. Common methods of extraction and determination of phytomelatonin in plants. Methods Mol. Biol. 2024, 2798, 161–181. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Assessment of different sample processing procedures applied to the determination of melatonin in plants. Phytochem. Anal. 2009, 20, 14–18. [Google Scholar] [CrossRef]

| Day 3 | Day 6 | Day 9 (microgreen) | |
|---|---|---|---|
| Fresh weight | |||
| Red mustard | 11.39 ± 3.75 Ba | 17.90 ± 5.91 Ba | 17.91 ± 4.74 Ca |
| Green mustard | 14.39 ± 4.10 Bb | 23.70 ± 6.36 Bab | 31.51 ± 5.29 Ba |
| White mustard | 28.45 ± 8.62 Ab | 66.01 ± 9.59 Aa | 63.13 ± 7.54 Aa |
| Hypocotyl length | |||
| Red mustard | 0.68 ± 0.14 Ab | 1.68 ± 0.41 Aa | 1.70 ± 0.33 Ca |
| Green mustard | 0.83 ± 0.20 Ac | 2.17 ± 0.35 Ab | 2.93 ± 0.37 Ba |
| White mustard | 1.04 ± 0.34 Ac | 2.62 ± 0.46 Ab | 3.52 ± 0.63 Aa |
| Cotyledon surface area | |||
| Red mustard | 6.22 ± 1.79 Ba | 9.02 ± 2.95 Ca | 11.01 ± 3.76 Ca |
| Green mustard | 11.74 ± 3.43 Bb | 18.49 ± 4.52 Bab | 20.44 ± 3.63 Ba |
| White mustard | 20.21 ± 3.80 Ab | 36.64 ± 5.84 Aa | 43.48 ± 7.48 Aa |
| Dry weight | |||
| Red mustard | 10.44 ± 2.28 Ba | 7.73 ± 1.50 Aab | 3.54 ± 0.89 Bb |
| Green mustard | 16.83 ± 6.15 Aa | 7.38 ± 2.14 Ab | 6.75 ± 0.54 ABb |
| White mustard | 17.00 ± 2.70 Aa | 10.88 ± 4.74 Ab | 9.23 ± 1.04 Ab |
| Day 3 | Day 6 | Day 9 (microgreen) | |
|---|---|---|---|
| Chlorophyll a | |||
| Red mustard | 122.8 ± 19.9 Ac | 316.7 ± 34.2 Ab | 401.1 ± 27.3 Aa |
| Green mustard | 68.5 ± 8.8 Bb | 132.1 ± 15.4 Ba | 105.6 ± 34.8 Ca |
| White mustard | 115.0 ± 24.7 Ab | 126.1 ± 23.6 Bab | 172.5 ± 9.9 Ba |
| Chlorophyll b | |||
| Red mustard | 46.4 ± 11.1 Ac | 121.1 ± 22.9 Ab | 164.5 ± 7.9 Aa |
| Green mustard | 23.2 ± 8.1 Ab | 58.7 ± 12.8 Ba | 55.2 ± 10.3 Ba |
| White mustard | 28.8 ± 18.7 Ab | 44.1 ± 13.7 Bab | 68.8 ± 10.9 Ba |
| Total carotenoids | |||
| Red mustard | 26.0 ± 5.3 ABc | 56.7 ± 2.7 Ab | 76.4 ± 3.1 Aa |
| Green mustard | 15.8 ± 6.5 Ba | 19.5 ± 5.5 Ba | 11.6 ± 8.2 Ba |
| White mustard | 29.7 ± 8.1 Aa | 24.5 ± 12.6 Ba | 20.3 ± 8.2 Ba |
| Day 3 | Day 6 | Day 9 (microgreen) | |
|---|---|---|---|
| Total flavonoid content | |||
| Red mustard | 4.93 ± 0.02 Aa | 4.41 ± 0.02 Ac | 4.56 ± 0.10 Ab |
| Green mustard | 3.89 ± 0.01 Bb | 3.91 ± 0.04 Bb | 4.01 ± 0.07 Ba |
| White mustard | 3.59 ± 0.03 Cc | 3.85 ± 0.04 Bb | 4.01 ± 0.01 Ba |
| Total phenolic content | |||
| Red mustard | 1.26 ± 0.16 Ca | 0.85 ± 0.02 Cc | 1.06 ± 0.05 Bb |
| Green mustard | 0.70 ± 0.04 Ba | 0.52 ± 0.03 Bb | 0.59 ± 0.06 Cb |
