Salinity and Nitrogen Availability Affect Growth, Oxalate Metabolism, and Nutritional Quality in Red Orache Baby Greens
Abstract
1. Introduction
2. Results
2.1. Effects of NaCl Salinity
2.2. Effects of Nitrate Concentration
3. Discussion
3.1. Adaptation of Red Orache to Hydroponic Cultivation
3.2. Effect of Salinity and Nitrogen Nutrition on Leaf Concentration of Sodium and Antinutrients
4. Materials and Methods
4.1. Plant Material and Growing Conditions
4.2. Experimental Design and Nutrient Solutions
4.3. Determinations
4.3.1. Growth Analysis
4.3.2. Mineral Elements
4.3.3. Plant Secondary Metabolites and Antioxidant Capacity
4.3.4. Oxalate Oxidase
4.3.5. Chlorophyll a Fluorescence
4.3.6. Ethylene Evolution
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atzori, G.; Mancuso, S.; Masi, E. Seawater Potential Use in Soilless Culture: A Review. Sci. Hortic. 2019, 249, 199–207. [Google Scholar] [CrossRef]
- Kotzen, B.; Emerenciano, M.G.C.; Moheimani, N.; Burnell, G.M. Aquaponics: Alternative Types and Approaches. In Aquaponics Food Production Systems; Springer Nature: Cham, Switzerland, 2019; pp. 301–330. ISBN 9783030159436. [Google Scholar]
- Rossi, L.; Puccinelli, M.; Marchioni, I.; Incrocci, L.; Fronte, B.; Bibbiani, C. Aquaponics: Challenges and Opportunities for Commercial Application. In Developing Circular Agricultural Production Systems; Amon, B., Ed.; Burleigh Dodds Science Publishing: Sawston, UK, 2024; p. 480. ISBN 9781801462563. [Google Scholar]
- Sai Kachout, S.; Ennajah, A.; Guenni, K.; Ghorbel, N.; Zoghlami, A. Potential of Halophytic Plant Atriplex Hortensis for Phytoremediation of Metal-Contaminated Soils in the Mine of Tamra. Soil Sediment Contam. Int. J. 2024, 33, 139–154. [Google Scholar] [CrossRef]
- Hunt, S.P.; Jarvis, D.E.; Larsen, D.J.; Mosyakin, S.L.; Kolano, B.A.; Jackson, E.W.; Martin, S.L.; Jellen, E.N.; Maughan, P.J. A Chromosome-Scale Assembly of the Garden Orach (Atriplex hortensis L.) Genome Using Oxford Nanopore Sequencing. Front. Plant Sci. 2020, 11, 624. [Google Scholar] [CrossRef] [PubMed]
- Kumorkiewicz-Jamro, A.; Pachulicz, R.J.; Fitter, S.; Górska, R.; Duggan, J.; Vandyke, K.; Pukala, T.L.; Wybraniec, S.; Zannettino, A.C.W. Atriplex hortensis Var. “rubra” Extracts and Purified Amaranthin-Type Pigments Reduce Oxidative Stress and Inflammatory Response in LPS-Stimulated RAW264.7 Cells. Food Chem. 2025, 462, 140920. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G. Betalains in Some Species of the Amaranthaceae Family: A Review. Antioxidants 2018, 7, 53. [Google Scholar] [CrossRef]
- Arbour, A.J.; Chu, Y.T.; Brown, P.B.; Huang, J.Y. Life Cycle Assessment on Marine Aquaponic Production of Shrimp, Red Orache, Minutina and Okahajiki. J. Environ. Manag. 2024, 353, 120208. [Google Scholar] [CrossRef]
- Prakash, P.; Kaur, R.; Shekhar, S.; Prasad, K. Technological and Analytical Aspects of Bioactive Compounds and Nutraceuticals from Plant (Vegetable) Sources. In Bioactive Compounds and Nutraceuticals from Plant Sources; Apple Academic Press: Burlington, ON, Canada, 2024; pp. 3–41. [Google Scholar]
