Compound Annotation by UHPLC-MS/MS, Quantification of Phenolic Compounds and Antimicrobial Activity of Monofloral Avocado Honey
Abstract
1. Introduction
2. Results
2.1. Botanical Identification
2.2. Determination of the Honey Color
2.3. Total Polyphenols
2.4. Antiradical Capacity
2.5. LC/MS/MS Analysis
2.6. Antibacterial Activity Assay
3. Discussion
3.1. Botanical Identification
3.2. Determination of the Honey Color
3.3. Total Polyphenols
3.4. Antiradical Capacity
3.5. LC/MS/MS Analysis
3.6. Antibacterial Activity Assay
4. Materials and Methods
4.1. Chemicals and Instruments
4.2. Honey Samples
4.3. Botanical Identification
Determination of the Honey Color
4.4. Total Polyphenols
4.5. Antiradical Capacity
4.6. Honey Extraction
4.7. Preparation of Solutions for Analysis
4.8. Analysis Method LC-MS/MS
4.9. Antibacterial Activity Assay
4.9.1. Cariogenic Bacteria
4.9.2. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| pH | Hydrogen potential |
| HPLC | High-Performance Liquid Chromatography |
| COOPEMAPI | Cooperative of Beekeepers and Family Farmers of Northern Minas Gerais |
| SISGEN | National System for the Management of Genetic Heritage and Associated Traditional Knowledgeinear |
| g | grams |
| mL | milliliters |
| ATCC | American Type Culture Collection |
| PES | Polyethersulfone |
| CFU | Colony Forming Unit |
| MIC | Minimum Inhibitory Concentration |
| MBC | Minimum Bactericidal Concentration |
| NaCl | Sodium Chloride |
| Na2SO4 | Sodium Sulfate |
| rpm | Revolutions per Minute |
| ESI | Electrospray Ionization |
| m/z | mass-to-charge ratio |
| LC-MS/MS | Liquid Chromatography coupled to Tandem Mass Spectrometry |
| mg | miligram |
| GAE | Gallic Acid Equivalents |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| PROBEE | Brazilian Program for Research and Development in Apiculture and Meliponiculture |
| Ltd | Limited liability company |
| EC50 | Half Maximal Effective Concentration |
| RT | Retention Time |
| HONE-1 | Human nasopharyngeal carcinoma cell line |
| KB | Human oral carcinoma cell line |
| HT29 | Human colorectal adenocarcinoma cell line |
| AOAC | Association of Official Analytical Chemists |
| SD | Standard Deviation |
| nm | nanometer |
| uL | microliter |
| min. | minute |
| h | hour |
| TNF-α | Tumor Necrosis Factor alpha |
| IL-1β | Interleukin 1 beta |
| IL-12 | Interleukin 12 |
| IL-6 | Interleukin 6 |
| PGE2 | Prostaglandin E2 |
| COX-2 | Cyclooxygenase-2 |
| iNOS | inducible Nitric Oxide Synthase |
| ETD ESI-QqTOF | Electron Transfer Dissociation Electrospray Ionization Quadrupole Quadrupole Time-of-Flight |
| UHPLC-MS/MS | Ultra-High Performance Liquid Chromatography coupled with Tandem Mass Spectrometry |
References
- Caldas, F.R.L.; Filho, F.A.; Facundo, H.; Alves, R.; Santos, F.; Silva, G.; Camara, C.; Silva, T. Composição química, atividade antiradicalar e antimicrobiana do pólen apícola de Fabaceae. Quím. Nova 2019, 42, 49–56. [Google Scholar] [CrossRef]
- Rajindran, N.; Wahab, R.A.; Huda, N.; Julmohammad, N.; Shariff, A.H.M.; Ismail, N.I.; Huyop, F. Physicochemical properties of a new green honey from Banggi Island, Sabah. Molecules 2022, 27, 4164. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xing, L.; Zhang, J.; Ma, X.; Weng, R. Determination of endogenous phenolic compounds in honey by HPLC-MS/MS. Food Sci. Technol. 2023, 183, 114951. [Google Scholar] [CrossRef]
- Núñez-Pizarro, P.; Montenegro, G.; Núñez, G.; Andia, M.E.; Espinosa-Bustos, C.; de Camargo, A.C.; Oyarzún, J.E.; Bridi, R. Comparative study of phenolic content and antioxidant and hepatoprotective activities of unifloral Quillay tree (Quillaja saponaria Molina) and multifloral honeys from Chile. Plants 2024, 13, 3187. [Google Scholar] [CrossRef]
- Patouna, A.; Vardakas, P.; Skaperda, Z.; Oliveira, D.A.; Kouretas, D. Evaluation of the antioxidant potency of Greek honey from the Taygetos and Pindos Mountains using a combination of cellular and molecular methods. Mol. Med. Rep. 2023, 27, 54. [Google Scholar] [CrossRef]
- Kivima, E.; Tanilas, K.; Martverk, K.; Rosenvald, S.; Timberg, L.; Laos, K. The composition, physicochemical properties, antioxidant activity, and sensory properties of Estonian honeys. Foods 2021, 10, 511. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Oliveira, L.V.; Oliveira, A.C.O.; Fett, R. Honey: Chemical composition, stability, and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Ares, A.M.; Elmore, J.S.; Bernal, J. Recent trends in the analysis of honey constituents. Food Chem. 2022, 387, 132920. [Google Scholar] [CrossRef]