| White mustard | 1.97 ± 0.11 Aa | 1.98 ± 0.11 Aa | 1.30 ± 0.13 Ab |
| Total antioxidant capacity | |||
| Red mustard | 10.90 ± 1.22 Aa | 7.28 ± 0.57 Ac | 9.02 ± 0.17 Ab |
| Green mustard | 5.80 ± 0.64 Ba | 4.43 ± 0.52 Bb | 6.04 ± 1.18 Ba |
| White mustard | 5.84 ± 0.30 Ba | 4.52 ± 0.19 Bb | 2.35 ± 0.43 Cc |
| Malondialdehyde | |||
| Red mustard | 20.19 ± 0.02 Ab | 22.60 ± 0.01 Aa | 21.06 ± 0.74 Aab |
| Green mustard | 13.31 ± 0.46 Ba | 10.12 ± 0.17 Cb | 10.07 ± 1.13 Cb |
| White mustard | 20.00 ± 1.84 Aa | 19.16 ± 1.43 Ba | 14.26 ± 0.77 Bb |
| Phytomelatonin | |||
| Red mustard | 16.20 ± 3.60 Bb | 13.43 ± 2.41 Bb | 25.47 ± 6.57 Aa |
| Green mustard | 28.27 ± 5.35 Aa | 28.30 ± 1.76 Aa | 9.17 ± 1.31 Bb |
| White mustard | 24.30 ± 4.43 Aa | 15.18 ± 1.44 Bb | 13.28 ± 1.50 Bb |
| Day 3 | Day 6 | Day 9 (microgreen) | |
|---|---|---|---|
| Total flavonoid content | |||
| CTRL | 4.93 ± 0.02 Aa | 4.41 ± 0.02 Bc | 4.56 ± 0.10 Ab |
| EOs | 4.39 ± 0.05 Bb | 4.75 ± 0.01 Aa | 4.34 ± 0.05 Bb |
| Total phenolic content | |||
| CTRL | 1.26 ± 0.16 Aa | 0.85 ± 0.02 Bc | 1.06 ± 0.05 Ab |
| EOs | 1.10 ± 0.02 Ba | 1.17 ± 0.05 Aa | 0.89 ± 0.02 Bb |
| Total antioxidant capacity | |||
| CTRL | 10.90 ± 1.22 Aa | 7.28 ± 0.57 Ac | 9.02 ± 0.17 Ab |
| EOs | 8.35 ± 0.43 Ba | 8.24 ± 1.27 Aa | 6.32 ± 0.40 Ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rodríguez-Sánchez-de-Molina, N.; Fernández-Lancis, V.; Kaabi, S.; Arnao, M.B.; Fernández, J.A.; Egea-Gilabert, C.; Martínez-Hernández, G.B. Edible Substrates for Ready-to-Eat Microgreen Pots: “Farm on the Fork” Concept. Plants 2026, 15, 49. https://doi.org/10.3390/plants15010049
Rodríguez-Sánchez-de-Molina N, Fernández-Lancis V, Kaabi S, Arnao MB, Fernández JA, Egea-Gilabert C, Martínez-Hernández GB. Edible Substrates for Ready-to-Eat Microgreen Pots: “Farm on the Fork” Concept. Plants. 2026; 15(1):49. https://doi.org/10.3390/plants15010049
Chicago/Turabian StyleRodríguez-Sánchez-de-Molina, Nieves, Victoria Fernández-Lancis, Soundouss Kaabi, Marino B. Arnao, Juan A. Fernández, Catalina Egea-Gilabert, and Ginés Benito Martínez-Hernández. 2026. "Edible Substrates for Ready-to-Eat Microgreen Pots: “Farm on the Fork” Concept" Plants 15, no. 1: 49. https://doi.org/10.3390/plants15010049
APA StyleRodríguez-Sánchez-de-Molina, N., Fernández-Lancis, V., Kaabi, S., Arnao, M. B., Fernández, J. A., Egea-Gilabert, C., & Martínez-Hernández, G. B. (2026). Edible Substrates for Ready-to-Eat Microgreen Pots: “Farm on the Fork” Concept. Plants, 15(1), 49. https://doi.org/10.3390/plants15010049