- Sharma, P.; Mahongnao, S.; Gupta, A.; Nanda, S. Health Risk Assessment for Potentially Toxic Elements Accumulation in Amaranthaceae Family Cultivars and Their Correlation with Antioxidants and Antinutrients. Arch. Environ. Contam. Toxicol. 2024, 87, 187–207. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Luo, Y.; Shi, H.; Li, Q.; Pinchu, C.; Li, X.; Yang, J.; Fan, W. Oxalate in Plants: Metabolism, Function, Regulation, and Application. J. Agric. Food Chem. 2022, 2022, 16037–16049. [Google Scholar] [CrossRef]
- Salgado, N.; Silva, M.A.; Figueira, M.E.; Costa, H.S.; Albuquerque, T.G. Oxalate in Foods: Extraction Conditions, Analytical Methods, Occurrence, and Health Implications. Foods 2023, 12, 3201. [Google Scholar] [CrossRef]
- Huynh, N.K.; Nguyen, D.H.M.; Nguyen, H.V.H. Effects of Processing on Oxalate Contents in Plant Foods: A Review. J. Food Compos. Anal. 2022, 112, 104685. [Google Scholar] [CrossRef]
- Ghanati, K.; Oskoei, V.; Rezvani-Ghalhari, M.; Shavali-Gilani, P.; Mirzaei, G.; Sadighara, P. Oxalate in Plants, Amount and Methods to Reduce Exposure; a Systematic Review. Toxin Rev. 2024, 43, 411–422. [Google Scholar] [CrossRef]
- Çalişkan, M. The Metabolism of Oxalic Acid. Turk. J. Zool. 2000, 24, 103–106. [Google Scholar]
- Camalle, M.; Standing, D.; Jitan, M.; Muhaisen, R.; Bader, N.; Bsoul, M.; Ventura, Y.; Soltabayeva, A.; Sagi, M. Effect of Salinity and Nitrogen Sources on the Leaf Quality, Biomass, and Metabolic Responses of Two Ecotypes of Portulaca Oleracea. Agronomy 2020, 10, 656. [Google Scholar] [CrossRef]
- Svedružić, D.; Jónsson, S.; Toyota, C.G.; Reinhardt, L.A.; Ricagno, S.; Lindqvist, Y.; Richards, N.G.J. The Enzymes of Oxalate Metabolism: Unexpected Structures and Mechanisms. Arch. Biochem. Biophys. 2005, 433, 176–192. [Google Scholar] [CrossRef]
- Tian, H.; Jiang, L.; Liu, E.; Zhang, J.; Liu, F.; Peng, X. Dependence of Nitrate-induced Oxalate Accumulation on Nitrate Reduction in Rice Leaves. Physiol. Plant. 2008, 133, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Palaniswamy, U.R.; Bible, B.B.; McAvoy, R.J. Oxalic Acid Concentrations in Purslane (Portulaca oleraceae L.) Is Altered by the Stage of Harvest and the Nitrate to Ammonium Ratios in Hydroponics. Sci. Hortic. 2004, 102, 267–275. [Google Scholar] [CrossRef]
- Wittayathanarattana, T.; Wanichananan, P.; Supaibulwatana, K.; Goto, E. A Short-Term Cooling of Root-Zone Temperature Increases Bioactive Compounds in Baby Leaf Amaranthus tricolor L. Front. Plant Sci. 2022, 13, 944716. [Google Scholar] [CrossRef]
- Kachout, S.S. The Effect of Salinity on the Growth of the Halophyte Atriplex Hortensis (Chenopodiaceae). Appl. Ecol. Environ. Res. 2009, 7, 319–332. [Google Scholar] [CrossRef]
- Calone, R.; Cellini, A.; Manfrini, L.; Lambertini, C.; Gioacchini, P.; Simoni, A.; Barbanti, L. The C4 Atriplex Halimus vs. The C3 Atriplex Hortensis: Similarities and Differences in the Salinity Stress Response. Agronomy 2021, 11, 1967. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Marschner, H., Ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Colla, G.; Kim, H.J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in Fruits and Vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity Induced Physiological and Biochemical Changes in Plants: An Omic Approach Towards Salt Stress Tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef]