- Oliveira, Z.; Salaseh, E.; Mehrabian, A.R.; Teherã, D.M.; Dardashti, N.F.; Salmanpour, F. The amount of antioxidants in honey is strongly related to the plants selected by bees. Sci. Rep. 2024, 14, 351. [Google Scholar] [CrossRef]
- Di Marco, G.; Oliveira, A.; Oliveira, L.; Oliveira, L.; Ímpeto, S.; Leonardi, D.; Canini, A. Botanical influence on the phenolic profile and antioxidant level of Italian honeys. J. Food Sci. Technol. 2018, 55, 4042–4050. [Google Scholar] [CrossRef] [PubMed]
- Al-Kafaween, M.A.; Alwahsh, M.; Mohd Hilmi, A.B.; Abulebdah, D.H. Physicochemical characteristics and bioactive compounds of different types of honey and their biological and therapeutic properties: A comprehensive review. Antibiotics 2023, 12, 337. [Google Scholar] [CrossRef] [PubMed]
- Royo, V.A.; Oliveira, D.A.; Veloso, P.H.F.; Sacramento, V.M.; Olimpio, E.L.A.; Souza, L.F.; Pires, N.C.; Martins, C.H.G.; Santiago, M.B.; Alves, T.M.A.; et al. Physicochemical profile, antioxidant and antimicrobial activities of honeys produced in Minas Gerais (Brazil). Antibiotics 2022, 11, 1429. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Hong, I.P.; Woo, S.O.; Jang, H.R.; Pak, S.C.; Han, S.M. Isolation of abscisic acid from Korean acacia honey with anti-Helicobacter pylori activity. Pharmacogn. Mag. 2017, 13, 170–173. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Aires, E.; Oliveira, J.C.M.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of whole honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Bouacha, M.; Besnaci, S.; Boudiar, I. An overview of the most commonly used methods for determining the in vitro antibacterial activity of honey. Acta Microbiol. Bulg. 2023, 39, 23–30. [Google Scholar] [CrossRef]
- Fratianni, F.; Amato, G.; Neve Ombra, M.; De Feo, V.; Oliveira, R.; Nazzaro, F. Prospective in vitro health and nutritional benefits of different citrus monofloral honeys. Sci. Rep. 2023, 13, 10. [Google Scholar] [CrossRef]
- Pena Júnior, D.S.; Almeida, C.A.; Santos, M.C.F.; Fonseca, P.H.V.; Menezes, E.V.; Melo Júnior, A.F.; Brandão, M.M.; Oliveira, D.A.; Souza, L.F.; Silva, J.C.; et al. Antioxidant activities of some monofloral honey types produced across Minas Gerais (Brazil). PLoS ONE 2022, 17, e0262038. [Google Scholar] [CrossRef]
- Bouhlali, E.D.T.; Bammou, M.; Sellam, K.; El Midaoui, A.; Bourkhis, B.; Ennassir, J.; Alem, C.; Filali-Zegzouti, Y. Physicochemical properties of eleven monofloral honey samples produced in Morocco. Arab J. Basic Appl. Sci. 2019, 26, 476–487. [Google Scholar] [CrossRef]
- Sakac, M.B.; Jovanov, P.T.; Marić, A.Z.; Pezo, L.L.; Kevrešan, Ž.S.; Novaković, A.R.; Nedeljković, N.M. Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chem. 2018, 261, 26–31. [Google Scholar] [CrossRef]
- Guerzou, M.; Aouissi, H.A.; Guerzou, A.; Burlakovs, J.; Doumandji, S.; Krauklis, A.E. From the beehives: Identification and comparison of physicochemical properties of Algerian honey. Resources 2021, 10, 94. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C. Surviving the acid test: Responses of Gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 2003, 67, 429–453. [Google Scholar] [CrossRef]
- Silva, A.R.; Keevil, C.W.; Pereira, A. Legionella affects biofilm structural response to detachment upon shear stress increase. Biofilm 2025, 10, 100323. [Google Scholar] [CrossRef]
- Jungbauer, G.; Lechner, R.; Stähli, A.; Sculean, A.; Eick, S. In vitro effect of manuka honey/propolis toothpastes on bacteria and biofilm associated with caries and gingivitis. Oral Med. 2025, 23, 203–210. [Google Scholar] [CrossRef]
- Cvikl, B.; Lussi, A.; Gruber, R. The in vitro impact of toothpaste extracts on cell viability. Eur. J. Oral Sci. 2015, 123, 179–185. [Google Scholar] [CrossRef]
- Gkoutzouvelidou, M.; Panos, G.; Xanthou, M.N.; Papachristoforou, A.; Giaouris, E. Comparing the antimicrobial actions of Greek honeys from the Island of Lemnos and manuka honey from New Zealand against clinically important bacteria. Foods 2021, 10, 1402. [Google Scholar] [CrossRef]