- Boorboori, M.R.; Li, J. The Effect of Salinity Stress on Tomato Defense Mechanisms and Exogenous Application of Salicylic Acid, Abscisic Acid, and Melatonin to Reduce Salinity Stress. Soil. Sci. Plant Nutr. 2024, 71, 93–110. [Google Scholar] [CrossRef]
- Riyazuddin, R.; Verma, R.; Singh, K.; Nisha, N.; Keisham, M.; Bhati, K.K.; Kim, S.T.; Gupta, R. Ethylene: A Master Regulator of Salinity Stress Tolerance in Plants. Biomolecules 2020, 10, 959. [Google Scholar] [CrossRef]
- Walker, A.P.; Beckerman, A.P.; Gu, L.; Kattge, J.; Cernusak, L.A.; Domingues, T.F.; Scales, J.C.; Wohlfahrt, G.; Wullschleger, S.D.; Woodward, F.I. The Relationship of Leaf Photosynthetic Traits—Vcmax and Jmax—To Leaf Nitrogen, Leaf Phosphorus, and Specific Leaf Area: A Meta-Analysis and Modeling Study. Ecol. Evol. 2014, 4, 3218–3235. [Google Scholar] [CrossRef]
- Wang, P.; Grimm, B. Connecting Chlorophyll Metabolism with Accumulation of the Photosynthetic Apparatus. Trends Plant Sci. 2021, 26, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Massignam, A.M.; Chapman, S.C.; Hammer, G.L.; Fukai, S. Effects of Nitrogen Supply on Canopy Development of Maize and Sunflower. Crop Pasture Sci. 2011, 62, 1045–1055. [Google Scholar] [CrossRef]
- Vos, J.; Van Der Putten, P.E.L. Effect of Nitrogen Supply on Leaf Growth, Leaf Nitrogen Economy and Photosynthetic Capacity in Potato. Field Crops Res. 1998, 59, 63–72. [Google Scholar] [CrossRef]
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- Damerum, A.; Chapman, M.A.; Taylor, G. Innovative Breeding Technologies in Lettuce for Improved Post-Harvest Quality. Postharvest Biol. Technol. 2020, 168, 111266. [Google Scholar] [CrossRef]
- Yang, X.; Gil, M.I.; Yang, Q.; Tomás-Barberán, F.A. Bioactive Compounds in Lettuce: Highlighting the Benefits to Human Health and Impacts of Preharvest and Postharvest Practices. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4–45. [Google Scholar] [CrossRef]
- Yolcu, S.; Alavilli, H.; Ganesh, P.; Panigrahy, M.; Song, K. Salt and Drought Stress Responses in Cultivated Beets (Beta vulgaris L.) and Wild Beet (Beta maritima L.). Plants 2021, 10, 1843. [Google Scholar] [CrossRef]
- Puccinelli, M.; Galati, D.; Carmassi, G.; Rossi, L.; Pardossi, A.; Incrocci, L. Leaf Production and Quality of Sea Beet (Beta vulgaris Subsp. Maritima) Grown with Saline Drainage Water from Recirculating Hydroponic or Aquaculture Systems. Sci. Hortic. 2023, 322, 112416. [Google Scholar] [CrossRef]
- del Carmen Rodríguez-Hernández, M.; Garmendia, I. Leaf Production and Quality of Quinoa ‘Titicaca’ Is Enhanced Under Moderate Salinity. Chil. J. Agric. Res. 2023, 83, 732–741. [Google Scholar] [CrossRef]
- Lima, A.R.; Castañeda-Loaiza, V.; Salazar, M.; Nunes, C.; Quintas, C.; Gama, F.; Pestana, M.; Correia, P.J.; Santos, T.; Varela, J.; et al. Influence of Cultivation Salinity in the Nutritional Composition, Antioxidant Capacity and Microbial Quality of Salicornia Ramosissima Commercially Produced in Soilless Systems. Food Chem. 2020, 333, 127525. [Google Scholar] [CrossRef]
- Benjamin, J.J.; Lucini, L.; Jothiramshekar, S.; Parida, A. Metabolomic Insights into the Mechanisms Underlying Tolerance to Salinity in Different Halophytes. Plant Physiol. Biochem. 2019, 135, 528–545. [Google Scholar] [CrossRef] [PubMed]
- Puccinelli, M.; Marchioni, I.; Botrini, L.; Carmassi, G.; Pardossi, A.; Pistelli, L. Growing Salicornia europaea L. with Saline Hydroponic or Aquaculture Wastewater. Horticulturae 2024, 10, 196. [Google Scholar] [CrossRef]
- He, J.; You, X.; Qin, L. High Salinity Reduces Plant Growth and Photosynthetic Performance but Enhances Certain Nutritional Quality of C4 Halophyte Portulaca oleracea L. Grown Hydroponically Under LED Lighting. Front. Plant Sci. 2021, 12, 651341. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef] [PubMed]
- Puccinelli, M.; Carmassi, G.; Botrini, L.; Bindi, A.; Rossi, L.; Fierro-sañudo, J.F.; Pardossi, A.; Incrocci, L. Growth and Mineral Relations of Beta vulgaris Var. Cicla and Beta vulgaris Ssp. Maritima Cultivated Hydroponically with Diluted Seawater and Low Nitrogen Level in the Nutrient Solution. Horticulturae 2022, 8, 638. [Google Scholar] [CrossRef]
- de Carvalho Leal, L.Y.; de Souza, E.R.; Santos Júnior, J.A.; Dos Santos, M.A. Comparison of Soil and Hydroponic Cultivation Systems for Spinach Irrigated with Brackish Water. Sci. Hortic. 2020, 274, 109616. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Pelaez, C.; et al. Dietary Reference Values for Sodium. EFSA J. 2019, 17, e05778. [Google Scholar] [CrossRef]
- Zayed, O.; Hewedy, O.A.; Abdelmoteleb, A.; Ali, M.; Youssef, M.S.; Roumia, A.F.; Seymour, D.; Yuan, Z.C. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023, 13, 1443. [Google Scholar] [CrossRef]
- Javed, S.A.; Arif, M.S.; Shahzad, S.M.; Ashraf, M.; Kausar, R.; Farooq, T.H.; Hussain, M.I.; Shakoor, A. Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators Through Improved N Supply? Sustainability 2021, 13, 8022. [Google Scholar] [CrossRef]
- Yuan, J.-F.; Feng, G.; Ma, H.-Y.; Tian, C.-Y. Effect of Nitrate on Root Development and Nitrogen Uptake of Suaeda physophora Under NaCl Salinity. Pedosphere 2010, 20, 536–544. [Google Scholar] [CrossRef]
- Liu, R.; Cui, B.; Lu, X.; Song, J. The Positive Effect of Salinity on Nitrate Uptake in Suaeda salsa. Plant Physiol. Biochem. 2021, 166, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Feng, J.; Fan, P.; Chen, X.; Guo, J.; Lv, S.; Bao, H.; Jia, W.; Tai, F.; Jiang, P.; et al. Comparative Proteomics of Root Plasma Membrane Proteins Reveals the Involvement of Calcium Signalling in NaCl-Facilitated Nitrate Uptake in Salicornia Europaea. J. Exp. Bot. 2015, 66, 4497–4510. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union Commission Regulation (EU) No 1258/2011 of 2 December 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Nitrates in Foodstuffs. Off. J. Eur. Union 2011, 320, 15–17.