- Ratiu, A.; Al-Suod, H.; Bukowska, M.; Ligor, M.; Buszewski, B. Correlation study of honey regarding their physicochemical properties and sugars and cyclitols content. Molecules 2020, 25, 34. [Google Scholar] [CrossRef]
- Scripcă, L.; Amariei, S. The influence of chemical contaminants on the physicochemical properties of unifloral and multifloral honey. Foods 2021, 10, 1039. [Google Scholar] [CrossRef]
- Aumeeruddy, M.Z. Pharmacological activities, chemical profile, and physicochemical properties of raw and commercial honey. Biocatal. Agric. Biotechnol. 2019, 18, 101005. [Google Scholar] [CrossRef]
- Kavanagh, S.; Gunnoo, J.; Passos, T.M.; Stout, J.C.; White, B. Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Barth, O.M. Melissopalinology in Brazil: A review of pollen analysis of honeys, propolis and pollen loads of bees. Sci. Agric. 2004, 61, 342–350. [Google Scholar] [CrossRef]
- Singh, I.; Singh, S. Honey moisture reduction and its quality. J. Food Sci. Technol. 2018, 55, 3861–3871. [Google Scholar] [CrossRef] [PubMed]
- Al-Waili, N.S.; Salom, K.; Al-Ghamdi, A.A. Honey for wound healing, ulcers, and burns: Data supporting its use in clinical practice. Sci. World J. 2011, 11, 766–787. [Google Scholar] [CrossRef] [PubMed]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methodik der Melissopalynologie. Apidologie 1970, 1, 193–209. [Google Scholar] [CrossRef][Green Version]
- CXS 12-1981; Revised Codex Standard for Honey. World Health Organization: Geneva, Switzerland; Food and Agriculture Organization of the United Nations: Rome, Italy, 1981; Rev.1 1987, Rev.2 2001.[Green Version]
- Veloso, P.H.F.; Sacramento, V.M.; Oliveira, D.A.; Menezes, E.V.; Melo Júnior, A.F.; Souza, L.F.; Caldeira, A.S.P.; Alves, T.M.A.; Royo, V.A. Bioactive compounds and pollen profile of honeys from northern Minas Gerais, Brazil. Food Sci. Technol. 2025, 45, e00473. [Google Scholar] [CrossRef]
- Bianco, G.; Abate, S.; Labella, C.; Cataldi, T.R.I. Identification and fragmentation pathways of caffeine metabolites in urine samples via liquid chromatography with positive electrospray ionization coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 735–744. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Kibaris, A.C.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Flavour compounds of Greek cotton honey. J. Sci. Food Agric. 2005, 85, 1444–1452. [Google Scholar] [CrossRef]
- Butnaru, C.; Butnaru, E.; Vlase, L.; Lazăr, M.I. Determination of scopoletin in Physalis alkekengii and Solanum dulcamara by high-performance liquid chromatography. Farmacia 2010, 58, 711–717. [Google Scholar]
- López-Carbonell, M.; Jáuregui, O. A rapid method for analysis of abscisic acid (ABA) in crude extracts of water stressed Arabidopsis thaliana plants by liquid chromatography—Mass spectrometry in tandem mode. Plant Physiol. Biochem. 2005, 43, 407–411. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Huang, S.; Li, H.; Liu, Y.; Gu, Q.; Guo, X.; Hu, Y. Tocochromanols and chlorophylls accumulation in young pomelo (Citrus maxima) during early fruit development. Foods 2021, 10, 2022. [Google Scholar] [CrossRef] [PubMed]
- Mannina, L.; Sobolev, A.P.; Di Lorenzo, A.; Vista, S.; Tenore, G.C.; Daglia, M. Chemical composition of different botanical origin honeys produced by Sicilian black honeybees (Apis mellifera ssp. sicula). J. Agric. Food Chem. 2015, 63, 2523–2532. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Peng, L.; Xu, Y.; Liu, C.; Shao, L.; Liu, T.; Shou, M.; Lin, Q.; Wang, B.; Shi, M.; et al. Abscisic acid enhances SmAPK1-mediated phosphorylation of SmbZIP4 to positively regulate tanshinone biosynthesis in Salvia miltiorrhiza. New Phytol. 2024, 245, 1124–1144. [Google Scholar] [CrossRef]
- Sung, J.; Wang, L.; Long, D.; Yang, C.; Merlin, D. PepT1-knockout mice harbor a protective metabolome beneficial for intestinal wound healing. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G888–G896. [Google Scholar] [CrossRef] [PubMed]
- Spórna-Kucab, A.; Tekieli, A.; Kisiel, A.; Grzegorczyk, A.; Skalicka-Woźniak, K.; Starzak, K.; Wybraniec, S. Antioxidant and antimicrobial effects of baby leaves of Amaranthus tricolor L. harvested as vegetable in correlation with their phytochemical composition. Molecules 2023, 28, 1463. [Google Scholar] [CrossRef]
- Oelschlägel, S.; Gruner, M.; Wang, P.-N.; Boettcher, A.; Koelling-Speer, I.; Speer, K. Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal. J. Agric. Food Chem. 2012, 60, 7229–7237. [Google Scholar] [CrossRef] [PubMed]