- Bargagli, M.; Tio, M.C.; Waikar, S.S.; Ferraro, P.M. Dietary Oxalate Intake and Kidney Outcomes. Nutrients 2020, 12, 2673. [Google Scholar] [CrossRef]
- Abu-Zanat, M.M.; Al-Hassanat, F.M.; Alawi, M.; Ruyle, G.B. Oxalate and Tannins Assessment in Atriplex halimus L. and A. nummularia L. J. Range Manag. 2003, 56, 370–374. [Google Scholar] [CrossRef]
- Yang, C.; Shi, D.; Wang, D. Comparative Effects of Salt and Alkali Stresses on Growth, Osmotic Adjustment and Ionic Balance of an Alkali-Resistant Halophyte Suaeda glauca (Bge.). Plant Growth Regul. 2008, 56, 179–190. [Google Scholar] [CrossRef]
- Ford, C.M.; Sweetman, C.; Fry, S.C. Ascorbate Degradation: Pathways, Products, and Possibilities. J. Exp. Bot. 2024, 75, 2733–2739. [Google Scholar] [CrossRef]
- Al Daini, H.; Norman, H.C.; Young, P.; Barrett-Lennard, E.G. The Source of Nitrogen (NH4+ or NO3−) Affects the Concentration of Oxalate in the Shoots and the Growth of Atriplex Nummularia (Oldman Saltbush). Funct. Plant Biol. 2013, 40, 1057–1064. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, X.; Zhang, Y.; Shao, J.Z.; Du, S. Effects of Nitrogen Levels and Nitrate/Ammonium Ratios on Oxalate Concentrations of Different Forms in Edible Parts of Spinach. J. Plant Nutr. 2005, 28, 2011–2025. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. Nitrogen Acquisition, PEP Carboxylase, and Cellular PH Homeostasis: New Views on Old Paradigms. Plant Cell Environ. 2005, 28, 1396–1409. [Google Scholar] [CrossRef]
- Meeuse, B.J.D.; Campbell, J.M. An Inhibitor of Oxalic Acid Oxidase in Beet Extracts. Plant Physiol. 1959, 34, 583. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Espinoza, O.; Rojas-Villalta, D.; Zúñiga-Pereira, A.M.; Chacón-Díaz, C.; Bravo, L.A.; Reyes-Díaz, M. Plant Oxalate Oxidases: Key Enzymes in Redox and Stress Regulation. J. Exp. Bot. 2025, eraf317. [Google Scholar] [CrossRef]
- Fontana, E.; Hoeberechts, J.; Nicola, S.; Cros, V.; Palmegiano, G.B.; Peiretti, P.G. Nitrogen Concentration and Nitrate/Ammonium Ratio Affect Yield and Change the Oxalic Acid Concentration and Fatty Acid Profile of Purslane (Portulaca oleracea L.) Grown in a Soilless Culture System. J. Sci. Food Agric. 2006, 86, 2417–2424. [Google Scholar] [CrossRef]
- Poeydomenge, G.Y.; Savage, G.P. Oxalate Content of Raw and Cooked Purslane. J. Food Agric. Environ. 2007, 5, 124–128. [Google Scholar]