- Dymond, K.; Celis-Diez, J.L.; Potts, S.G.; Howlett, B.G.; Willcox, B.K.; Garratt, M.P.D. The role of insect pollinators in avocado production: A global review. J. Appl. Entomol. 2021, 145, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Serra Bonvehi, J.; Ventura Coll, F.; Orantes Bermejo, J.F. Characterization of avocado honey (Persea americana Mill.) produced in Southern Spain. Food Chem. 2019, 287, 214–221. [Google Scholar] [CrossRef]
- Balkanska, R.; Stefanova, K.; Stoikova-Grigorova, R. Main honey botanical components and techniques for identification: A review. J. Apic. Res. 2020, 59, 852–861. [Google Scholar] [CrossRef]
- Silva, A.M.P.C.; Oliveira, G.A.; Machado, C.A.; Clarton, L. Qualidade do Mel de Abelhas sem Ferrão: Uma Proposta para Boas Práticas de Fabricação, 1st ed.; INSECTA: Cruz das Almas, Brazil, 2006; pp. 1–79. [Google Scholar]
- Aroucha, E.M.M.; Oliveira, A.J.F.; Nunes, G.H.S.; Maracajá, P.B. Qualidade do mel de abelha produzidos pelos Incubados da IAGRAM e comercializado no Município de Mossoró/RN. Rev. Caatinga 2008, 21, 211–217. [Google Scholar]
- Lacerda, J.J.D.J.; Dos Santos, J.S.; Dos Santos, S.A.; Rodrigues, G.B.; Dos Santos, M.L.P. Influência das características físico-químicas e composição elementar nas cores de méis produzidos por Apis mellifera no sudoeste da Bahia utilizando análise multivariada. Quím. Nova 2010, 33, 1022–1026. [Google Scholar] [CrossRef]
- Gomes, V.V.; Dourado, G.S.; Costa, S.C.; Lima, A.K.O.; Silva, D.S.; Bandeira, A.M.P.; Vasconcelos, A.A.; Taube, P.S. Avaliação da qualidade do mel comercializado no oeste do Pará, Brasil. Rev. Virtual Quím. 2017, 9, 815–826. [Google Scholar] [CrossRef]
- Sarmento, T.E.C.; de Andrade Royo, V.; Veloso, P.H.F.; Sacramento, V.M.; Menezes, E.V.; Pires, N.C.; Souza, L.F.; Oliveira, D.A.; Melo Junior, A.F.; Brandão, M.M. Determinação de características físico-químicas de méis monoflorais comercializados no norte de Minas Gerais, Brasil. Rev. Unimontes Cient. 2024, 26, 279–289. [Google Scholar] [CrossRef]
- García-Tenesaca, M.; Navarrete, E.S.; Iturralde, G.A.; Villacrés Granda, I.M.; Tejera, E.; Beltrán-Ayala, P.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Influence of botanical origin and chemical composition on the protective effect against oxidative damage and the capacity to reduce in vitro bacterial biofilms of monofloral honeys from the Andean region of Ecuador. Int. J. Mol. Sci. 2017, 19, 45. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Valencia-Barrera, R.M.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tornadijo, M.E.; Fresno, J.M. Spanish honeys with quality brand: A multivariate approach to physicochemical parameters, microbiological quality, and floral origin. J. Apic. Res. 2018, 58, 92–103. [Google Scholar] [CrossRef]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Dar, S.A.; Ahmed, M.M.M.; Aly, M.M.; Vlainić, J. Antioxidant capacity and therapeutic applications of honey: Health benefits, antimicrobial activity and food processing roles. Antioxidants 2025, 14, 959. [Google Scholar] [CrossRef]
- Czigle, S.; Filep, R.; Balažová, E.; Szentgyörgyi, H.; Balázs, V.L.; Kocsis, M.; Purger, D.; Papp, N.; Farkas, Á. Antioxidant capacity determination of Hungarian-, Slovak-, and Polish-origin goldenrod honeys. Plants 2022, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Magdas, T.M.; David, M.; Hategan, A.R.; Filip, G.A.; Magdas, D.A. Geographical origin authentication—A mandatory step in the efficient involvement of honey in medical treatment. Foods 2024, 13, 532. [Google Scholar] [CrossRef]
- Zammit Young, G.-W.; Blundell, R. A review on the phytochemical composition and health applications of honey. Heliyon 2023, 9, e12507. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. [Google Scholar] [CrossRef]
- Lee, H.W.; Lee, H.S. 2-Hydroxyquinoline and its structural analogs show antidiabetic effects against α-amylase and α-glucosidase. J. Appl. Biol. Chem. 2015, 58, 1–3. [Google Scholar] [CrossRef]
- Prachayasittikul, V.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther. 2013, 7, 1157–1174. [Google Scholar] [CrossRef]
- Trinh, N.T.N.; Tuan, N.N.; Thang, T.D.; Kuo, P.C.; Thanh, N.B.; Tam, L.N.; Tuoi, L.H.; Nguyen, T.H.D.; Vu, D.C.; Ho, T.L.; et al. Chemical composition analysis and antioxidant activity of Coffea robusta monofloral honeys from Vietnam. Foods 2022, 11, 388. [Google Scholar] [CrossRef] [PubMed]
- Kadri, S.M.; Zaluski, R.; Pereira Lima, G.P.; Mazzafera, P.; De Oliveira Orsi, R. Characterization of Coffea arabica monofloral honey from Espírito Santo, Brazil. Food Chem. 2016, 203, 252–257. [Google Scholar] [CrossRef]
- Reddy, V.S.; Shiva, S.; Manikantan, S.; Ramakrishna, S. Pharmacology of caffeine and its effects on the human body. Eur. J. Med. Chem. Rep. 2024, 10, 100138. [Google Scholar] [CrossRef]
- Low, J.J.L.; Tan, B.J.W.; Yi, L.X.; Zhou, Z.D.; Tan, E.K. Genetic susceptibility to caffeine intake and metabolism: A systematic review. J. Transl. Med. 2024, 22, 961. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Hellín, J.; Varillas-Delgado, D. Energy drinks and sports performance, cardiovascular risk, and genetic associations; future prospects. Nutrients 2021, 13, 715. [Google Scholar] [CrossRef]
- Koulis, G.A.; Tsagkaris, A.S.; Katsianou, P.A.; Gialouris, P.L.P.; Martakos, I.; Stergiou, F.; Fiore, A.; Panagopoulou, E.I.; Karabournioti, S.; Baessmann, C.; et al. Thorough investigation of the phenolic profile of reputable Greek honey varieties: Varietal discrimination and floral markers identification using liquid chromatography–high-resolution mass spectrometry. Molecules 2022, 27, 4444. [Google Scholar] [CrossRef]
- Gao, X.Y.; Li, X.Y.; Zhang, C.Y.; Bai, C.Y. Scopoletin: A review of its pharmacology, pharmacokinetics, and toxicity. Front. Pharmacol. 2024, 15, 1268464. [Google Scholar] [CrossRef]
- Antika, L.D.; Tasfiyati, A.N.; Hikmat, H.; Septama, A.W. Scopoletin: A review of its source, biosynthesis, methods of extraction, and pharmacological activities. Z. Für Naturforschung C 2022, 77, 303–316. [Google Scholar] [CrossRef]
- Alqudah, A.; Qnais, E.; Gammoh, O.; Bseiso, Y.; Wedyan, M.; Alqudah, M.; Aljabali, A.A.A.; Tambuwala, M. Exploring Scopoletin’s therapeutic efficacy in DSS-induced ulcerative colitis: Insights into inflammatory pathways, immune modulation, and microbial dynamics. Inflammation 2024, 48, 575–589. [Google Scholar] [CrossRef]
- Sakthivel, K.M.; Vishnupriya, S.; Priya Dharshini, L.C.; Rasmi, R.R.; Ramesh, B. Modulation of multiple cellular signalling pathways as targets for anti-inflammatory and anti-tumorigenesis action of Scopoletin. J. Pharm. Pharmacol. 2022, 74, 147–161. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Polak, T.; Kropf, U.; Korošec, M.; Golob, T. LC-DAD-ESI/MS Analysis of Flavonoids and Abscisic Acid with Chemometric Approach for the Classification of Slovenian Honey. Food Chem. 2011, 127, 296–302. [Google Scholar] [CrossRef]
- Kou, X.; Yang, S.; Chai, L.; Wu, C.; Zhou, J.; Liu, Y.; Xue, Z. Abscisic acid and fruit ripening: Multifaceted analysis of the effect of abscisic acid on fleshy fruit ripening. Sci. Hortic. 2021, 281, 109999. [Google Scholar] [CrossRef]
- Singh, A.; Roychoudhury, A. Abscisic acid in plants under abiotic stress: Crosstalk with major phytohormones. Plant Cell Rep. 2023, 42, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Jené, L.; Munné-Bosch, S. Double-edged sword effect of jasmonoyl-isoleucine on the parasite–host interaction between field dodder and lentil. Food Energy Secur. 2025, 14, e70035. [Google Scholar] [CrossRef]
- Magnone, M.; Ameri, P.; Salis, A.; Andraghetti, G.; Emionite, L.; Murialdo, G.; De Flora, A.; Zocchi, E. Microgram amounts of abscisic acid in fruit extracts improve glucose tolerance and reduce insulinemia in rats and in humans. FASEB J. 2015, 29, 4783–4793. [Google Scholar] [CrossRef]
- Guri, A.J.; Evans, N.P.; Hontecillas, R.; Bassaganya-Riera, J. T cell PPARγ is required for the anti-inflammatory efficacy of abscisic acid against experimental IBD. J. Nutr. Biochem. 2011, 22, 812–819. [Google Scholar] [CrossRef]
- Hontecillas, R.; Roberts, P.C.; Carbo, A.; Vives, C.; Horne, W.T.; Genis, S.; Velayudhan, B.; Bassaganya-Riera, J. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism. J. Nutr. Biochem. 2013, 24, 1019–1027. [Google Scholar] [CrossRef]
- Glennon, E.K.K.; Adams, L.G.; Hicks, D.R.; Dehesh, K.; Luckhart, S. Supplementation with abscisic acid reduces malaria disease severity and parasite transmission. Am. J. Trop. Med. Hyg. 2016, 94, 1266–1275. [Google Scholar] [CrossRef] [PubMed]