- Savage, G.P.; Vanhanen, L.; Mason, S.M.; Ross, A.B. Effect of Cooking on the Soluble and Insoluble Oxalate Content of Some New Zealand Foods. J. Food Compos. Anal. 2000, 13, 201–206. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.; Jeong, H.S.; Lee, J.; Sung, J. Effect of Different Cooking Methods on the Content of Vitamins and True Retention in Selected Vegetables. Food Sci. Biotechnol. 2018, 27, 333–342. [Google Scholar] [CrossRef]
- Hunt, R. Plant Growth Analysis. Stud. Biol. 1978, 96, 245–249. [Google Scholar]
- Prieto-Santiago, V.; Cavia, M.M.; Alonso-Torre, S.R.; Carrillo, C. Relationship between Color and Betalain Content in Different Thermally Treated Beetroot Products. J. Food Sci. Technol. 2020, 57, 3305–3313. [Google Scholar] [CrossRef]
- Nilsson, T. Beta vulgaris L. Ssp. Vulgaris Var Rubra L. Lantbrukshogskolans Ann. 1970, 36, 179–219. [Google Scholar]
- Ravichandran, K.; Saw, N.M.M.T.; Mohdaly, A.A.A.; Gabr, A.M.M.; Kastell, A.; Riedel, H.; Cai, Z.; Knorr, D.; Smetanska, I. Impact of Processing of Red Beet on Betalain Content and Antioxidant Activity. Food Res. Int. 2013, 50, 670–675. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Sathishraj, R.; Augustin, A. Oxalic Acid and Oxalate Oxidase Enzyme in Costus Pictus D. Don. Acta Physiol. Plant 2012, 34, 657–667. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples. In Probing Photosynthesis: Mechanism, Regulation & Adaptation; CRC Press: London, UK, 2000; pp. 443–480. [Google Scholar]
- Hirschler, R. Whiteness, Yellowness, and Browning in Food Colorimetry: A Critical Review. In Color in Food, Technological and Psychophysical Aspects; CRC Press: Boca Raton, FL, USA, 2012; pp. 118–129. [Google Scholar]
- Eyarkai Nambi, V.; Thangavel, K.; Shahir, S.; Geetha, V. Evaluation of Colour Behavior During Ripening of Banganapalli Mango Using CIE-Lab and RGB Colour Coordinates. J. Appl. Hortic. 2015, 17, 205–209. [Google Scholar] [CrossRef]




| NaCl (mM) | NO3− (mM) | Leaf FW (g m−2) | Leaf DW (g m−2) | Stem DW (g m−2) | Root DW (g m−2) | Total DW (g m−2) | Leaf Area Index | Leaf Moisture Content (%) | Leaf Succulence (kg m−2) |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 10.0 | 1908.0 ± 231.1 | 124.2 ± 14.3 | 22.68 ± 2.68 | 10.10 ± 1.49 | 157.0 ± 18.3 | 6.724 ± 0.638 | 93.4 ± 0.2 | 0.264 ± 0.011 |
| 1.0 | 1434.0 ± 30.8 | 98.2 ± 5.4 | 17.82 ± 0.69 | 11.14 ± 0.71 | 127.2 ± 5.4 | 5.064 ± 0.128 | 93.2 ± 0.4 | 0.264 ± 0.013 | |
| 428 | 10.0 | 500.9 ± 13.6 | 46.3 ± 2.5 | 8.24 ± 0.79 | 2.57 ± 0.30 | 57.1 ± 3.6 | 1.152 ± 0.062 | 90.5 ± 0.4 | 0.396 ± 0.016 |
| 1.0 | 345.7 ± 16.8 | 31.7 ± 1.6 | 6.40 ± 0.50 | 2.06 ± 0.58 | 40.1 ± 2.6 | 0.756 ± 0.067 | 90.3 ± 0.2 | 0.418 ± 0.017 | |