- Thongsaiklainga, T.; Satjawattana, K.; Palasai, W.; Nutalai, J.; Payakapan, S.; Passara, H. The innovative color of emerald and dark violet honeys from stingless bee: A comparative of chemical profile, physicochemical and biological properties. Int. J. Sci. Innov. Technol. 2024, 7, 53–74. [Google Scholar]
- Widemann, E.; Miesch, L.; Lugan, R.; Holder, E.; Heinrich, C.; Aubert, Y.; Miesch, M.; Pinot, F.; Heitz, T. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves. J. Biol. Chem. 2013, 288, 31701–31714. [Google Scholar] [CrossRef] [PubMed]
- Bruckhoff, V.; Haroth, S.; Feussner, K.; König, S.; Brodhun, F.; Feussner, I. Functional characterization of CYP94-genes and identification of a novel jasmonate catabolite in flowers. PLoS ONE 2016, 11, e0159875. [Google Scholar] [CrossRef] [PubMed]
- Ceccanti, C.; Landi, M.; Rocchetti, G.; Miras Moreno, M.B.; Lucini, L.; Incrocci, L.; Pardossi, A.; Guidi, L. Effect of cut on secondary metabolite profile in hydroponically-grown Rumex acetosa L. seedlings: A metabolomic approach. Nat. Prod. Res. 2021, 35, 4089–4093. [Google Scholar] [CrossRef]
- Chen, W.Q.; Song, Z.J.; Xu, H.H. A new antifungal and cytotoxic C-methylated flavone glycoside from Picea neoveitchii. Bioorg. Med. Chem. Lett. 2012, 22, 5819–5822. [Google Scholar] [CrossRef]
- Liu, L.L.; Chen, J.; Liu, Y.; Hou, Q.L.; Shao, J.H.; Zhao, C.C. A new phenolic glycoside with aldose reductase inhibitory activity from Eucommia ulmoides. Chem. Nat. Compd. 2021, 57, 47–49. [Google Scholar] [CrossRef]
- Väisänen, E.E.; Smeds, A.I.; Fagerstedt, K.V.; Teeri, T.H.; Willför, S.M.; Kärkönen, A. Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings. Planta 2015, 242, 747–760. [Google Scholar] [CrossRef]
- Ren, Y.; Shen, L.; Zhang, D.W.; Dai, S.J. Two new sesquiterpenoids from Solanum lyratum with cytotoxic activities. Chem. Pharm. Bull. 2009, 57, 408–410. [Google Scholar] [CrossRef]
- Hossen, K.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Phytotoxic activity and growth inhibitory substances from Albizia richardiana (Voigt.) King & Prain. Appl. Sci. 2021, 11, 1455. [Google Scholar] [CrossRef]
- Ma, J.; Li, R.; Xu, F.; Zhu, F.; Xu, X. Dehydrovomifoliol alleviates nonalcoholic fatty liver disease via the E2F1/AKT/mTOR axis: Pharmacophore modeling and molecular docking study. Evid. Based Complement. Altern. Med. 2023, 2023, 9107598. [Google Scholar] [CrossRef]
- Jerković, I.; Hegić, G.; Marijanović, Z.; Bubalo, D. Organic extractives from Mentha spp. honey and the bee-stomach: Methyl syringate, vomifoliol, terpenediol I, hotrienol and other compounds. Molecules 2010, 15, 2911–2924. [Google Scholar] [CrossRef] [PubMed]
- Michel, P.; Wajs-Bonikowska, A.; Magiera, A.; Wosiak, A.; Balcerczak, E.; Czerwińska, M.E.; Olszewska, M.A. Anti-inflammatory and antioxidant effects of (6S,9R)-vomifoliol from Gaultheria procumbens L.: In vitro and ex vivo study in human immune cell models. Int. J. Mol. Sci. 2025, 26, 1571. [Google Scholar] [CrossRef]
- Thissera, B.; Visvanathan, R.; Khanfar, M.A.; Qader, M.M.; Hassan, M.H.A.; Hassan, H.M.; Bawazeer, M.; Behery, F.A.; Yaseen, M.; Liyanage, R.; et al. Sesbania grandiflora L. Poir leaves: A dietary supplement to alleviate type 2 diabetes through metabolic enzymes inhibition. S. Afr. J. Bot. 2020, 130, 282–299. [Google Scholar] [CrossRef]
- Yao, L.; Zhu, S.; Hu, Z.; Chen, L.; Nisar, M.F.; Wan, C. Anti-inflammatory constituents from Chaenomeles speciosa. Nat. Prod. Commun. 2020, 15, 1934578X20913691. [Google Scholar] [CrossRef]
- Li, M.X.; Xie, J.; Bai, X.; Du, Z.Z. Anti-Aging Potential, Anti-Tyrosinase and Antibacterial Activities of Extracts and Compounds Isolated from Rosa chinensis Cv. ‘JinBian’. Ind. Crops Prod. 2021, 159, 113059. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Y.; Zhang, J.; Qian, X.; Li, X.; Sun, X. Recent Progress Regarding Jasmonates in Tea Plants: Biosynthesis, Signaling, and Function in Stress Responses. Int. J. Mol. Sci. 2024, 25, 1079. [Google Scholar] [CrossRef]
- Mogana, R.; Adhikari, A.; Debnath, S.; Hazra, S.; Hazra, B.; Teng-Jin, K.; Wiart, C. The antiacetylcholinesterase and antileishmanial activities of Canarium patentinervium Miq. BioMed Res. Int. 2014, 2014, 903529. [Google Scholar] [CrossRef]