| MAIN EFFECT | |||||||||
| 0 | 1671.0 ± 148.7 a | 111.2 ± 9.0 a | 20.25 ± 1.65 a | 10.62 ± 0.78 a | 142.1 ± 10.8 a | 5.894 ± 0.471 a | 93.3 ± 0.2 a | 0.264 ± 0.008 b | |
| 428 | 423.3 ± 36.0 b | 39.0 ± 3.5 b | 7.32 ± 0.59 b | 2.31 ± 0.31 b | 48.6 ± 4.3 b | 0.954 ± 0.097 b | 90.4 ± 0.2 b | 0.407 ± 0.011 a | |
| 10.0 | 1204.4 ± 331.2 a | 85.2 ± 18.6 a | 15.46 ± 3.46 | 6.33 ± 1.82 | 107.0 ± 23.8 a | 3.938 ± 1.278 a | 91.9 ± 0.7 | 0.330 ± 0.031 | |
| 1.0 | 889.8 ± 243.9 b | 64.9 ± 15.1 b | 12.11 ± 2.58 | 6.60 ± 2.07 | 83.7 ± 19.6 b | 2.910 ± 0.965 b | 91.7 ± 0.7 | 0.341 ± 0.036 | |
| ANOVA | |||||||||
| NaCl | *** | *** | *** | *** | *** | *** | *** | *** | |
| NO3− | * | * | ns | ns | * | * | ns | ns | |
| NaCl × NO3− | ns | ns | ns | ns | ns | ns | ns | ns | |
| NaCl (mM) | NO3− (mM) | Phenols (g kg−1 DW) | Flavonoids (g kg−1 DW) | Ascorbic Acid (g kg−1 DW) | Total Ascorbic Acid (g kg−1 DW) | FRAP Index (mmol Fe (II) kg−1 DW) | DPPH (mmol TE kg−1 DW) |
|---|---|---|---|---|---|---|---|
| 0 | 10.0 | 16.42 ± 1.93 | 5.90 ± 0.18 | 2.52 ± 0.17 | 3.62 ± 0.13 | 198.18 ± 16.18 | 34.99 ± 0.71 |
| 1.0 | 17.98 ± 1.28 | 6.37 ± 0.34 | 2.72 ± 0.15 | 3.27 ± 0.15 | 214.48 ± 7.69 | 34.84 ± 2.48 | |
| 428 | 10.0 | 9.78 ± 0.83 | 3.12 ± 0.03 | 1.88 ± 0.27 | 2.94 ± 0.11 | 93.86 ± 3.05 | 16.32 ± 0.57 |
| 1.0 | 9.35 ± 1.13 | 2.65 ± 0.08 | 1.41 ± 0.12 | 3.16 ± 0.11 | 96.10 ± 2.82 | 18.10 ± 0.89 | |
| MAIN EFFECT | |||||||
| 0 | 17.20 ± 1.20 a | 6.13 ± 0.22 a | 2.62 ± 0.12 a | 3.48 ± 0.12 | 206.33 ± 9.55 a | 34.91 ± 1.29 a | |
| 428 | 9.56 ± 0.71 b | 2.88 ± 0.11 b | 1.65 ± 0.18 b | 3.05 ± 0.09 | 94.98 ± 2.13 b | 17.21 ± 0.64 b | |
| 10.0 | 13.10 ± 1.72 | 4.51 ± 0.57 | 2.26 ± 0.20 | 3.28 ± 0.16 | 146.02 ± 22.83 | 25.65 ± 3.84 | |
| 1.0 | 13.66 ± 1.96 | 4.51 ± 0.78 | 2.20 ± 0.28 | 3.21 ± 0.10 | 155.29 ± 24.51 | 26.47 ± 3.66 | |
| ANOVA | |||||||
| NaCl | ** | *** | * | ns | *** | *** | |
| NO3− | ns | ns | ns | ns | ns | ns | |
| NaCl × NO3− | ns | ns | ns | ns | ns | ns | |
| NaCl (mM) | NO3− (mM) | Chlorophylls (g kg−1 DW) | Carotenoids (g kg−1 DW) | Betalains (g kg−1 DW) | Lightness | Chroma | Hue Angles |
|---|---|---|---|---|---|---|---|
| 0 | 10.0 | 17.76 ± 0.74 | 4.21 ± 0.15 | 5.47 ± 0.41 | 26.3 ± 0.7 | 7.76 ± 0.62 | 62.1 ± 1.4 |
| 1.0 | 17.08 ± 1.57 | 4.27 ± 0.36 | 5.45 ± 0.44 | 26.4 ± 0.6 | 7.38 ± 0.98 | 59.0 ± 5.9 | |
| 428 | 10.0 | 9.38 ± 0.78 | 1.95 ± 0.15 | 2.31 ± 0.16 | 31.4 ± 0.4 | 7.11 ± 0.26 | 52.2 ± 7.6 |
| 1.0 | 8.37 ± 0.19 | 1.81 ± 0.03 | 2.06 ± 0.20 | 30.8 ± 0.4 | 7.46 ± 0.48 | 54.8 ± 6.1 | |