- Tan, M.A.; Gonzalez, S.J.B.; Alejandro, G.J.D.; An, S.S.A. Neuroprotective Effects of Vomifoliol, Isolated from Tarenna obtusifolia Merr. (Rubiaceae), against Amyloid-Beta1-42-Treated Neuroblastoma SH-SY5Y Cells. 3 Biotech. 2020, 10, 424. [Google Scholar] [CrossRef]
- Cecatto, A.; Formagio, A.; Buzanello-Martins, C.; Fortuna, C.; Cabral, M.; Da Costa, W.; Baldoqui, D.; Sarragiotto, M. Chemical and Dereplication Studies of Palicourea tomentosa (Aubl.) Borhidi and Their Antimicrobial and Anticholinesterase Activities. Quím. Nova 2025, 48, 1–7. [Google Scholar] [CrossRef]
- Ren, W.; Chen, L. Unravelling the Dynamic Physiological and Metabolome Responses of Wheat (Triticum aestivum L.) to Saline–Alkaline Stress at the Seedling Stage. Metabolites 2025, 15, 430. [Google Scholar] [CrossRef]
- Liu, M.; Hong, G.; Li, H.; Bing, X.; Chen, Y.; Jing, X.; Gershenzon, J.; Lou, Y.; Baldwin, I.T.; Li, R. Sakuranetin Protects Rice from Brown Planthopper Attack by Depleting Its Beneficial Endosymbionts. Proc. Natl. Acad. Sci. USA 2023, 120, e2305007120. [Google Scholar] [CrossRef]
- World Health Organization. Prevention and Treatment of Dental Caries with Mercury-Free Products and Minimal Intervention: WHO Oral Health Briefing Note Series; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Demel, K.; Talaska, J.; Dziedzic, M.; Król, J.; Szatkowska, Z.; Odrzywolska, O.; Niemczyk, W.; Zawilska, A. Use of Honey in Dentistry—Literature Review. Wiad Lek. 2025, 2025, 156–161. [Google Scholar] [CrossRef]
- Radulović, N.S.; Blagojević, P.D.; Palić, R.M. Antimicrobial Plant Metabolites: Structural Diversity and Mechanism of Action. Curr. Med. Chem. 2013, 20, 947–962. [Google Scholar] [CrossRef] [PubMed]
- Bessa, N.G.F.; Borges, J.; Beserra, F.; Carvalho, R.; Pereira, M.; Fagundes, R.; Campos, S.; Ribeiro, L.; Quirino, M.; Junior, A.F.C. Prospecção Fitoquímica Preliminar de Plantas Nativas do Cerrado de Uso Popular Medicinal pela Comunidade Rural do Assentamento Vale Verde—Tocantins. Rev. Bras. Plantas Med. 2013, 15, 692–707. [Google Scholar] [CrossRef]
- Vásquez-Ocmín, P.; Cojean, S.; Rengifo, E.; Suyyagh-Albouz, S.; Guerra, C.A.A.; Pomel, S.; Cabanillas, B.; Mejía, K.; Loiseau, P.M.; Figadère, B.; et al. Antiprotozoal Activity of Medicinal Plants Used by Iquitos-Nauta Road Communities in Loreto (Peru). J. Ethnopharmacol. 2018, 210, 372–385. [Google Scholar] [CrossRef]
- Basson, N.J.; Grobler, S.R. Antimicrobial Activity of Two South African Honeys Produced from Indigenous Leucospermum cordifolium and Erica Species on Selected Micro-Organisms. BMC Complement. Altern. Med. 2008, 8, 41. [Google Scholar] [CrossRef]
- Grabek-Lejko, D.; Hyrchel, T. The Antibacterial Properties of Polish Honey against Streptococcus mutans—A Causative Agent of Dental Caries. Antibiotics 2023, 12, 1640. [Google Scholar] [CrossRef] [PubMed]
- Kamali, S.-A.; Rezvani, M.-B.; Pourhajibagher, M.; Farzaneh, F.; Emami-Razavi, H.-S. In Vitro Synergistic Antibacterial Effects of Extract and Honey Derived from Nigella sativa on Streptococcus mutans: Antibacterial Effects of Extract and Honey Derived from Nigella Sativa on Streptococcus mutans. Galen Med. J. 2024, 13, e3567. [Google Scholar] [CrossRef]
- Brasil Ministerio da Agricultura e Abastecimento. Instrução Normativa n° 11, de 20 de Outubro de 2000. Diário Oficial da União, 23 October 2000, Seção 1, p. 23. Available online: https://www.gov.br/agricultura/pt-br/assuntos/suasa/regulamentos-tecnicos-de-identidade-e-qualidade-de-produtos-de-origem-animal-1/IN11de2000.pdf (accessed on 25 January 2022).
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International; AOAC: Washington, DC, USA, 1998. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin–Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Rufino, M.D.S.M.; Alves, R.E.; de Brito, E.S.; de Morais, S.M.; Sampaio, C.D.G.; Pérez-Jimenez, J.; Saura-Calixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre DPPH. Embrapa Agroindústria Trop.—Comun. Técnico—CE 2007, 1, 1–4. [Google Scholar]
- Acacio, T.M.; Alves, T.M.A.; Veloso, P.H.S.; Royo, V.A.; Oliveira, D.A.; Sacramento, V.M.; Olimpio, E.L.A.; de Melo-Júnior, A.F.; Menezes, E.V.; Souza, L.F.; et al. Analysis of Honeys by Ultra Performance Liquid Chromatography Coupled to Mass Spectrometry. J. Chromatogr. Sep. Tech. 2023, 14, 493. [Google Scholar] [CrossRef]
- M07-A9; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard—Ninth Edition. CLSI: Wayne, PA, USA, 2012.
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre Plate-Based Antibacterial Assay Incorporating Resazurin as an Indicator of Cell Growth, and Its Application in the in Vitro Antibacterial Screening of Phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.; Damasceno, J.L.; Inácio, M.O.; Abrão, F.; Ferreira, N.H.; Tavares, D.C.; Ambrosio, S.R.; Veneziani, R.C.S.; Martins, C.H.G. Antibacterial and Cytotoxic Activities of Pinus tropicalis and Pinus elliottii Resins and of the Diterpene Dehydroabietic Acid Against Bacteria That Cause Dental Caries. Front. Microbiol. 2019, 10, 987. [Google Scholar] [CrossRef] [PubMed]
| Pollen Type | Numerical Counting of Pollen Grains | Percentage Index (%) |
|---|---|---|
| Family—Lauraceae Species—Persea americana Mill | 200 | 86.21 |
| Family—Myrtaceae Species—Eucalyptus sp. | 15 | 6.46 |
| Family—Sapindaceae Species—Serjania lethalis | 7 | 3.02 |
| Family—Anacardiaceae Species—Astronuim urundeuva | 5 | 2.15 |
| Family—Compositae Species—Baccharis sp. | 5 | 2.15 |
| Total | 232 | 100% |
| Peak Id. | Compound Annotated | RT (min) | MS [M+H]+ (m/z) | Mass Error (ppm) | MS/MS Fragments (m/z) | Molecular Formula | Literature Reference |
|---|---|---|---|---|---|---|---|
| 20 | 2-Hydroxyquinoline a,c | 6.2 | 146.0589 | 7.4 | 117.0552; 118.0620 | C9H7NO | [35] |
| 29 | Caffeine a,b,c | 10.4 | 195.0879 | −1.3 | 138.0648; 110.0720 | C8H10N4O2 | [35,36] |
| 38 | Scopoletin a,b,c | 11.6 | 193.0497 | −1.5 | 137.0581; 165.0545; 177.0549 | C10H8O4 | [37,38] |
| 39 | Abscisic acid c | 11.8 | 265.1441 | −2.6 | 201.1284; 229.1222; 247.1334 | C15H20O4 | [39,40,41,42] |
| 81 | Abscisic acid isomer c | 16.4 | 265.1441 | −3.6 | 153.0906; 229.1222; 247.1334 | ||
| 43 | Tuberonic acid c | 12.5 | 227.1286 | −3.5 | 131.0839; 149.0950; 163.1110; 191.1069; 209.1179 | C12H18O4 | [35,43,44] |
| 56 | Dehydrovomifoliol c | 14.0 | 223.1337 | −3.6 | 121.0624; 205.1228 | C13H18O3 | [41,45] |
| 66 | Dihydroconiferin c | 14.9 | 345.1530 | 4.0 | 137.0939; 165.0913; 183.1019 | C16H24O8 | [35] |
| 73 | Vomifoliol c | 15.6 | 225.1483 | 1.0 | 149.0943; 189.1270; 207.1387 | C13H20O3 | [35] |
| 144 | Jasmonoyl-L-isoleucine c | 22.9 | 324.2180 | −3.2 | 132.1003; 151.1111; 260.2022; 278.2121; 306.2074 | C18H29NO4 | [35] |
| Results in % (MIC/MBC) | ||||
|---|---|---|---|---|
| Caries Bacteria | ||||
| Avocado Honey | Chlorhexidine (Control) | |||
| MIC | MBC | MIC | MBC | |
| Streptococcus mutans (ATCC 25175) | >20 | >20 | 0.000046 | 0.000046 |
| Streptococcus sobrinus (ATCC 33478) | >20 | >20 | 0.000092 | 0.000092 |
| Streptococcus mítis (ATCC 49456) | >20 | >20 | 0.00018 | 0.00018 |
| Streptococcus paracasei (ATCC 11578) | >20 | >20 | 0.00018 | 0.00018 |
| Streptococcus salivarius (ATCC 25975) | >20 | >20 | 0.00018 | 0.00018 |
| Streptococcus faecalis (ATCC 4082) | >20 | >20 | 0.00018 | 0.00018 |
| Streptococcus sanguinis (ATCC 10556) | >20 | >20 | 0.000092 | 0.000092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarmento, T.E.C.; de M. Sacramento, V.; Brandão, M.M.; de Melo Júnior, A.F.; Menezes, E.V.; Veloso, P.H.F.; da C. Pires, N.; Martins, C.H.G.; Caléfi, G.G.; A. Alves, T.M.; et al. Compound Annotation by UHPLC-MS/MS, Quantification of Phenolic Compounds and Antimicrobial Activity of Monofloral Avocado Honey. Plants 2025, 14, 3340. https://doi.org/10.3390/plants14213340
Sarmento TEC, de M. Sacramento V, Brandão MM, de Melo Júnior AF, Menezes EV, Veloso PHF, da C. Pires N, Martins CHG, Caléfi GG, A. Alves TM, et al. Compound Annotation by UHPLC-MS/MS, Quantification of Phenolic Compounds and Antimicrobial Activity of Monofloral Avocado Honey. Plants. 2025; 14(21):3340. https://doi.org/10.3390/plants14213340
Chicago/Turabian StyleSarmento, Tom E. C., Veronica de M. Sacramento, Murilo M. Brandão, Afrânio F. de Melo Júnior, Elytania V. Menezes, Pedro H. F. Veloso, Nathália da C. Pires, Carlos H. G. Martins, Gabriel G. Caléfi, Tânia M. A. Alves, and et al. 2025. "Compound Annotation by UHPLC-MS/MS, Quantification of Phenolic Compounds and Antimicrobial Activity of Monofloral Avocado Honey" Plants 14, no. 21: 3340. https://doi.org/10.3390/plants14213340
APA StyleSarmento, T. E. C., de M. Sacramento, V., Brandão, M. M., de Melo Júnior, A. F., Menezes, E. V., Veloso, P. H. F., da C. Pires, N., Martins, C. H. G., Caléfi, G. G., A. Alves, T. M., Caldeira, A. S. P., Oliveira, D. A. d., & Royo, V. d. A. (2025). Compound Annotation by UHPLC-MS/MS, Quantification of Phenolic Compounds and Antimicrobial Activity of Monofloral Avocado Honey. Plants, 14(21), 3340. https://doi.org/10.3390/plants14213340