| MAIN EFFECT | |||||||
| 0 | 17.42 ± 0.88 a | 4.24 ± 0.20 a | 5.46 ± 0.30 a | 26.3 ± 0.4 b | 7.57 ± 0.53 | 60.5 ± 2.8 | |
| 428 | 8.87 ± 0.45 b | 1.88 ± 0.08 b | 2.18 ± 0.14 b | 31.1 ± 0.3 a | 7.29 ± 0.26 | 53.5 ± 4.4 | |
| 10.0 | 13.57 ± 1.79 | 3.08 ± 0.47 | 3.89 ± 0.68 | 28.8 ± 1.2 | 7.44 ± 0.33 | 57.2 ± 4.12 | |
| 1.0 | 12.72 ± 1.95 | 3.04 ± 0.53 | 3.76 ± 0.73 | 28.6 ± 1.0 | 7.42 ± 0.49 | 56.9 ± 3.9 | |
| ANOVA | |||||||
| NaCl | *** | *** | *** | *** | ns | ns | |
| NO3− | ns | ns | ns | ns | ns | ns | |
| NaCl × NO3− | ns | ns | ns | ns | ns | ns | |
| Nutrient Solution | ||||
|---|---|---|---|---|
| 0 mM NaCL 10 mM NO3− | 0 mM NaCl 1 mM NO3− | 428 mM NaCl 10 mM NO3− | 428 mM NaCl 1 mM NO3− | |
| NaCl (g L−1) | 0 | 25.0 | 0 | 25.0 |
| N-NO3 (mM) | 10.0 | 1.0 | 10.0 | 1.0 |
| P-PO4 (mM) | 1.5 | 1.5 | 1.5 | 1.5 |
| K (mM) | 9.0 | 8.0 | 9.0 | 8.0 |
| Ca (mM) | 4.5 | 4.5 | 4.5 | 4.5 |
| Mg (mM) | 2.0 | 2.0 | 2.0 | 2.0 |
| S-SO4 (mM) | 0.7 | 0.7 | 7.0 | 9.0 |
| Cl | 0.7 | 0.7 | 428.7 | 428.7 |
| Na (mM) | 0.8 | 0.8 | 428.8 | 428.8 |
| Fe (µM) | 40.0 | 40.0 | 40.0 | 40.0 |
| B (µM) | 40.0 | 40.0 | 40.0 | 40.0 |
| Cu (µM) | 3.0 | 3.0 | 3.0 | 3.0 |
| Zn (µM) | 10.0 | 10.0 | 10.0 | 10.0 |
| Mn (µM) | 10.0 | 10.0 | 10.0 | 10.0 |
| Mo (µM) | 1.0 | 1.0 | 1.0 | 1.0 |
| EC (mS cm−1) | 2.4 | 2.3 | 40.1 | 39.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puccinelli, M.; Cuccagna, S.; Maggini, R.; Carmassi, G.; Pardossi, A.; Trivellini, A. Salinity and Nitrogen Availability Affect Growth, Oxalate Metabolism, and Nutritional Quality in Red Orache Baby Greens. Plants 2025, 14, 3292. https://doi.org/10.3390/plants14213292
Puccinelli M, Cuccagna S, Maggini R, Carmassi G, Pardossi A, Trivellini A. Salinity and Nitrogen Availability Affect Growth, Oxalate Metabolism, and Nutritional Quality in Red Orache Baby Greens. Plants. 2025; 14(21):3292. https://doi.org/10.3390/plants14213292
Chicago/Turabian StylePuccinelli, Martina, Simone Cuccagna, Rita Maggini, Giulia Carmassi, Alberto Pardossi, and Alice Trivellini. 2025. "Salinity and Nitrogen Availability Affect Growth, Oxalate Metabolism, and Nutritional Quality in Red Orache Baby Greens" Plants 14, no. 21: 3292. https://doi.org/10.3390/plants14213292
APA StylePuccinelli, M., Cuccagna, S., Maggini, R., Carmassi, G., Pardossi, A., & Trivellini, A. (2025). Salinity and Nitrogen Availability Affect Growth, Oxalate Metabolism, and Nutritional Quality in Red Orache Baby Greens. Plants, 14(21), 3292. https://doi.org/10.3390/plants14213292

